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Abstract

Background

Sensitization and activity status are associated with kidney transplant waitlist mortality.

Unknown is how changes in these covariates after listing impact transplant outcomes.

Methods

Two cohorts were created from the OPTN (Organ Procurement and Transplantation Net-

work) database, one pre-KAS (new kidney allocation system) (10/01/2009-12/04/2013, n =

97,793) and one post-KAS (12/04/2014-06/17/2015, n = 13,113). Multi-state modeling pro-

vides transition probabilities between intermediate states (CPRA category/activity status

combinations) and competing-risk outcomes: transplant (living), transplant (deceased),

death, or other/well.

Results

Transition probabilities show chances of converting between intermediate states prior to a com-

peting-risk outcome. One year transplant probabilities for post-KAS candidates with a CPRA of

0%(P, 0.123[95% CI, 0.117,0.129]), 1–79%(P, 0.125 [95% CI, 0.112,0.139]), 95–98%(P, 0.242

[95% CI, 0.188, 0.295]) and 99–100%(P, 0.252 [95% CI, 0.195, 0.308]) were significantly higher

than the pre-KAS cohort; they were lower for CPRA 80–89%(P, 0.152 [95% CI, 0.116,0.189])

and not statistically different for CPRA 90–94%(P, 0.180 [95% CI, 0.137,0.223]) candidates.

Post-KAS, Whites had a statistically higher transplant probability only at a CPRA of 99–100%.

Conclusion

Multi-state modeling provides transition probabilities between CPRA/activity status combi-

nations, giving estimates on how changing patient characteristic’s after listing impact
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outcomes. Preliminarily, across most CPRA categories, there was no statistical difference

in transplant probabilities between Whites, Blacks and Hispanics following KAS implemen-

tation, however, this finding requires longer follow-up for validation.

Introduction

Statistical models that account for changing patient-level factors over time enhance the ability

to provide information to clinicians and patients regarding how specific clinical changes

impacts clinical outcomes [1]. This represents an unmet need in OPTN/UNOS (Organ Pro-

curement and Transplantation Network/United Network for Organ Sharing) waitlist data

analyses, which are used to determine outcomes for patients listed for kidney transplant, yet

often do not account for patient characteristics that change after initial listing [2].

The process from listing to outcome can be modeled as a continuous time-stochastic pro-

cess, where the inclusion of patient characteristics that change after initial listing are essential

to determining how these differences affect waitlist outcomes. Amongst the variables that

impact waitlisted patients, activity status to receive organ offers (designated as active vs. inac-

tive) and the level of antibody sensitization (designated by Calculated Panel Reactive Antibod-

ies (CPRA)) are both associated with increased waitlist mortality [3, 4]. CPRA may increase

due to a specific sensitization event, but there are no estimates on the probability of this event

which limits how clinicians discuss risks, like blood transfusions, with waitlist candidates.

Prior to the implementation of the new Kidney Allocation System (KAS), candidates with a

very high CPRA, who tend to be incompatible with most donors, had a lower likelihood of

receiving deceased donor organ offers, which is a recognized factor contributing to less access

to kidney transplant for underserved populations [5, 6].

KAS (OPTN policy 8.3; effective December 4, 2014) was designed to improve transplant

rates of highly sensitized patients and address known disparities in access to transplantation.

Because of sensitization events or clinical status changes, CPRA or waitlist activity status may

change over time. Although most OPTN/UNOS data analyses have treated these variables as

fixed covariates, based on data proximate to the date of listing, how these variables change

over time are essential to understanding the true impact on waitlist outcomes [4, 7]. As these

outcomes are used to formulate policy changes used in organ allocation and for educating

patients on the waitlist, the ability to provide probabilities, or true percentages versus odds or

relative risks, enhances the understanding of how the changes affect waitlist outcomes.

It is recognized that transplant outcomes for waitlisted patients should be considered as

competing risks [8]. A waitlisted patient might experience one of a few events such as trans-

plantation (living or deceased), death, getting well, or removal from the waitlist for other rea-

sons. Conventional methods, such as Kaplan-Meier survival analysis (1-KM), do not properly

account for these competing risks, since right-censoring competing-risk events overestimates

the probabilities for the primary event of interest [8]. Furthermore, analyses focusing on the

association of risk factors and cause-specific hazard cannot be extended to probability or

cumulative incidence function in the presence of competing risks [9]. Hart et al. used compet-

ing-risk modeling to provide probability of outcomes for patients listed for kidney transplant

[8]. However, this model used CPRA as a fixed covariate and did not utilize activity status in a

time-dependent manner. Sapir-Pichhadze et al. conducted an analysis where CPRA was used

as a time-varying covariate with implications on cardiovascular mortality [3]. However, this

analysis did not consider activity status and also did not evaluate the impact of CPRA on the

probability of competing waitlist outcomes. Grams et al. have shown that activity status is

Multi-state modeling of the kidney transplant waitlist
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associated with waitlist mortality by using a Cox-proportional hazards model with activity sta-

tus treated as a time-varying covariate; however, the association of transplant outcomes with

time-varying activity status was not studied because inactive participants could not receive a

deceased donor organ [4]. It is important to recognize the necessity of including activity status

in competing-risk models, as inactive patients are not at risk for deceased donor transplants,

but are at risk for other competing outcomes, such as living donor transplants, death and wait-

list removal due to other reasons, all of which regular COX regression models fail to reconcile.

From the disease/recovery process point of view, a waitlisted patient might experience dif-

ferent levels of sensitization or have changes in their waitlist status before experiencing a clini-

cal endpoint, such as transplant or death. Multi-state modeling, which is an extension of

competing-risk models, provides a framework that permits analysis of this type of event his-

tory data [10, 11]. Differing CPRA levels and activity status combinations are treated as tran-

sient or intermediate states, while the transplant outcomes are considered as absorbing states.

Forthcoming, we present our multi-state modeling of CPRA level and activity status using the

OPTN/UNOS database, which is a novel approach to understand how patients transition

between differing CPRA/activity state combinations, how these transitions impact probabili-

ties of competing-risk outcomes, and if KAS resulted in improved access to deceased donor

transplant to underserved populations.

Materials and methods

Study population

The Yale University Institutional Review Board approved of this study. Retrospective cohorts of

adult (age>18) first-time registrants for kidney transplant were created from the OPTN/UNOS

database. The first cohort included pre-KAS candidates (10/01/2009-12/04/2013), while the sec-

ond cohort included candidates registered post-KAS (12/04/2014-06/17/2015). Intervals were

used to ensure at least one year follow-up for patients in both cohorts (Panel A in S1 Fig). Regis-

trants listed for another organ, or those dually listed for pancreatic islets were excluded. Addi-

tionally, our preliminary analysis showed significant variation in listing practices for those

candidates that were listed at multiple centers. For this reason, we chose to only include primary

center data for multiply listed candidates. Because this analysis used two cohorts in a before/

after design, we included first-time registrants only to decrease confounding for kidney trans-

plant candidates who may have experienced an outcome in both time-limited cohorts.

Multi-State model construction

When time-varying covariates are included in the modeling process, estimating cumulative

incidences and survival probabilities is no longer feasible [9]. Multi-state modeling represents

a series of nested competing risks [12], therefore, transition probabilities to any absorbing

states may be estimated at any time (t) in the disease/recovery process from any initial or inter-

mediate state (Panel B in S1 Fig).

Though CPRA is a continuous measure ranging from 0% to 100%, practical limitations of

multi-state modeling required grouping of CPRA into a finite number of assigned categories:

0%, 1–79%, 80–89%, 90–94%, 95–98%, and 99–100%. These groups were chosen based on

clinical, statistical, and allocation policy considerations. For example, prior to KAS, candidates

with CPRA of 80% or greater received priority points in allocation. After KAS, priority points

are awarded on a sliding scale to reflect the inherent nonlinearity in the relationship between

CPRA and access to compatible kidney donors, which is especially evident for CPRA values

exceeding 90%. In addition to priority points, candidates with CPRA of 99 or 100% receive

regional and national priority, respectively [13].

Multi-state modeling of the kidney transplant waitlist
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Combinations of 6 CPRA categories and two waitlist statuses led to 12 initial states. Out-

comes were classified into 4 categories and used as the absorbing states: deceased donor trans-

plant; living donor transplant; death or removal due to deteriorating medical condition; or

removal due to other reasons. The model contains a total of 174 possible transitions. Transi-

tions from inactive states to deceased donor transplant were not modeled, since inactive candi-

dates are not eligible for deceased donor transplant. Candidates enter the model in any of the

12 initial states and may transition repeatedly between these states before reaching an absorb-

ing state (Fig 1).

Statistical analysis

Baseline demographic candidate characteristics were compared between pre- and post-KAS

cohorts. Standardized differences between the two cohorts were calculated using Cohen’s d [14].

Cumulative transition-specific hazards were estimated non-parametrically using the Nel-

son-Aalen estimator. The probabilities of transition were estimated using the Aalen-Johansen

estimator. Transition probability, usually involving two states (e.g. health and death) and two

time points, combines both direct and indirect transitions from one state to another (Panel C

in S1 Fig). Standard errors associated with cumulative transition hazards and transition proba-

bilities were estimated using Greenwood methods [15]. This multi-state model represents a

time-inhomogeneous Markov, meaning the future transition out of a given state is dependent

on the past only through elapsed time from origin.

Transplant probabilities were estimated separately in pre- and post-KAS cohorts. Since the

follow-up time for some patients in pre-KAS cohort straddled two eras, outcomes for candi-

dates listed pre-KAS were censored at KAS implementation to exclude the impact of KAS on

the estimation of probabilities in the pre-KAS cohort. Second, to assess if KAS had an impact

on candidates listed pre-KAS, who did not experience an outcome in the pre-KAS era, we

lifted right-censoring at KAS implementation and continued to measure their outcomes in the

post-KAS period (Panel A in S1 Fig). The rationale for this is to utilize the assumption of

Fig 1. Multi-state modeling framework. CPRA i (i = 1 to 6) is one of the six CPRA categories: 1) 0%; 2)

1–79%, 3) 80–90%, 4) 90–95% 5) 95%-98%, 6) 99%-100%). CPRA j (j = 1 to 6) is another CPRA category,

different from category i. There are 12 initial/intermediate states. (see supplemental materials for additional

details).

https://doi.org/10.1371/journal.pone.0190277.g001
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independent right-censoring, which assumes that the sample observed after right-censoring is

representative of the population without censoring. Therefore, if KAS truly had an effect–if

pre-KAS patients who had events in the post-KAS era can’t be represented by patients who

had events in the pre-KAS era–we would expect that probabilities of deceased donor transplant

for highly sensitized pre-KAS candidates after one year on the waitlist would be higher than

the probabilities estimated by censoring events at KAS implementation.

Data management was conducted using SAS software, version 9.4 of the SAS System for

Windows (Cary, NC, USA) and multi-state modeling analysis was performed in R.3.1.0 using

the mstate package [16]. Two-sided p-values less than 0.05 were considered statistically

significant.

Results

Study population

There were 97,793 and 13,113 adult registrants in pre- and post-KAS cohorts, respectively.

The two cohorts were very well matched on baseline demographics, with negligible standard-

ized difference (from 0.0053 to 0.0555) [15] and there were no statistically significant differ-

ences in initial CPRA category between the cohorts (Table 1).

Transition probabilities among cPRA States at one year post-listing

Fig 2A and 2B provide cross sectional plots of transition probabilities through one year after

listing for both cohorts, given initial activity status and CPRA category at the day of listing

(day 0). Individuals are at risk of moving from these initial states to another state (x-axis), as

indicated by varying transition probabilities for each state or outcome at one year (y-axis).

These plots help to understand the time-varying nature of transitioning between intermediate

states and how these changes impact competing patient outcomes. After one year of listing,

patients who were active at day 0 were more likely to stay active in their initial CPRA catego-

ries. Patients who were inactive at day 0 were more likely to remain in their original CPRA cat-

egories and equally likely to change to active status or remain inactive. These plots show that if

patients with CPRA of 0% or 1–79% at day 0 were to leave their initial CPRA categories in the

first year, they would be most likely to transition between these two states rather than transi-

tion to a higher CPRA. Individuals with a CPRA of 80–89% would be more likely to transition

to a CPRA of 1–79%, 90–94%, 95–98% or 99–100%, and those with a CPRA of 95–98% would

be more likely to transition to a CPRA of 99–100%. Finally, individuals leaving the 99–100%

CPRA category would be more likely to transition to a CPRA of 95–98%.

Activity status and mortality

Fig 3A shows the probabilities of death predicted from initial CPRA category and activity sta-

tus for the pre-KAS cohort. Across all initial CPRA categories, candidates listed inactive at day

0 had significantly higher probabilities of death even though they might have transitioned to

active status at some point during the year (S1 Table shows probability estimates). Our

dynamic prediction analysis confirms the association of inactive status and death, as candi-

dates inactivated anytime within one year of listing had an increased probability of death at

year-3 (S2 Fig and S2 Table). Analysis from the post-KAS cohort show a similar trend (Fig 3B).

Impact of KAS on deceased donor transplant probabilities

Fig 4A (active status) and 4B (inactive status) show the probabilities of receiving a deceased

donor transplant, predicted from initial listing CPRA category and activity status. Individuals

Multi-state modeling of the kidney transplant waitlist
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listed active post-KAS with a CPRA of 0–79% and 95–100% had a significantly higher trans-

plant probability within the first year of listing, compared to the similar pre-KAS CPRA groups

(S3 Table shows probability estimates). Compared to the pre-KAS cohort, individuals listed

post-KAS with an active CPRA of 80–89% had a statistically lower transplant probability

within the first year of listing. Although individuals in the active CPRA 90–94% group had a

lower probability of transplant following KAS implementation, this difference did not reach

statistical significance. The probabilities of deceased donor transplant predicted from the ini-

tial inactive states were much lower than those from the active states, since inactive patients

must first transition to an active state to receive an organ offer. Still, the same pre- versus post-

KAS patterns manifested for initially inactive patients, with a sharply higher transplant proba-

bility post-KAS for initially inactive patients with CPRA 99–100% (Fig 4B). After lifting right-

censoring for the pre-KAS cohort at KAS implementation, the probabilities of transplant for

patients with an initial CPRA of 95–100% after one year increased, compared to probabilities

obtained with censoring (S3 Table).

Table 1. Pre-KAS and Post-KAS cohort demographics.

Pre-KAS(N = 97793) Post-KAS(N = 13113)

Count % Count % Standardized difference

Age 0.0343

18–39 16139 16.5 2295 17.5

40–64 62804 64.2 8289 63.2

�65 18850 19.3 2529 19.3

Gender 0.0053

Male 59960 61.3 8273 63.1

Female 37833 38.7 4840 36.9

ABO 0.01

O 47033 48.1 6254 47.7

A 32804 33.5 4410 33.6

B 14025 14.3 1905 14.5

AB 3931 4.0 544 4.2

Race 0.0555

White 43539 44.5 5677 43.3

Black 28304 28.9 3657 27.9

Hispanic 17649 18.1 2564 19.6

Asian 6275 6.4 955 7.3

Other 2026 2.1 260 2.0

ESRD Diagnosis 0.0488

Diabetes 35000 35.8 4771 36.2

Glomerulonephritis 10971 11.2 1436 11.0

Graft Failure 1950 2.0 265 2.0

Hypertension 22962 23.5 2841 21.7

Other 26910 27.5 3800 29.0

PRA Category 0.0231

0–79% 95925 98.1 12884 98.25

80–89% 575 0.59 56 0.43

90–94% 356 0.36 45 0.34

95–98% 443 0.45 62 0.47

99–100% 494 0.51 66 0.50

https://doi.org/10.1371/journal.pone.0190277.t001

Multi-state modeling of the kidney transplant waitlist

PLOS ONE | https://doi.org/10.1371/journal.pone.0190277 December 29, 2017 6 / 14

https://doi.org/10.1371/journal.pone.0190277.t001
https://doi.org/10.1371/journal.pone.0190277


Racial subgroup analysis

Analyses on initial actively waitlisted pre-KAS patients demonstrated that Whites had a higher

probability of deceased donor transplant compared to Hispanics or Blacks across all initial

CPRA levels (Panel A in S4 Fig). Black candidates with initial CPRA 0–79% were more likely

to be transplanted than Hispanic candidates, though this trend did not hold for higher initial

CPRA categories. Post-KAS analysis of initially actively listed patients showed no significant

advantage for Whites across all initial CPRA categories, though they may retain some advan-

tage at a CPRA of 99–100% (Panel B in S4 Fig). Further study with longer follow-up time and

a larger sample needs to be performed to validate this finding.

Discussion

This study provides the first multi-state modeling of OPTN/UNOS data and focuses on how

waitlist candidates change sensitization levels and activity status following listing with the

impact of these changes to transplant competing-risk outcomes. We also explore the effect

of KAS on competing-risk transplant outcomes using this new methodology. Studies to date

that have looked at differences in the allocation of kidney transplants have used statistical

approaches that generally provide hazard rates, odds ratios and relative risks to determine the

effect of predictor variables on transplant rate of a specific cohort. These analyses have been

Fig 2. Cross sectional plots of transition probabilities among states at one year post-listing. (Panel A) Cross-sectional plots showing transition

probabilities from initially active CPRA states. (Panel B) Cross sectional plots showing transition probabilities from initially inactive CPRA state.

https://doi.org/10.1371/journal.pone.0190277.g002
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Fig 3. Cumulative probability of death stratified by activity status. (Panel A) Line graphs of individuals

listed active vs. inactive in the pre-KAS cohort. (Panel B) Line graphs of individuals listed active vs. inactive in

the post-KAS cohort.

https://doi.org/10.1371/journal.pone.0190277.g003
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the central way that OPTN/UNOS data has been used to measure outcomes and, importantly,

to shape allocation policy [13]. Multi-state modeling provides information that is clinically use-

ful regarding actual probabilities, as opposed to relative risk of transplant outcomes, while

simultaneously accounting for time- varying covariates and competing risks. Importantly, this

modeling technique provides a way to adjust for listing status as a time-varying covariate, which

cannot be accommodated in traditional Cox proportional models because inactive patients are

not at risk for deceased donor transplants, but are at risk for other competing outcomes, such as

living donor transplants, death, and waitlist removal. Since listing status may change, the num-

ber of competing outcomes a patient can experience might change over time. Grams et al. have

shown that initial active status at baseline is associated with lower rates of transplantation using

modified Poisson regression [4]. However, this work acknowledged that the association of

time-varying activity status within a competing risk analysis cannot be performed. Multistate

modeling, creating transition states using time-varying covariates, solves this problem by

removing transitions from inactive status to deceased-donor transplant. Probabilistic forecast-

ing is likely to be particularly important in developing new strategies to address persistent geo-

graphic, demographic and other general clinical disparities in transplantation.

The estimated probabilities presented were all predicted from first day of listing. Transition

probabilities to any state, at any future time, can be estimated from any predesignated state

and time. For example, we provide the probability of deceased donor transplant outcomes at

year-3 predicted timeframe from anytime within the first year of listing for pre-KAS cohort

(S4 Table). This dynamic property of multi-state modeling provides a useful tool for patient

education. For instance, given a patient listed as active with CPRA 0% at day 0, the predicted

probability of deceased donor transplant at year-3 would be around 0.211 (21.1%), and if this

patient were to transition to an inactive state with CPRA 1–79% at day 60, the predicted proba-

bility of deceased donor transplant at year-3 would decease to 0.124 (12.4%). To date, there

have been no estimates on the probability of highly sensitized candidates moving to lower lev-

els of sensitization or probabilities of how a sensitizing event may result in a change in CPRA

status. Acknowledging that there is limited information regarding sensitizing events in the

OPTN/UNOS database, the transition probabilities provided in this analysis may help better

educate candidates regarding the risk of a sensitizing event or the chances sensitization level

becoming lower at a specified time-period (1-year in this analysis) after listing.

This study shows that the probability of receiving a deceased donor transplant based on

candidate CPRA has changed significantly with the implementation of KAS and supports early

observations on its effects [2, 17, 18]. One of the priorities of KAS was to increase kidney trans-

plants in individuals with a CPRA>98%, who previously experienced unusually long wait

times. Although the observed statistically significant increases in transplant probability for

candidates with CPRA 0% and 1–79% could be related to the overall increases in kidney trans-

plants that occurred in the post-KAS timeframe [2, 17], the increase in kidney transplants in

the two highest CPRA states likely came at the expense of the CPRA 80–89% group, which had

a lower probability of deceased donor transplant probability following KAS.

Subgroup analysis on the pre-KAS cohort confirmed the known racial disparities in

access to kidney transplant [19]. We provide additional characterization, stratified by CPRA

category and activity status, with statistically significant differences in transplant probability

observed between Whites and Blacks/Hispanics pre-KAS (Panel A in S4 Fig). Following KAS

Fig 4. Pre-KAS versus Post-KAS transplant probabilities. (Panel A) Line graphs with 95% CIs comparing

the probabilities of deceased donor transplants between the pre-KAS and post-KAS cohorts, stratified by

initially-active CPRA state. (Panel B) Line graphs with 95% CIs comparing the probabilities of deceased donor

transplants between the pre-KAS and post-KAS cohorts, stratified by initially-inactive CPRA state.

https://doi.org/10.1371/journal.pone.0190277.g004
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implementation, we did not find a significant advantage for Whites across all initial CPRA lev-

els, though they may retain some advantage at higher initial CPRA levels (Panel B in S4 Fig).

We speculate that HLA matching and the greater number of zero-mismatch transplants at the

higher CPRA levels contributed to the advantage observed in the White CPRA 99–100% popu-

lation [5].

This study was limited to variables that are included in the OPTN/UNOS database, and as a

retrospective study, a true assessment of causality has limitations. For example, information

on sensitizing events would have provided greater clinical relevance on how these events are

associated with a transition probability to higher CPRA categories. There are several baseline

demographic variables, such as blood type, geographic location (donor service area) and dialy-

sis status that can impact transplant outcomes. The multi-state model presented in this analysis

focused on two important variables, CPRA and activity status, that are known to be associated

with waitlist mortality [3, 4]. With only these two variables, our model had 174 transitions,

which limited our ability to then include other relevant baseline variables into the model. To

estimate the probabilities of transplant outcomes that would include all relevant baseline

demographic variables, our future analysis will focus on semi-parametric modeling, in which

the effects of covariates are better evaluated by controlling for other confounders. To assure at

least one year follow-up for the post-KAS cohort, we used a relatively short time-frame to eval-

uate the impact of KAS; therefore, the observed lack of racial disparity noted in most post-KAS

CPRA groups requires a larger dataset with longer follow-up for validation. Furthermore, to

examine the changes in racial disparities after KAS implementation, we performed subgroup

analysis through our non-parametric model, relying on the fact that the distribution of base-

line demographics was balanced pre- and post-KAS. Finally, there were noted changes in the

number of kidney transplants following KAS implementation [2] and it is likely that listing

practices may have changed in the post-KAS period, given the emphasis on dialysis time in

kidney allocation [2]. It is not clear what the impact of these and additional differences in clini-

cal practice patterns were on the probabilities that were observed between CPRA categories

and the effect of these observations on our post-KAS analysis.

This study provides the first multi-state modeling of the OPTN/UNOS kidney transplant

waitlist. Clinically, CPRA may increase due to sensitizing events, such as blood transfusions or

pregnancies, and transplant centers may change the activity status of a waitlisted patient due to

a variety of reasons, including medical unsuitability, incomplete work-up, or financial con-

cerns. Transplant centers notify practitioners and patients of these changes, but have not been

able to convey the granular implications of these changes on transplant outcomes. For exam-

ple, a waitlist candidate that has been made inactive one year after listing will now have an esti-

mate on what the impact of this change is to all candidates who experience a change to inactive

status. The fact that this status change now represents a quantifiable increase in mortality

should be communicated to candidates so shared decision-making care plans can be developed

to improve their chances of obtaining a deceased or living donor transplant. Transition proba-

bilities between different CPRA levels and changes in activity status over time show both the

likelihood of these changes and their effect on transplant outcomes by providing probability

data that can better educate practitioners and patients on the implications of changing clinical

status while waiting for a deceased donor kidney transplant.
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