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Abstract

We describe a method for measuring genome editing efficiency from in silico analysis of

high-resolution melt curve data. The melt curve data derived from amplicons of genome-

edited or unmodified target sites were processed to remove the background fluorescent sig-

nal emanating from free fluorophore and then corrected for temperature-dependent quench-

ing of fluorescence of double-stranded DNA-bound fluorophore. Corrected data were

normalized and numerically differentiated to obtain the first derivatives of the melt curves.

These were then mathematically modeled as a sum or superposition of minimal number of

Gaussian components. Using Gaussian parameters determined by modeling of melt curve

derivatives of unedited samples, we were able to model melt curve derivatives from geneti-

cally altered target sites where the mutant population could be accommodated using an

additional Gaussian component. From this, the proportion contributed by the mutant compo-

nent in the target region amplicon could be accurately determined. Mutant component com-

putations compared well with the mutant frequency determination from next generation

sequencing data. The results were also consistent with our earlier studies that used differ-

ence curve areas from high-resolution melt curves for determining the efficiency of genome-

editing reagents. The advantage of the described method is that it does not require calibra-

tion curves to estimate proportion of mutants in amplicons of genome-edited target sites.

Introduction

Genome editing at predetermined loci has been greatly facilitated by new technologies based

on RNA-guided endonucleases (RGENs)[1–3] or transcription-activator like effector nucleases

(TALENs) [4–6]. The sequence-directed endonucleases introduce double-stranded breaks

(DSBs) at the target site. The DSBs can undergo two major types of DNA repair. Non homolo-

gous end joining (NHEJ) repair results in indels at the cut site. Homology-directed repair

(HDR) either restores the original in the presence of an endogenous template (sister chroma-

tid) or inserts an exogenous DNA donor template when available across the cut site [7–9].

The ability to generate genome-editing reagents with a desired specificity does not guaran-

tee efficient target site modification. There is therefore a need for methods that rapidly assess
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reagent efficacy. A common approach is to determine efficacy of genome editing reagents is to

transfect human embryonic kidney (HEK293T) cell line with the reagents. This is followed by

amplification of target region by PCR and generation of heteroduplexes by denaturation and

renaturation in the presence of unmodified wild type or different alleles. Mismatches in these

heteroduplexes can be identified by digestion with single-strand specific endonucleases (such

as T7 or Surveyor nuclease) and resolution of the digestion products in polyacrylamide or aga-

rose gels [10–12].

A second approach to determine efficacy of genome editing is to use TaqMan assays with

probes designed to bind over the putative target cut site [12,13]. Reduced binding of the Taq-

Man probe, due to indel mutations at the target site, with reference to a control TaqMan probe

that binds outside the cut site, can be used to estimate the editing efficacy.

A third method, which is gaining popularity, uses high resolution melting analysis

(HRMA) after real-time PCR with nonspecific double-stranded DNA (dsDNA)-binding

dyes such as Eva Green [12,14–16]. These dyes are more fluorescent when bound to

dsDNA. In this method, after amplifying the target region containing the repaired dou-

ble-stranded break site, the dsDNA is gradually warmed until the DNA completely melts.

As dsDNA regions melt into single-stranded regions, dye is expelled, decreasing the fluo-

rescence signal. Melting characteristics depend on the length of the PCR product, the

sequence, and the GC content. The temperature at which half of the DNA is single-

stranded is called the Tm. The Tm peak can be readily identified by first derivative trans-

formations of melt curve data. Target cut sites repaired by NHEJ generally exhibit lower

Tms as the amplicons are usually of smaller size than the wildtype target PCR product.

We previously used HRMA to estimate RGEN editing efficiency [12]. In that study, the

region encompassing the target site was amplified in a real-time PCR buffer and subjected

to HRMA. Normalized melt curves from genome-edited test samples were subtracted

from control curves obtained from unmodified targets to obtain difference curves. The

difference curve areas (DCAs) related directly to the percentage of mutants in the PCR

product. We used standard curves generated with mixes of wild type and mutant PCR

products to accurately estimate the percentage of mutants in different test samples. A

major bottleneck to this method was the requirement for a purely mutant PCR product to

generate mixes for calibration curves.

Here we describe an alternative method that does not require standard curves to measure

the proportion of mutant species from high-resolution melt curve data. The high resolution

melt curves were first corrected for temperature dependent quenching of free and ds-DNA

bound fluorophore and then numerically differentiated to obtain first derivative melt curves.

First derivative melt curves from unmodified control target sites were modeled as sum of two

Gaussian components while edited samples were modeled using an additional Gaussian com-

ponent for the mutant population discernible in first derivative melt curves. The weight of the

“mutant" Gaussian component was shown to accurately reflect editing efficiency of sequence-

directed endonucleases.

Materials & methods

Cells

Human embryonic kidney (HEK293T) cells were maintained in Dulbecco’s modified Eagle’s

medium containing 2 mM L-glutamine, 100 U/ml of penicillin, 100 μg/ml streptomycin and

10% heat-inactivated fetal bovine serum (FBS) (Hyclone/ThermoFisherScientific, USA) as

described previously [17,18].

Genome-editing efficiency from Gaussian decomposition of high-resolution melt curve derivatives

PLOS ONE | https://doi.org/10.1371/journal.pone.0190192 January 4, 2018 2 / 27

https://doi.org/10.1371/journal.pone.0190192


Plasmids

The plasmid constructs encoding TALENs targeting the c-c motif chemokine receptor 5

(CCR5, GenBank RefSeqGene number NG_012637) intron immediately downstream of the

coding exon have been described [12]. The dimeric guide RNA (dgRNA)-dCas9-FokI system

consists of pSQT1313 and pSQT1601 plasmids. pSQT1313 is used for expression of dual guide

RNAs (gRNAs) that target genomic DNA sequences on opposite strands and spaced approxi-

mately 16 bases apart. pSQT1601 encodes dCas9-FokI fusion protein to effect DSBs and Csy4

RNase to process the dgRNA expressed by pSQT1313. The dgRNA-dCas9-FokI system was a

gift from Keith Joung via Addgene.org. pSQT1313-F8S2, targets the human coagulation factor

VIII (F8) intron site 2 (F8-S2) and has been previously described. The targeting/donor plasmid

(pDonor-F8) or its backbone construct (pBackbone) have also been described previously and

encode a drug-resistance marker that allows selecting transfected cells using puromycin.

CaPO4-mediated transfection

Plasmids were introduced into sub confluent cultures of HEK293T cells in 6-well plates by

CaPO4 -mediated transient transfection protocol as described previously [18]. Following

transfection, genomic DNA (gDNA) was isolated from unselected or puromycin-selected pop-

ulations using Qiagen DNeasy Blood and Tissue kit (Qiagen, Maryland, USA) as per the rec-

ommended protocol.

Amplification of target loci for obtaining high-resolution melt curves

This has been detailed in our earlier study [12]. Briefly, gDNA from genome-edited samples

was amplified using primer pairs SK144 and SK145 for the CCR5 locus, and SK228 and SK229

for the F8-S2 locus, in Precision Melt buffer (Bio-Rad, USA). SK144 and SK145 generate a

PCR product of size 107 bp. For some experiments we used a different forward primer, SK214,

that was located further upstream and produced a PCR product of size 140 bp with reverse

primer SK145. The sequences and genome locations of these primers have been described ear-

lier [12]. The gDNA from unmodified or mock-transfected cells were also amplified in parallel

using the same primer pairs. Post-amplification melting of the PCR product was done between

65˚C to 95˚C in 0.2˚C increments.

Processing melt curve data

Relative fluorescence units (RFUs) of melt curve data were processed to correct for back-

ground fluorescence of “unbound” fluorophore and for the temperature-dependent quenching

of dsDNA-bound fluorophore as described below.

For background fluorescence correction of unprocessed RFU, we used the post-melt region

of individual melt curves identified from plots of the raw RFU vs. temperature. We plotted this

region separately to obtain the parameters of a linear least squares fitting. From this equation,

we were able to extrapolate the background RFU at each of the measured temperature points

(Eq 1). Subtracting this value from the raw RFU gave us the background subtracted RFU

(BcRFU) (Eq 2).

The equations for background fluorescence correction of raw RFU:

Extrapolation of post-melt region using a first-order polynomial,

BpomðxiÞ ¼ a� xi þ b ð1Þ

where, x =temperature (˚C) and Tlow� xi� Thigh i ¼ 1; 2; 3; . . .
ðThigh � TlowÞ

0:2
; xiþ1 � xi ¼ 0:2

Genome-editing efficiency from Gaussian decomposition of high-resolution melt curve derivatives
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(temperature increment unit) Tlow and Thigh refer to the lower (e.g.,71˚C) and higher (e.g.,95˚-

C) limits of the temperature range selected for melt curve analysis.

The slope a, and the y-intercept b parameters are obtained from first-order polynomial

least-squares fitting of the post-melt region of the melt curve.

Background subtracted RFU,

BcRFUðxiÞ ¼ RFUðxiÞ � BpomðxiÞ ð2Þ

The pre-melt region of a melting curve identified from plots of melt curves of unmodified

or mock-transfected cells was used to determine the efficiency of detecting dsDNA-bound

fluorophore at different temperatures. This region of BcRFU(x) of mock-transfected cells was

plotted separately and subjected to least squares curve fitting (Eq 3). The curve-fitting equation

was then used to extrapolate the values across the entire range of temperatures encompassing

the melting curve. The resulting values, representing predicted RFU of unmelted DNA at the

different temperatures, were then normalized to the starting temperature (Tlow or 71˚C) to

obtain the efficiency of detection of dsDNA-bound fluorophore at each measured temperature

point (Eq 4). The detection efficiency of dsDNA-bound fluorophore derived from multiple

mocks were averaged. The BcRFU(x) of mock or test samples were then divided by the average

efficiency to obtain unquenched or fluorescence-corrected RFU (FcRFU(x)) at each tempera-

ture point (Eq 5). The FcRFU(x) at Tlow (71˚C) was then used to normalize the melt curve to

yield normalized FcRFU(x) or nFcRFU(x) (Eq 6). First derivatives of nFcRFU, obtained by

numerical differentiation (Eq 7), were used for subsequent curve fitting analysis.

The mathematical formulations for correction of BcRFU(x) for temperature-dependent

quenching of fluorescence of dsDNA-bound fluorophore are shown below.

Extrapolation of pre-melt region,

FpremðxiÞ ¼ ðc� xi þ dÞ or ðc� x2

i þ d � xi þ eÞ ð3Þ

where, the parameters c,d,e were obtained from 1st- or 2nd-order polynomial least squares fit-

ting of pre-melt region of BcRFU(x).

Efficiency of dsDNA detection at temperature

xi; E xið Þ ¼
FpremðxiÞ

Fpremðxi ¼ 71�CÞ
ð4Þ

Fluorescence corrected-RFU,

FcRFU xið Þ ¼
BcRFUðxiÞ

EðxiÞ
ð5Þ

Normalized FcRFU,

nFcRFU xið Þ ¼
FcRFUðxiÞ

FcRFUðxi ¼ 71�CÞ
ð6Þ

(where nFcRFU(xi) represents dsDNA content ranging from 1 in the pre-melt region to 0 in

post-melt region and 1-nFcRFU(xi) represents single-stranded DNA content ranging from 0 in

the pre-melt region to 1 in post-melt region).

Genome-editing efficiency from Gaussian decomposition of high-resolution melt curve derivatives
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The numerical differentiation of 1-nFcRFU(x) was carried out as follows:

�
d

dT
nFcRFUð Þ �

d
dx

1 � nFcRFU xið Þð Þ ¼ �
d

dx
ðnFcRFU xið Þ ¼

� ðnFcRFUðxiþ1Þ � nFcRFUðxiÞÞ

xiþ1 � xi

¼
� ðnFcRFUðxiþ1Þ � nFcRFUðxiÞÞ

0:2
ð7Þ

Gaussian decomposition model

Our model does not require any consideration to underlying mechanistic or thermodynamic

properties of the melt curve and is therefore purely empirical. It depends entirely on the fol-

lowing mathematical properties of the abstracted normalized melt curve data. (a) The normal-

ized melt curve, in terms of single-stranded DNA (1-nFcRFU(x)), spans between zero and one

without local extrema. It can be defined as a cumulative distribution function (CDF). (b) The

first derivative of 1-nFcRFU(x), -d(nFcRFU(x)/dX, is a density function (DF). This derivative

is nonnegative and can be integrated to give back the CDF[19].

We postulate that the derivative melt curve DF, is a finite mixture, and therefore can be

described as a convex and linear combination of one or more individual analytical DFs [19].

Thus, for a finite mixture, g(x), containing two DFs, g1(x) and g2(x), DF g(x) = w × g1(x) +

(1 − w) × g2(x) where, w is the weight and 0� w� 1. This can be extended to sums of addi-

tional individual DFs as long as the weights of all the DFs sum to unity.

The requirements of a DF for our model are: (a) the experimental derivative curve should

be precisely traced by the analytical DF or a finite mixture of those DFs. (b) component analyt-

ical DFs can be accurately assigned to wild-type or mutants DFs. There is a panoply of DFs

with differing characteristics to choose from[19]. Among several that were tested, the Gaussian

DF was found to satisfy the requirements of the model.

The Gaussian finite mixture model can be applied to experimental derivative melt curves as

follows: Areas under normalized melt curve derivatives, whether from amplicons of unedited

or edited target sites, by definition equal one. When we apply the finite mixture model to either

of these melt curve derivatives, the sum of weights of individual Gaussian components also

sum to unity. Since amplicons from genome-edited samples contain both wildtype and mutant

molecular species, from the finite mixture model, it consists of a linear combination of Gaus-

sians (DFs) corresponding to mutant and wildtype melt curve derivatives. We can assign the

contributing weights of the wildtype Gaussians to reveal the weight or proportion of mutant

molecules in an amplicon. This is accomplished by first determining the Gaussian parameters

from unedited control or mock melt curve derivatives and then using these parameter values

during Gaussian decomposition of genome-edited sample melt curve derivatives as detailed

below.

Gaussian decomposition of first derivatives melt curves of unedited

control samples

Gaussian decomposition (GD) of first derivatives of (1-nFcRFU(x)) was done using a commer-

cial software, CurveExpert Professional (V. 2.6, created by Daniel Hyams, Madison, AL, USA).

Gaussian DF is mathematically represented as:

1
ffiffiffiffiffiffiffiffiffiffi
2s2p
p e�

ðx� mÞ2

2s2 ð8Þ

where, μ is the center of the peak, σ is the standard deviation or SD (width at half-maximal

height of peak) and x is the temperature variable.
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For Gaussian modeling of derivative melt curves from unmodified control samples, the first

derivate of (1-nFcRFU) from mock-transfected (unmodified loci) samples were modeled as

either a single Gaussian function, g2(x):

g2 xð Þ ¼ w2

1
ffiffiffiffiffiffiffiffiffiffi
2s2

2
p

p e
�
ðx� m2Þ

2

2s2
2 ð9Þ

where,the free parameter w2 represents the area under the curve or weight or as the sum of two

Gaussian components, g2(x) and g3(x):

g2 xð Þ þ g3 xð Þ ¼ w2

1
ffiffiffiffiffiffiffiffiffiffi
2s2

2
p

p e
�
ðx� m2Þ

2

2s2
3

 !

þ w3

1
ffiffiffiffiffiffiffiffiffiffi
2s2

3
p

p e
�
ðx� m3Þ

2

2s2
3

 !

ð10Þ

where the Gaussian weights, w2 + w3 = 1 or w3 = 1 − w2.

The parameters μ2, and μ3, refer to the peak center or mean, and σ2 and σ3 refer to the corre-

sponding standard deviations (SDs) of Gaussian functions g2(x) and g3(x), respectively. From

curve fitting using the sum of two Gaussian functions (g2(x) and g3(x)), we were able to deter-

mine and ‘fix’ the parameters w2, w3, μ2, and μ3 for subsequent determination of percentage of

mutants in genome-edited test samples (see below).

GD of genome-edited samples

For GD of derivative melt curves from genome-edited samples, the first derivative of (1-

nFcRFU(x)) from test samples with genome-edited target loci were curve fitted as a sum of

either two Gaussian functions, g1(x) and g2(x) or as the sum of three Gaussian functions, g1(x),
g2(x) and g3(x), where g1(x) represents the contribution of the mutant population, and g2(x)
and g3(x) representing the contribution of the wildtype population in the PCR amplicon of a

given target site.

g1 xð Þ þ g2 xð Þ ¼ w1

1
ffiffiffiffiffiffiffiffiffiffi
2s2

1
p

p e
�
ðx� m1Þ

2

2s2
1

 !

þ ð1 � w1Þ
1
ffiffiffiffiffiffiffiffiffiffi
2s2

2
p

p e
�
ðx� m2fixed Þ

2

2s2
2

 !

ð11Þ

where, w1 + w2 = 1; the ‘fixed’ parameter μ2fixed was determined from curve fitting of mock

samples using the single-Gaussian function, g2(x), the other parameters were set free.

g1 xð Þ þ g2 xð Þ þ g3 xð Þ

¼ w1

1
ffiffiffiffiffiffiffiffiffiffi
2s2

1
p

p e
�
ðx� m1Þ

2

2s2
1

 !

þ w2fixedð1 � w1Þ
1
ffiffiffiffiffiffiffiffiffiffi
2s2

2
p

p e
�
ðx� m2fixed Þ

2

2s2
2

 !

þ w3fixedð1 � w1Þ
1
ffiffiffiffiffiffiffiffiffiffi
2s2

3
p

p e
�
ðx� m3fixed Þ

2

2s2
3

 !

ð12Þ

where, w1 + w2fixed(1-w1) + w3fixed(1-w1) = 1, and w2fixed, w3fixed, μ2fixed, and μ3fixed were deter-

mined from curve fitting of mock samples as the sum of two Gaussian functions, g2(x) and g3(x),
the other parameters were set free. The w1 parameter determined from curve fitting using either

g1(x) + g2(x) or g1(x) + g2(x) + g3(x) functions represents the mutant frequency in the amplicon.

Curve fitting model comparison

CurveExpert Professional outputs the corrected Akaike Information Criteria (AICc) values for

comparing curve fitting models—the model with the lower AICc value is deemed to have the

Genome-editing efficiency from Gaussian decomposition of high-resolution melt curve derivatives
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better fit. The relative likelihood was calculated using e� 0:5�ðAICcmin � AICciÞ where AICcmin is the

model with the lower of the two values and AICci is the value of the alternate model. CurveEx-

pert Professional also provides fitting "scores" for models, ranging from zero to 1,000 with a

higher score indicating a better fit. The score is in part based on Akaike information criteria

(AICc). The CurveExpert Professional scores were compared using Student’s t-test (paired,

two-tailed).

Results

High-resolution melt curve analysis

The high-resolution melt curve data used here were generated in an earlier study [12]. Briefly,

HEK293T were transfected with genome-editing reagents using a CaPO4 method. Two target

regions were edited: F8 intron 1, and the CCR5 intron immediately downstream of the coding

exon. Although we targeted three distinct sites within the F8 intron in the earlier study

(referred to as sites F8-S1, -S2 or -S3), here we use data from genome-edited F8-S2 only. We

used TALENs for editing the CCR5 locus and dgRNA/dCas9-FokI based RGEN system for

editing the F8-S2 site. The gDNA, isolated from unselected or selected populations of trans-

fected cells, were amplified and high-resolution melt curve data were obtained as described in

Materials and Methods.

A high-resolution dsDNA melting curve consists of three regions: An initial pre-melt

region where the DNA is double-stranded, followed by a transition to more rapid decrease in

fluorescence attributable to DNA melting (melt region), and a second transition to a post-melt

region where the DNA strands are fully separated. The pre-melt region exhibits a downward

or negative slope with an increase of temperature prior to the transition to melting. This

decrease in fluorescence of dsDNA-bound fluorophore prior to the beginning of separation of

DNA strands can be attributed to temperature-dependent quenching of fluorescence of

dsDNA-bound fluorophore. The post-melt region also exhibits a downward slope, albeit much

shallower than the pre-melt slope. Since the post-melt region should contain only unbound or

free fluorophore, the decrease seen in this region can be attributed to quenching effect of tem-

perature on free or unbound fluorophore. Even after correcting melt curve data for these two

quenching phenomena, the resultant melting curves of different samples frequently exhibit dif-

ferent pre-melt (starting) RFUs necessitating a normalization step. The raw fluorescence,

reported as relative fluorescence units or RFU, therefore require processing and normalizing

to enable comparison of different melting curves and for decomposition into their Gaussian

components.

Correction of RFU for temperature-dependent quenching of free

fluorophore

To mathematically approximate free fluorophore behavior in the post-melt region, and to

determine the effect of temperature on fluorescence of free fluorophore over the entire temper-

ature range of melting, we first plotted the RFU vs. temperature in no template controls

(NTCs) used in the real-time PCR reactions (Fig 1A). The NTC samples contain all reactants

except for the template gDNA. The RFU of free fluorophore in these reactions exhibited a tem-

perature-dependent linear decay in fluorescence across the entire temperature range tested

(Fig 1A). These results validate extrapolating the post-melt region to estimate background

fluorescence from the unbound fluorophore to the earlier temperature points (see below).

For correction of background fluorescence for each melt curve, we carried out first-order

polynomial curve fitting of the post-melt region of each melt curve data and then extrapolated

Genome-editing efficiency from Gaussian decomposition of high-resolution melt curve derivatives
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the background RFU values for earlier temperature data points (red dashed line in Fig 1B). We

then subtracted the background RFUs corresponding to each temperature point to obtain the

background subtracted RFU or BcRFU as described in Materials and Methods (Eq 2). The

BcRFU(x) melt curve is shown in Fig 1C (blue trace). The post-melt region of background sub-

tracted-curve was nearly horizontal with an RFU close to zero indicating that the background

fluorescence from free or unbound fluorophore was correctly computed and removed by this

method.

Correction of RFU for temperature-dependent quenching of dsDNA-

bound fluorophore

To correct for quenching of fluorescence of dsDNA-bound fluorophore of background sub-

tracted melt curve data (BcRFU(x)), we carried out a regression analysis of the pre-melt region

of mock-transfected samples and extrapolated the RFUs across the range of temperatures (red

dashed line in Fig 1C) (Eq 3). We obtained the efficiency of detection of dsDNA-bound fluoro-

phore by normalizing Fprem(x) to the estimated RFU at the starting temperature (Tlow or 71˚C)

(Eq 4). The efficiency at each measured temperature was then determined for multiple mock

samples (Fig 1D). Measured efficiencies were nearly identical, diverging slightly at the higher

temperatures, despite determination across experiments conducted on different days, and

with different samples. The BcRFU of mock and test samples were divided by the average

Fig 1. Temperature-dependent quenching of fluorescence of free and dsDNA-bound fluorophore and

its correction. (A) Plot of first-order polynomial curve fit of raw RFU vs. temperature in no template controls

(NTC). The equation shown in the plot is the mean ± SD of six different sample slopes and constants. (B) The

unprocessed high-resolution melting profile (blue trace) and the extrapolation from first-order polynomial

curve fitting of the post-melt curve region (red dashed line) from an amplicon of an unedited target site. (C)

High-resolution melting profile of background subtracted RFU (BcRFU, blue trace) and that of ‘unquenched’

or fluorescence-compensated BcRFU (FcRFU, green trace) from an unedited target site. The red dashed line

shows extrapolation of pre-melt region from first-order polynomial curve fitting of BcRFU and depicts the

predicted BcRFU in the absence of DNA melting. D) Comparison of first-order polynomial curve fitting of post-

melt and pre-melt portions of melting curves. Normalized data were used to enable plotting of the two sets of

data.

https://doi.org/10.1371/journal.pone.0190192.g001
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fluorescence efficiency at each measured temperature to obtain fluorescence corrected BcRFU
(x) or FcRFU(x) (Fig 1C, green tracing) (Eq 5). The pre-melt region was now rendered hori-

zontal and did not exhibit the temperature-dependent quenching profile of uncorrected melt-

ing curves. For the F8-S2 target amplicon melt curve fitting with a first order polynomial

proved sufficient; for the CCR5 target amplicon melt curve, a second-order polynomial was

required (see below).

We next wished to directly compare the temperature-dependent quenching effect on

bound fluorophore vs. free fluorophore. To enable this comparison, we normalized the extrap-

olated background RFUs (determined from individual post-melt curve data of mocks) and

plotted these along with the normalized bound-fluorophore efficiency (Fig 1D). As anticipated

from the NTC data shown in Fig 1A, the slope of the free fluorophore (-0.002) was much more

shallow than that of the bound fluorophore (-0.04). Thus, temperature-dependent fluorescence

quenching of dsDNA-bound fluorophore is more pronounced and significant than that of the

unbound or free fluorophore. Two-Gaussian decomposition is superior to one-Gaussian

modeling of derivative melt curves of unmodified target sites.

We first determined the parameters of the Gaussian components of first derivatives of 1-

nFcRFU(x) of unmodified or control samples (mocks) by curve fitting using the commercial

software CurveExpert Professional (Materials and Methods). Gaussian curve fitting requires

the user to input initial guesses for three of the parameters of a Gaussian function: curve weight

(w), curve center (μ), and width at half-maximal height (σ) or standard deviation (SD). After

multiple converging iterations using systematic changes to the parameters of the model, the

software finds parameters with the fitting accuracy required or the maximum number of itera-

tions is reached. The curve fitting output consists of the curve-fitted weight (‘w’ or area under

the curve), curve center (μ) and the SD (σ). The better the curve fit, the closer the weight or

area under the curve approaches 1 for derivatives of normalized melt curves.

We wished to use the simplest possible mathematical model for measuring the proportion

of mutant population in the amplicon of the target region. This would consist of one Gaussian

component for describing first derivative of (1-nFcRFU(x)) of unmodified mocks and another

Gaussian for the mutant population. The first derivative melting curves (-d(nFcRFU(x))/dx)

from unmodified F8-S2 and CCR5 loci (Fig 2A and 2B) were curve fitted using a single-Gauss-

ian function, g2(x) (Materials and Methods, Eq 9). We refer to this as single-Gaussian decom-

position (1-GD). Modeling the first derivative of the F8-S2 target site showed the area under

the curve had a weight (w2) of 0.9537 ± 0.0021. The deviation of the fitted curve from the actual

melt curve was clearly visible over the pre-melt to melt transition region where the Tm of the

amplicons with deletion mutations is situated (Fig 2A). 1-GD curve fitting for the CCR5 target

was similar to that of F8-S2 target but with only a slight divergence from the actual derivative

melt curve (Fig 2B). Consistent with this the area under the curve was 1.003 ± 0.0039 (from

four independent replicates). As in the case of the F8-S2 target site, we saw a small divergence

in the early melting region Fig 2B (g2(x) vs. -d(nFcRFU)/dT).

Since the mutant molecules contribute to the melt profile in the early melt region, it was

necessary to ensure a more accurate curve fitting over this region than provided by a single

Gaussian component. To this end, we tested modeling of derivative melt curves of unmodified

controls as a sum of two Gaussian functions, g2(x) + g3(x), (Materials and Methods, Eq 10). As

for the 1-GD curve fitting, we provided initial best guesses for the five parameters (three for

first Gaussian component and two for the second Gaussian component). For the g3(x) Gauss-

ian we suggested initial guesses for the mean (μ3) over the pre-melt/melt transition region. We

stipulated that the sum of weights for w2 and w3 should equal one and set free w2 (and thereby,

w3= 1-w2). The results of this curve fitting experiment are shown in Fig 2C and 2D for the F8

and CCR5 loci, respectively. Unlike 1-GD curve fitting, the sum of two Gaussian curve fitting
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Fig 2. GD of first derivative of high-resolution melt curves of amplicons from gDNA of unmodified

target sites. gDNA from mock-transfected HEK293T cells (Mocks) were PCR amplified using primer pairs

targeting F8-S2 or CCR5 loci to obtain high resolution melt curve data as described in Materials and Methods.

The normalized and fluorescence corrected melt curve data (nFcRFU) from F8-S2 (A and C) and CCR5 (B

and D) target sites were numerically differentiated as described in Materials and Methods (Eq 7). 1-GD (A and

B) and 2-GD curve fitting of derivative melt curves were done using CurveExpert Professional using Eq 9 and

Eq 10, respectively. The first derivative (y-axis: -d(nFcRFU)/dT) was plotted against temperature (x-axis) and

is shown as blue dots. The 1-GD curve fit to the first derivative data is shown as a red trace in A and B. The

individual Gaussians of 2-GD curve fit are shown as brown (g2(x)) or green dashed lines (g3(x)) and their sum

(g2(x) + g3(x)) is depicted as a solid red line in C and D. Table E shows the Gaussian parameters determined

from 1-GD curve fitting of A and B, while Table F shows the parameters identified by 2-GD curve fitting of C

and D using the CurveExpert Professional software.

https://doi.org/10.1371/journal.pone.0190192.g002
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(Fig 2, g2(x) + g3(x) indicated by a red trace vs. -d(nFcRFU)/dT indicated by blue dots) recre-

ated the derivative melt curve nearly perfectly. When we compared CurveExpert Professional

scores (see Materials and Methods, Comparing two curve fitting models), the two-Gaussian

decomposition (2-GD) model outscored the 1-GD model for both F8 and CCR5 mock samples

(Table 1). This difference, although slight, was statistically significant (paired Student’s-t test,

p = 0.0000). The AICc values were lower for the 2-GD model indicating that it had a better fit.

The relative likelihood calculations from the AICc values of both 1- and 2-GD models, also

showed that 2-GD model was better (Table 1).

First-derivative melt curves from unmodified F8-S2 and CCR5 target sites provided distinct

Gaussian parameters from curve fitting as expected from their differing amplicon sizes,

sequences and differing Tms. Thus, they exhibited distinct centers or means for both 1-GD (μ2

of 79.19 ± 0.002 vs. 82.753 ± 0.087) (Table E in Fig 2) and 2-GD fitting (μ2 of 79.31 ± 0.017 vs.

82.898 ± 0.088 and μ3 of 78.642 ± 0.013 vs. 82.265 ± 0.069 for F8-S2 and CCR5, respectively)

(Table F in Fig 2). Likewise, they showed distinct differences in the contribution of weights: w2

of 0.954 ± 0.002 vs. 1.003 ± 0.004 in 1-GD fitting; and w2 of 0.647 ± 0.006 vs. 0.587 ± 0.009 for

F8-S2 and CCR5, respectively in 2-GD fitting. These results highlight the requirement for

determining Gaussian parameter values for each target site from amplicons obtained from cor-

responding control or unmodified samples.

Estimating percentage of mutants by GD of derivative melt curves from

genome-edited samples

Comparing derivative melt curves of unmodified and genome-edited samples shows a distinct

mutant molecules’ peak with a lower melting temperature (Fig 2 vs. Fig 3). We hypothesized
that upon decomposition of the melting profile into its Gaussian components, the area under the
mutant peak would correspond to the proportion of mutant molecules in the PCR product. The

Gaussian function representing the mutant population was designated g1(x) in Eqs 11 and 12

(Materials and Methods).

Since the better curve fitting of unmodified controls was obtained by using sum of two

Gaussian functions, we modeled derivative melt curves of test samples as a sum of three Gauss-

ian functions, g1(x) + g2(x) + g3(x) (Materials and Methods, Eq 12). The parameters obtained

from 2-GD of derivative melt curves of unmodified controls from F8-S2 and CCR5 (means

and weights) were then used to decompose corresponding test or genome-edited samples. The

different Gaussian components, g1(x), g2(x) and g3(x), and their sum g1(x)+ g2(x) + g3(x) are

Table 1. 2-GD model shows better fit than 1-GD for derivative melt curve data of mocks.

Targeting Plasmid Selection Sample 1-GD score 2-GD score 1-GD AICc 2-GD AICc ΔAICc Relative likelihood

pBackbone No F8-S2 Mock 1 981 995 -625 -785 160 0.0000

pBackbone No F8-S2 Mock 2 982 995 -629 -795 166 0.0000

pDonor No F8-S2 Mock1 980 995 -620 -786 166 0.0000

pDonor No F8-S2 Mock 2 980 996 -618 -812 194 0.0000

pBackbone Yes F8-S2 Mock 1 978 996 -615 -813 198 0.0000

pBackbone Yes F8-S2 Mock 2 979 996 -618 -803 185 0.0000

pDonor Yes F8-S2 Mock 1 981 995 -629 -791 161 0.0000

pDonor Yes F8-S2 Mock 2 981 996 -625 -806 181 0.0000

None No CCR5 Mock 1 984 997 -732 -979 247 0.0000

None No CCR5 Mock 2 985 998 -748 -969 221 0.0000

None No CCR5 Mock 3 984 998 -729 -1057 328 0.0000

None No CCR5 Mock 4 983 997 -721 -990 268 0.0000

https://doi.org/10.1371/journal.pone.0190192.t001
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shown in Fig 3. The predicted curve of the sum of the three Gaussians was a near-perfect fit to

the original derivative melt curve from test samples (Fig 3, g1(x) + g2(x) + g3(x), indicated by a

red tracing vs. -d(nFcRFU)/dT (Fig 3, blue dots). The area under the g1 curve, w1, of three-

Gaussian decomposition (3-GD) was deemed to represent the mutant population. The per-

centage of mutant population estimated in amplicons of genome-edited F8-S2 and CCR5 tar-

get sites by 3-GD, shown in Table C in Fig 3, was 18.6 ± 3.2% vs. 23.2 ± 8.7%, respectively.

These results demonstrate that first derivative melt curves from genetically altered sites can be

modeled successfully as a sum of three Gaussian functions.

Since the 1-GD of unedited samples was below the data points in the pre-melt to melt tran-

sition region (Fig 2), we hypothesized that 2-GD of genome-edited samples would over esti-

mate the mutant frequency. The results of these comparisons are shown in Fig 4. 2-GD

modeling estimated significantly higher mutant frequency than 3-GD modeling of edited sam-

ples (Fig 4A and 4B) as predicted.

Better curve fitting of 3-GD over 2-GD modeling was also revealed by the CurveExpert

Professional scores (Table 2). These differences were statistically significant (paired Student’s

Fig 3. 3-GD of first derivative of high-resolution melt curves for estimation of mutant percentage in

genome-edited samples. gDNA was isolated from HEK293T cells transfected with F8-S2 targeting RGENs

or CCR5 targeting TALENs and PCR amplified using corresponding primer pairs to obtain high resolution melt

curve data (Materials and Methods). 3-GD curve fitting was done on first derivative melt curves using

CurveExpert Professional and Eq 12 as described in Materials and Methods. The individual Gaussians-g1(x)

(purple dashed line), g2(x) (brown dashed line) and g3(x) (green dashed line) and their sum- g1(x)+ g2(x) + g3

(x) (red solid line) were overlaid over the first derivative melt curve (blue dots). GD of F8-S2 is shown in A and

of CCR5 in B. Table C shows the parameters (weights, centers and SDs) of 3-GD. The parameters that were

fixed from GD of mocks and those that were set free during 3-GD of edited samples are shown in the

Comments column. The g1 weight (w1) represents the mutation frequencies in the amplicons of genome-

edited F8-S2 and CCR5 target sites, respectively.

https://doi.org/10.1371/journal.pone.0190192.g003
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t-test, p = 0.00001). The AICc values were lower, indicating a better fit, for the 3-GD model.

Relative likelihood determinations from AICc values also revealed that the 3-GD model was

better. These results demonstrated that the 3-GD modeling was the appropriate choice for GD

of first derivative melt curves of amplicons of genome-edited target sites.

Validation of GD method using predefined mixes of amplicons

We tested the 3-GD method using two types of dose-response mixes. One variety consisted of

mixing the amplicon from F8-S3 target site with the amplicon from F8-S2 site in various pro-

portions (range between 10% and 100%). The F8-S3 amplicon was used as a surrogate for the

mutant population as it exhibited a μ similar to that of the F8-S2 mutant peak. This was

Fig 4. Comparison of mutant percentage estimation by 2- and 3-GD. First derivatives of high-resolution

melt curves from genome-edited samples were curve fitted using 2- or 3-GD models as described in Materials

and Methods (Eq 11 and Eq 12, respectively). The mutant percentages estimated from curve fitting are shown

along the y-axis for F8-S2 (A) and CCR5 (B). Two molecular clones (10 and 11) of dgRNAs targeting F8-S2

site and two pairs of TALENs (L1R1 and L2R2) targeting CCR5 site were tested. The mutant percentages

were compared using Student’s t-test (two-tailed). The p-values of the pair-wise comparisons of 2-GD and

3-GD are shown above the bars.

https://doi.org/10.1371/journal.pone.0190192.g004

Table 2. 3-GD model achieves better fit than 2-GD for derivative melt curve data of genome-edited samples*.

F8-S2 site CCR5 site

2-GD

Score

3-GD

Score

2-GD

AICc

3-GD

AICc

ΔAICC Relative

likelihood

2-GD

Score

3-GD

Score

2-GD

AICc

3-GD

AICc

ΔAICc Relative

likelihood

979 992 -780 -911 131 0.0000 990 997 -837 -988 151 0.0000

990 996 -879 -1005 126 0.0000 985 995 -776 -907 130 0.0000

992 996 -923 -1008 85 0.0000 978 993 -733 -870 137 0.0000

983 994 -797 -949 153 0.0000 968 990 -690 -830 140 0.0000

990 995 -871 -978 108 0.0000 978 993 -728 -871 143 0.0000

992 996 -888 -1000 112 0.0000 973 992 -704 -857 154 0.0000

991 996 -869 -980 111 0.0000 972 992 -703 -851 148 0.0000

- - - - - - 968 991 -681 -834 152 0.0000

*Row in each half of the table represents an individual sample well of PCR analyzed after high-resolution melting by 2-GD or 3-GD as described in the text.

Results for 7 genome-edited F8-S2 samples and 8 genome-edited CCR5 samples are shown.

https://doi.org/10.1371/journal.pone.0190192.t002
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referred to as S3Wt-S2Wt mix. The other dose-response mix was generated by mixing the

amplicon from a sample that was shown by TaqMan assay to consist of nearly pure mutant

molecular species with the corresponding wild type amplicon. We refer to this as S2Mt-S2Wt

mixes. These mixes or standard curves have been described previously[12].

The results of this analysis (Fig 5A and 5B) revealed that the 3-GD could be used to curve fit

mixes from both varieties of calibration curves and estimate the percentage of mutants. Linear

regression analysis of the data showed that the correlation coefficient was 0.9893 for S3Wt-

Fig 5. Validation of GD method using predefined amplicon mixes. High-resolution melt curves of

samples containing different proportions of F8-S3 amplicon (S3Wt) or F8-S2 mutant (S2Mt) in F8-S2

amplicon (S2Wt) were analyzed by GD as detailed in Materials and Methods. (A) Derivative melt curve data

(blue dots) of indicated S3Wt-S2Wt mixes were fitted using 3-GD (red traces). The nominal percentage of

S3Wt in the mix is shown below (indicated by S3Wt%) and the GD-estimated amount in the top left corner of

each plot. (B) Derivative melt curve data (blue dots) of indicated S2Mt-S2Wt mixes were fitted using 3-GD

(red traces). The nominal percentage of S2Mt in the mix is shown below (indicated by S2Mt%) and the GD-

estimated amount in the top left corner of each plot. (C) Scatter plot of nominal F8-S3Wt% in mix (X-axis) vs

3-GD estimated F8-S3Wt% (Y-axis). (D) Scatter plot of nominal F8-S2Mt% in mix (X-axis) vs 3-GD estimated

F8-S2Mt% (Y-axis). The equations of linear regression analysis of both types of dose-response curves and

the correlation coefficients (R2) are shown. The samples were tested in duplicate (replicates ‘a’ and ‘b’).

https://doi.org/10.1371/journal.pone.0190192.g005
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S2Wt (Fig 5C) and 0.9935 for S2Mt-S2Wt (Fig 5D) mixes, indicating that there was good cor-

respondence between the nominal values of the S3Wt or S2Mt proportion in the mixes with

the percentages determined by 3-GD. Interestingly, 3-GD of S2Mt-S2Wt mixes estimated

lower percentages of S2Mt than the nominal values by 5.92 ± 3.45%.

Comparison of GD method to prior approaches for measuring efficiency

of genome editing

We next carried out 3-GD of high resolution melt curves of samples previously characterized

by NGS and by an alternative approach to measure mutant population based on difference

curve areas (DCAs) of normalized high-resolution melt curve profiles. These samples exhib-

ited a wide range of mutant percentages that were influenced by puromycin drug selection and

the use a donor template containing plasmid (pDonor-F8) or its corresponding control plas-

mid (pBackbone) [12]. There were four categories of samples: (1) pBackbone/Unselected, (2)

pDonor/Unselected, (3) pBackbone/Selected, and (4) pDonor/Selected. These four categories

showed progressively increasing percentages of mutations in the earlier study [12]. Two differ-

ent clones of RGENs targeting the F8-S2 site, clone 10 and clone 11, were tested. Clone 10 had

previously exhibited higher efficiencies than clone 11.

Results of curve fitting of derivative melt curves of mocks using 2-GD, and of genome-

edited samples by 3-GD, are shown for all the replicate samples in Fig 6A. In all instances, GD

was able to accurate model the derivative melt curves including the mutant molecules’ peak.

The area under this peak, w1, is shown as percentage within the plots. RGEN F8-S2 clone 10

edited samples showed higher percentages of mutants than clone 11. Drug-selected samples

exhibited higher mutant frequencies than corresponding unselected samples and samples that

received pDonor-F8 template (to effect homologous recombination) exhibited higher mutant

frequencies than corresponding samples that received the control pBackbone plasmid.

Direct comparison of the results with mutant frequency determination using DCA is shown in

Fig 5B and 5C. Consistent with our previous observations, the percentage of mutants estimated

by both methods were within 3% of each other for both selected and unselected samples (pBack-

bone or pDonor). There were two exceptions where the differences were 4.6% and 11.3%, respec-

tively, with GD providing lower estimates. Possible explanations for this discrepancy are provided

in Discussion. The NGS of unselected samples treated with pBackbone showed a similar trend as

the above two methods (Fig 6D) with clone 10 again showing higher efficiency of target site modi-

fication than clone 11. NGS generally provided higher estimations of mutant frequencies than GD

or DCA methods due to the inclusion of insertion mutations in the calculations.

We used GD to also estimate the proportion of mutants in amplicons of samples edited at

the CCR5 locus. Here too, the results of GD and NGS showed similar trends (Fig 6D). These

results in toto demonstrate that curve fitting of first derivative of high-resolution melt curves is

comparable to other methods used previously for estimating the proportion of mutants in

amplicons of genome-edited target sites. The results also indicate that one could estimate

mutant frequency percentages by GD for target sites for which there is no ready availability of

a 100% mutant population to generate calibration curves for the DCA method (in this case

genome-edited CCR5 target site).

The size of the PCR product does not affect estimation of percentage of

mutants by GD from the same target locus despite exhibiting distinct

Gaussian parameters

We next wished to test if the size of the amplicon affected the estimation of percentage of

mutants. To this end, we amplified unmodified or genome-edited CCR5 target sites using two
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Fig 6. Mutant frequency determination by 3-GD and comparison to difference curve areas (DCAs) and

next generation sequencing (NGS) data. HEK293T cells were transfected with F8-S2 targeting dgDNA

clone 10 (F8-S2 Cl.10) or clone 11 (F8-S2 Cl.11) together with a dCas9-FokI construct. The cells were also

cotransfected with either pBackbone or pDonor-F8 targeting plasmids (Materials and Methods). Following

transfection, gDNAs were isolated from unselected cells or cells selected with puromycin and used for

amplification by PCR using appropriate primer pairs targeting F8-S2 loci to obtain high-resolution melt curve

data. (A) Mutant percentage estimations by 3-GD for the four different categories of samples from unedited

and edited F8-S2 site are identified on the left. The derivative melt curves are shown as blue dots and the

fitted curves from GD as red traces. Four PCR replicates were analyzed for each clone with one exception

(F8-S2 clone 10, pBackbone/Unselected) for which only three replicates were tested. The mutant frequency

(percentage) estimated from the area of the mutant peak (w1 parameter from g1(x)), of 3-GD) for each

replicate is shown within the plot. (B-D) The average mutant frequency determined by GD for the different

categories in A were compared to mutant frequencies determined by difference curve areas (DCA) (C) and to

mutant frequency determination from next generation sequencing (NGS). NGS was only done on unselected
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sets of primers. The same antisense primer (SK145) was used for both PCR amplifications but

one of the sense primers (SK214) was situated further upstream of primer SK144 so that the

resulting amplicon sizes were 140 and 107 bp, respectively. GD of high-resolution melt curves

of both sizes of amplicons was done as above. Results are shown in Fig 7. The larger amplicon

exhibited higher means (μ1, μ2 and μ3) for the three Gaussian functions than the smaller one,

as expected, and also showed distinguishable SDs (Table 3). The percentages of mutants esti-

mated from the larger or smaller PCR product sizes determined by GD were 29.8 ± 1.1% vs.

28.9 ± 8.6%, respectively. The values were not statistically significant (Student’s t-test, p�0.05).

These results suggest that small differences in amplicon sizes (less than 50 bp) do not affect the

estimation of genome-editing efficiency by GD.

Discussion

Here we outline a method for estimating the efficiency of genome-editing reagents by GD of

high-resolution melt curve data (Fig 8). An initial pre-processing of the raw melt curve data

was required to correct for the quenching effect of temperature on measurement of fluores-

cence as a prelude to GD for estimating the genome-editing efficiency. Our approach consisted

of two separate steps for correcting melting curves for temperature-dependent quenching of

fluorophore. The initial step of cleaning the data involved removing the background fluores-

cence emanating from the free or unbound fluorophore. Two methods have been used for this

purpose. The first is to use an arbitrary cutoff point in the post-melt region of the raw melt

curve and subtract this value from all upstream RFUs. We found that this method sometimes

resulted in a small but narrow tail in the post-melt region of the curve before it hit the baseline.

This discrepancy could affect curve fitting of the first derivate of the processed melt curve. The

tail also hinted at a temperature-dependent quenching of the free fluorophore. We confirmed

this quenching from linear regression analysis of no template controls used in PCR across the

entire range of melting (Fig 1). The computed background RFU from linear regression of the

post-melt region of individual melt curves was used to effectively subtract the effect of free

fluorophore on the melt curve.

The second step to processing the melt curve involved correcting for temperature-depen-

dent quenching of the dsDNA-bound fluorophore evidenced in the pre-melt region. As for the

post-melt region, regression analysis of the pre-melt region can be used to determine the effi-

ciency of fluorescence of the dsDNA-bound fluorophore at any temperature point along the

melt curve profile. While detection efficiency can be computed for individual melt curve pro-

files, we found that the temperature range of the pre-melt region could be much shorter for

some genome-edited samples due to the expected lower Tms for deletion mutations. For

example, the pre-melt regions were only nominally present for drug-selected samples that had

a very high proportion of mutant molecules in the amplicon (Fig 6). In this case the mutant

population constituted more than 90% of the PCR product.

We found that for a given target, and pair of primers, the efficiency of detection of dsDNA-

bound fluorophore could be computed accurately and solely from unmodified or mock-trans-

fected samples. These efficiencies could not be distinguished from those estimated from the

individual test samples where sufficient pre-melt region was present (Fig 1D). We therefore

chose to determine bound fluorophore detection efficiency from replicates of mock-trans-

fected samples and averaging them. Correction for the quenching of fluorescence of dsDNA-

samples. (E) Mutant frequency estimation from GD of high resolution melt curve data from gDNA of HEK293T

cells transfected with TALENs (two independent pairs of molecular clones L1R1, L2R2) targeting CCR5 locus.

CCR5 edited samples were also analyzed by NGS. Error bar = 1 SD.

https://doi.org/10.1371/journal.pone.0190192.g006
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bound fluorophore could be simply achieved by dividing the BcRFU(x) by the detection effi-

ciency, E(x) (Materials and Methods, Eq 4). This process effectively eliminated the downward

slope of the pre-melt region (Fig 1C).

The temperature-dependent decay of fluorescence of dsDNA-bound fluorophore could be

modeled using either a first- or second-order polynomial function. For CCR5 samples, the

pre-melt region, following a correction using a first-order polynomial, showed a gentle upward

Fig 7. Size of PCR product does not affect determination of mutant percentage by GD. The CCR5

target site in gDNA of unmodified or genome-edited cells were amplified using two pairs of primers designed

to produce two distinct sizes of product (107 bp and 140 bp, respectively). The amplicons were subjected to

high-resolution melting and then processed to correct for temperature-dependent quenching of fluorescence

of free and dsDNA-bound fluorophore. The resulting melt curves of genome-edited (for clone pair L1R1) and

unmodified controls (Mock) are shown (A & C). Corresponding first-derivatives of processed melt curves are

shown in B and D. Replicates G1 and G2, A1 and A2 refer to gDNA samples amplified using primers that

produce 107 bp amplicon, whereas G5 and G6, and A5 and A6 refer to gDNA samples amplified using

primers that produce 140 bp amplicon. The derivative melt curves were decomposed using the 3-GD model to

estimate the mutant frequency. The estimated mutant frequencies for both sizes of amplicons are shown in

(E). Error bar = 1 SD.

https://doi.org/10.1371/journal.pone.0190192.g007

Table 3. Parameters determined by 3-GD of two different size amplicons from the CCR5-edited target

site.

Gaussian Parameters 107 bp PCR product 140 bp PCR product

w1 (%) 29.8 ± 1.1 28.9 ± 8.6

μ1 79.8 ± 0.23 82.1 ± 0.19

σ1 1.88 ± 0.20 1.07 ± 0.26

w2 0.49 ± 0.01 0.48 ± 0.06

μ2 82.8 84.2

σ2 0.57 ± 0.01 0.51 ± 0.01

w3 0.21 ± 0.00 0.24 ± 0.03

μ3 82.1 83.6

σ3 0.77 ± 0.05 0.65 ± 0.12

https://doi.org/10.1371/journal.pone.0190192.t003
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trajectory (saddleback pre-melt region) indicating that the RFU was not compensated appro-

priately. Estimating the dsDNA-bound fluorophore efficiency using a second-order polyno-

mial curve fitting of the pre-melt region eliminated this artifact. From this one can surmise

Fig 8. Flow diagram of steps involved in processing high-resolution melt curve data for GD. (A-D) The

steps needed to process the raw melt curve data to correct for background from free fluorophore (A-B) and to

correct for temperature dependent quenching of bound-fluorophore (C-D) by dividing background-corrected

RFU (BcRFU) by the efficiency (C). The normalized fluorescence corrected RFU (nFCRFU) of mocks is then

differentiated (E) before curve fitting using 2-GD (F) to determine the parameters values for use as constants

in 3-GD of genome-edited samples. (G) Processed melt curves of genome-edited samples using the same

steps outlined in A-E are then curve-fitted by 3-GD as described in the text. Equation numbers refer to those in

Materials and Methods.

https://doi.org/10.1371/journal.pone.0190192.g008
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that the fluorescence decay of dsDNA-bound fluorophore at higher temperatures is better

modeled with a second-order polynomial.

Correction for temperature-dependent quenching of fluorophores has been described pre-

viously. Watras et al., found that fluorescence of chromophoric dissolved organic matter

(CDOM) decreased as ambient water temperature increased [20]. They suggested compensat-

ing for the quenching using the equation:

CDOMr ¼
CDOMm

½1þ rðTm � TrÞ�
ð13Þ

where t = temperature (˚C), r = reference and m = measured values, the coefficient, ρ, is the

quotient of slope divided by the intercept. The actual coefficient value, ρ, was found to be

instrument-dependent. A similar approach was recommended by Ryder et al [21,22].

CDOMref ¼ ðCDOMmeas � ½1þ ftðTref � TmeasÞ�Þ ð14Þ

where ft is the temperature correction coefficient, ref and meas refer to reference and measured

temperatures. The two formulae for calculating fluorescence compensation were shown to be

mathematically identical [23]. This correction method is comparable to our approach. Our ini-

tial attempts at correction for the quenching effect was to determine the slope of pre-melt

region and use it in place of the coefficient, ρ, in Eq 13. This was combined with a simple base-

line cut off for correction of melt curve data. We, however, prefer first-order polynomial curve

fit to determine and subtract the background from individual melting curves, and then correct

for the quenching effect of temperature on dsDNA-bound fluorophore by dividing with the

efficiency of detection of dsDNA determined from unmodified controls. Both approaches

should provide comparable results for subsequent curve fitting after numerical differentiation.

Our approach eliminates the requirement for slope determination of the pre-melt region for

each of the test samples easing computation.

Palais and Wittwer described two methods for background correction [24]. 1) A baseline

method:

M Tð Þ ¼
FðTÞ � L0ðTÞ
L1ðTÞ � L0ðTÞ

ð15Þ

where, M(T) is the corrected melt curve, F(T) is the experimentally obtained melt curve, and

L1(T) and L0(T) refer to linear equations describing pre-melt and post-melt regions of the

curve, respectively. Thus, M(T) corresponds to FcRFU(x), F(T) to RFU(x), L1(T) to Fprem(x)
and Lo(T) to Bpom(x) of this study.

2) They also described an exponential background subtraction model:

FðTÞ ¼ MðTÞ þ BðTÞ ð16Þ

Where the background, BðTÞ ¼ CeaðT� TLÞ.

C and a are determined as described in detail in their publication. The exponential back-

ground correction is recommended by Palais and Wittwer for experiments involving multiple

small amplicons and unlabeled probes, and also where the pre- or post-melt regions of melt

curve exhibit a concavity. We evaluated the exponential background subtraction method to

process the raw melting curve data for amplicons of F8-S2 and CCR5 loci in unedited mock

samples. The results are shown in Fig 9A and 9B and indicate that this correction method only

partially compensated for the quenching observed in the pre-melt region. Since the mutant

population encroaches on pre-melt region and extends into the melt transition portion, we

abandoned this approach for preprocessing the high-resolution melt curves.
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Our method for preprocessing melt curve data is mathematically indistinguishable from

the simpler baseline model of Palais and Wittwer (Eq 15). One difference between the Palais

and Witter method and our method is that we first subtract background emanating from

unbound fluorophore before correcting for efficiency of detection of dsDNA-bound fluoro-

phore. The second difference is that we formulate the decrease in fluorescence of the pre-melt

region not as a background problem but rather as an issue of detection efficiency. The third

difference is that the quenching of dsDNA-bound fluorophore was modeled using either a

first- or a second-order polynomial function depending on the particular target amplicon. The

final difference is that we determined ds-DNA bound fluorophore detection efficiencies from

control or mock samples and applied those to correct melt curves of genome-edited samples.

Our Gaussian decomposition model was based on the mathematical properties of the deriv-

ative melt curve data (Materials and Methods). These attributes allowed us to model derivative

melt curves as a finite mixture of Gaussian DFs. Visual inspection of derivative melt curves of

mocks and genome-edited samples revealed that edited samples exhibited a deformity or peak

in the pre-melt to melt transition region. The simplest mathematical model would consist of

one Gaussian for curve fitting mock and an additional Gaussian for the mutant molecules’

peak in edited samples. We found, however, that mock derivative melt curves required two

Gaussians for proper curve fitting. That is, sum of two Gaussians, traced the data points nearly

perfectly (Fig 2C and 2D), while using just one Gaussian left the pre-melt to melt transition

partially uncovered (Fig 2A and 2B). This was corroborated by better AICc values and curve fit

score for 2-GD over 1-GD (Table 1). Genome-edited samples had an additional recognizable

peak in the derivative melt curve (Fig 3) in the pre-melt region that required its own Gaussian

(3-GD model).

From curve fitting controls, we obtained the parameter values (μs, σs and ws or weights)

that completely described the two mock Gaussians g2(x) and g3(x). Four of these parameter

values (μ2, μ3, w2 and w3) were “fixed” in Eq 12, to ensure accurate subtraction of mock contri-

bution to the area under the curve to reveal the weight, w1, of the mutant Gaussian g1(x). This

is a requirement of the model as setting all parameters “free" in the 3-GD model can result in

inaccurate estimation of mutant proportion in the amplicon as there can be several possible

solutions for summing Gaussians to curve fit derivative melt curves.

We validated the GD method for estimating the proportion of mutants in amplicon mixes

containing predefined proportion of wildtype and mutant molecular species (Fig 5A and 5B).

We also successfully applied the method to previously characterized samples with known

mutant percentages. There was good correspondence between the results obtained by GD and

our earlier described method based on DCAs for estimating mutant amplicon frequency (Fig

5). The DCA method was previously validated from NGS of the same amplicons.

The advantage of the GD method is that it does not require calibration curves. Moreover,

generating mixes for standard curves is not trivial without accurate determination of the mas-

ses of the wild type and mutant amplicons. Furthermore, amplicons constituted of pure and

representative mutant species are frequently not available for generating the mixes. Another

advantage of the GD method is that it can simultaneously reveal the relative proportions of

both mutant (w1) and wildtype (1-w1) molecules while the DCA method only measures pro-

portion of mutants in a test sample. To measure the wildtype molecules in test samples, in our

earlier study, we had to use a TaqMan assay.

There is a possible caveat to using 3-GD for estimating mutant frequencies. While the GD

and DCA methods yielded comparable estimation of editing efficiencies, there were a few

exceptions for amplicons consisting almost entirely of mutant species (Fig 6A and 6B, pDo-

nor/Selected samples) where the GD method estimated slightly lower mutant percentages. We

know, from our earlier study using a TaqMan assay, that these gDNA samples have no
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detectable wildtype amplicons. Our explanation for this anomaly is that 3-GD of nearly pure

mutant amplicons (Eq 12) generates Gaussians that overlap with those of mocks (Fig 6A) that

can exhibit the same parameter values (e.g., μs) of mock Gaussians. Our model cannot accu-

rately segregate these Gaussians as belonging to the mutant Gaussian. In support of this

hypothesis is our earlier finding that indels with sufficiently large insertions can mimic wild-

type molecules in HRMA and constitute less than 10%. It is rather unlikely for mutant fre-

quencies to approach such high levels in transient transfection experiments in the absence of

drug selection. We therefore believe that this would not pose a significant hurdle for the GD

method for estimation of editing efficiencies.

During GD of mocks, we were intrigued by the small discrepancy in the derivative melt

curves at the melt transition temperature seen in single-Gaussian modeling. This seemed more

pronounced in F8-S2 samples. We hypothesized that in F8-S2 amplicons, there were regions

of the sequence that melted sooner or behaved as a nearly independent domain that was AT-

rich. To identify these regions in the sequence, we wrote a Python function that determined

the percentage of As and Ts in sliding windows of 10-mers that shifted by one nucleotide. The

moving averages (period = 5) are shown in Fig 10A and 10B (green traces). In the F8-S2

sequence, two initial broad regions with high AT content were visible (Fig 10A). In contrast, in

the CCR5 sequence, few AT-rich regions that seemed narrower were seen (Fig 10B).

We wrote another Python function to compute the free energy of a 10-mer sequence win-

dow by using the nearest-neighbor method. For this analysis too, we used a sliding window

that shifted by one nucleotide. The moving averages (period = 2) are shown in Fig 10 (blue

traces). Again, the initial AT-rich region exhibited lower free energies (ΔGs) for F8-S2

sequence than that of the CCR5 sequence (Fig 10A and 10B).

We next used the online web tool uMelt [25] to determine if the melting profiles of F8-S2

and CCR5 amplicon sequences could be distinguished by in silico analysis. For F8-S2 ampli-

con, the derivative melt curve predicted by uMelt web tool, showed a bulge in the early melt

region (Fig 10C). The Dynamic Profile window also predicted melting at earlier temperatures

at both ends, particularly at the 5’ end of the sequence (Fig 10D). The Melting Profile pane (Fig

10E) also showed increased melting at lower temperatures for the first 50 base pairs. In con-

trast to F8-S2, for the CCR5 target sequence amplicon, the web tool predicted only a small

deviation of melt curve in the early melt region (Fig 10F). The Dynamic Profile (Fig 10G) for

CCR5 target amplicon also showed nearly equal rates of melting from both ends of the

sequence with a barely visible enhancement for the left end. Likewise, the Melting Profile pane

Fig 9. Comparison of different methods of processing melt curve data for background and fluorescence

quenching correction. Melt curve data from amplicons of unmodified or control samples from F8-S2 (A) or

CCR5 target loci (B) were either unprocessed (-dF/dT, blue trace) or corrected using exponential background

subtraction method of Palais and Wittwer (24) (-dF/dT-dB/dT, red dashes) or the method described in this study

(-d(nFcRFU)/dT, green trace).

https://doi.org/10.1371/journal.pone.0190192.g009
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Fig 10. Analysis of F8-S2 and CCR5 target sequence features and melting properties in silico. Sliding

window analysis of percentage of AT (%AT) in F8-S2 (A) or CCR5 (B) sequences of target sites amplified by

PCR. The percentage of As and Ts were determined in a sliding overlapping window of 10-mers. The shift was by

1 bp. These are shown as green dashes. The data was smoothed using running averages with a period of 5 (solid

green line). The sum of free energies (ΔGs) in a sliding window of 10-mers and a shift of 1 bp is shown along the

left y-axis in kJ/mol (blue dots). The running averages were calculated as for %AT traces and are shown as blue

traces. Putative AT-rich domains are marked I-IV. (C- H) The F8-S2 and CCR5 target sequences were used as

input in the UMelt web analysis tool (29). UMelt predicted derivative melt curve (C and D), "Dynamic Profile” of

melting (E and F) using a sliding temperature control that was situated close to the predicted Tm for each

sequence to identify portions of the target sequences (nucleotide position indicated on the x-axis) that may have

melted earlier than the rest. The web tool also provided a "Melting Profile" analysis that shows potential regions

that might show greater tendency to melt earlier (G and H).

https://doi.org/10.1371/journal.pone.0190192.g010
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(Fig 10H) showed very little propensity for a separate domain that exhibited different melting

characteristics than the rest of the sequence for CCR5. The differences noted between the pre-

dicted derivative melt curves and the experimentally derived counterparts have been attributed

to uMelt software being based on ΔGs determined for pairs of nucleotides using a spectropho-

tometric method rather than on fluorescence emission from the binding of dsDNA-binding

fluorophores. Nevertheless, uMelt analysis supports the two-Gaussian model for curve fitting

of unmodified control samples.

Other investigators have also used derivatives of melt curves for analysis. Cuellar and

coworkers were amongst the earliest investigators to analyze high-resolution denaturation

profiles of reassociated repetitive DNA sequences using a combination of higher derivative

analysis and curve fitting [26]. They were able to distinguish "thermal classes" of repetitive

DNA duplexes exhibiting different amounts of base pair mismatch in reassociated DNA. Reas-

sociated Escherichia coli DNA exhibited a single thermal class while pea and mung bean re-

associated DNAs showed five distinct thermal classes. These investigators obtained the first to

fifth derivatives of the melting profiles by numerical differentiation followed by smoothing

using nine-point running averages. For curve fitting of first derivative curves they used a soft-

ware program called RESOLV. Their results showed that the number of peaks identified by

RESOLV corresponded well with the fifth derivative of the melting profiles of reassociated

mung bean or pea DNAs. While these investigators were able to use an empirical approach to

identify multiple Gaussian components in reassociated DNA of legumes, they were unsure if

the components corresponded to populations of distinct sequences.

Moore and Gray proposed a method dubbed derivative domain fitting for resolving a mix-

ture of normal distributions in the presence of a contaminating background [27]. They pro-

posed this model for analyzing flow cytometric data. A requirement for decomposition was

that Gaussian peaks had to be separated by an SD greater than two. They mentioned difficul-

ties in accurately modeling the background by their method. While their approach is an exam-

ple of GD of data, their study is not directly comparable to ours.

Nellåker and coworkers proposed a mixture model to analyze of melting temperature data

[28]. The premise of their model is that distinct Tm categories indicate presence of population

of unique sequences. The "mixture model" allows calculating the proportions of amplicons

contributing to the distinct Tm categories identified in the mixes. Nellåker and coworkers

state that their mixture model actually denotes mixture distributions of statistical distributions

that arise from sampling of mixed populations. They formulate the probability density func-

tion, g(x) as follows:

gðxÞ ¼ p1 f1ðxÞ þ � � � þ pk fkðxÞwhere 0 � pi � 1; i ¼ 1 . . . k; p1 þ � � � þ pk ¼ 1 ð17Þ

The parameters π1 . . . πk are referred to as the mixing weights or proportions. They applied

the mixture models to Tm data assuming it to consist of normally distributed components

with each component having the same standard deviation. They used a Gaussian distribution

function for their model. Thus, the function g(x) (Eq 17) was represented as:

g xð Þ ¼
Pk

i¼1
pi

1

s
ffiffiffiffiffiffi
2p
p e

ðx� miÞ
2

2s2 ð18Þ

where, x refers to temperature, and μi refers to Tm of individual components of the mixture.

The sum of Gaussian functions that we used in this study (Materials and Methods, Eqs 9

and 10) to curve fit the first derivative of processed melt curves, is similar to that of Nellåker

and coworkers. However, Nellåker and coworkers used their Gaussian function for modeling

Tm distributions of individual components of their mixture and did not apply it to derivative
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transformations of melt curves of mocks. Here, we apply the sum of Gaussian functions to
empirically reproduce the shape of the first derivative of high-resolution melt curves for both
mocks (sum of two Gaussians) and genome-edited samples (sum of three Gaussians). A second

difference is that we did not assume the SD was the same for the decomposed Gaussian com-

ponents. They were designated as separate parameters for each Gaussian and set free during

the modeling. However both Gaussian models sought to measure the proportion of particular

component of the mixes, the only difference being, we designated the weight of the different

components as w1-3 instead of πi. This also eliminated possible confusion between the weight

coefficient and the mathematical constant π. In our case too, the sum of the weights of the

Gaussian components of first derivative melt curves equaled one.

Mann et al., also used a Gaussian model to curve fit melt curve derivatives [29]. They were

interested in automating the screening of first derivative melt curves following PCR to detect

products with unusual or aberrant melt curves to rapidly eliminate those samples from further

analyses. They used a different background correction method than those described above.

Their approach provides a pure Gaussian after subtraction of a sigmoid shaped background

fluorescence that does not retain the granularity of the derivative melt curve from genome-

edited target sites. In our model, the shape of the derivative melt curve is critical for the precise

quantitative decomposition into its Gaussian components.

In conclusion, this paper describes a method to correct high-resolution melt curves for tem-

perature-dependent quenching of free and dsDNA-bound fluorophore. This is the first report,

to the best of our knowledge, to demonstrate that first derivative melting curves of properly

processed high-resolution melt curve data can be precisely modeled as a sum or superposition

of Gaussian DFs. The GD model successfully estimated efficiency of genome-editing by engi-

neered sequence-directed endonucleases without a requirement for standard curves and has

the additional advantage of being a single-tube method.
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