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Abstract

In considering evolution of transcribed regions, regulatory sequences, and other genomic

loci, we are often faced with a situation in which the number of allelic states greatly exceeds

the size of the population. In this limit, the population eventually adopts a steady state char-

acterized by mutation-selection-drift balance. Although new alleles continue to be explored

through mutation, the statistics of the population, and in particular the probabilities of seeing

specific allelic configurations in samples taken from the population, do not change with time.

In the absence of selection, the probabilities of allelic configurations are given by the Ewens

sampling formula, widely used in population genetics to detect deviations from neutrality.

Here we develop an extension of this formula to arbitrary fitness distributions. Although our

approach is general, we focus on the class of fitness landscapes, inspired by recent high-

throughput genotype-phenotype maps, in which alleles can be in several distinct phenotypic

states. This class of landscapes yields sampling probabilities that are computationally more

tractable and can form a basis for inference of selection signatures from genomic data.

Using an efficient numerical implementation of the sampling probabilities, we demonstrate

that, for a sizable range of mutation rates and selection coefficients, the steady-state allelic

diversity is not neutral. Therefore, it may be used to infer selection coefficients, as well as

other evolutionary parameters from population data. We also carry out numerical simula-

tions to challenge various approximations involved in deriving our sampling formulas, such

as the infinite-allele limit and the “full connectivity” assumption inherent in the Ewens theory,

in which each allele can mutate into any other allele. We find that, at least for the specific

numerical examples studied, our theory remains sufficiently accurate even if these assump-

tions are relaxed. Thus our framework establishes both theoretical and practical foundations

for inferring selection signatures from population-level genomic sequence samples.

Introduction

With the advent of high-throughput molecular biology techniques, it has recently become pos-

sible to carry out large-scale genotype-phenotype assays in molecular systems [1–5]. For exam-

ple, Podgornaia and Laub have recently mapped all 204 = 1.6 × 105 possible combinations of
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four key residues in the E. coli protein kinase PhoQ, and assayed each mutant for the signaling

function mediated by its binding partner PhoP [1]. This study revealed 1659 functional PhoQ

variants, which can be thought of as forming the upper plane on the fitness landscape; all non-

functional variants form the lower plane. The upper plane is divided into several clusters under

single-point amino acid or nucleotide mutations—sequences within each cluster can mutate

into each other through neutral substitutions only. The two-plane landscape is epistatic—the

effect of a given mutation depends on the amino acids at the other three positions, in agree-

ment with previous reports on the major role of epistasis in molecular evolution [6–9].

The picture of a “coarse-grained” fitness landscape stratified into several distinct pheno-

types is in agreement with other recent high-throughput experiments aimed at elucidating the

relationship between sequence and function [2–4, 7, 10, 11]. Although these experiments typi-

cally yield continuous distributions of selection coefficients, the distributions tend to be bi-

modal, with one peak corresponding to strongly deleterious and lethal mutations and another

to weakly deleterious and neutral ones [12–14]. These observations suggest stratifying the fit-

ness landscape into functional and non-functional phenotypes; intermediate fitness states such

as those corresponding to weakly deleterious phenotypes can be added if necessary to refine

the picture.

Overall, given the astronomically large number of alleles, the typical size of neutrally-con-

nected clusters of sequences can be assumed to be much larger than the population size. Then

evolutionary dynamics on a multiple-plane landscape will be characterized by mutation-selec-

tion-drift balance [15–22] in the infinite-allele limit. At steady state, population statistics, such

as the mean and the variance of the number of distinct alleles or the probability of observing a

given pattern of allelic diversity in a sample of sequences, do not change anymore, even though

the population continues to explore new alleles through mutation [22]. In the absence of selec-

tion, the steady-state allele sampling probability was derived by Ewens [23]. The Ewens sam-

pling formula can be used to understand allelic diversity in neutral populations and to test for

deviations from the neutral expectation; [24] its essential limitation is that, essentially, each

allele is allowed to mutate into every other allele [22]. The Ewens formula arises naturally in

many sampling problems in biological and physical sciences [25–27]. However, in order to

understand molecular evolution in the presence of selection and make quantitative predictions

of selection coefficients, it is necessary to extend it to more general fitness distributions.

Previous work in this area has focused mostly on the symmetric overdominance model,

first analyzed in this context by Watterson [18, 28]. This is a diploid model in which all hetero-

zygotes have the same selective advantage over all homozygotes, such that the mean population

fitness depends on the square of allele frequencies. Since the sampling formula for this model

is challenging to evaluate and therefore has never been used in practical calculations, subse-

quent work in the field focused on various approximations to the exact result, which require

additional assumptions such as weak selection [18] or large sample sizes [29]. In particular,

Joyce and collaborators have discussed asymptotic properties of the sampling distributions

under a model of selection with multiple fitness states [30, 31], as well as the symmetric over-

dominance model [32]. More recently, Watterson’s model of selection was generalized by

Handa [33] and Huillet [34], who considered mean population fitness involving allele frequen-

cies raised to the arbitrary power q� 1. They obtained sampling probabilities expressed in

terms of multi-dimensional integrals which would be difficult to employ in practical calcula-

tions. In any event, only the q = 1 (neutral evolution) and q = 2 (symmetric overdominance)

cases appear to have biological meaning.

Furthermore, Ethier and Kurtz have studied allelic diversity in a general model of selection

in which fitness of each new allele is a symmetric function of the allelic states of its two parents,

focusing on the proofs of existence and uniqueness of a steady state in the infinite-allele limit.

Ewens sampling formula with selection
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[35, 36] Desai et al. have investigated sampling probabilities in a model (previously introduced

by Charlesworth et al. [37] and Hudson and Kaplan [38]) based on a sequence of neutral and

negatively selected sites [39]. This model has no interactions between sites, and therefore can

be treated using the Poisson Random Field approach [40]. Since molecular evolution is charac-

terized by prominent epistasis and correlated fitness values between parents and their off-

spring, the approach of Desai et al. cannot be applied to genomic data without careful

numerical analysis of all the approximations involved. Finally, several prior publications have

focused on steady-state population statistics other than sampling probabilities. In particular, Li

used the steady-state approach to obtain the frequency spectrum for a general landscape, and

derived expressions for the mean number of alleles in a sample, as well as the mean and the

variance of heterozygosity [19–21]. Ewens and Li derived frequency spectra for landscapes

with two and three distinct fitness states and used them to compute the mean number of dis-

tinct alleles and the mean heterozygosity [41]. Griffiths derived a general integral expression

for the frequency spectrum in a genic selection model [42].

Here we demonstrate an extension of the Ewens sampling formula to arbitrary fitness land-

scapes with genic selection. First, we follow previous work [15–22] in assuming that the popu-

lation adopts a steady state characterized by mutation-selection-drift balance. The steady state

depends on the mean population fitness, which involves a linear combination of gene frequen-

cies. Next, we derive a general sampling formula valid for any mutation rate μ, population size

N, sample size n� N, and the number of alleles K with arbitrary fitness. We find that the most

general sampling formula is difficult to employ in numerical calculations with large finite val-

ues of K, but small values of K and the infinite K limit are more manageable. Here we focus on

the infinite-allele (K!1) approximation with several phenotypic states, inspired by recent

high-throughput molecular evolution experiments [1–5, 7, 10, 11]. We have developed a

numerical technique based on the efficient calculation of Bell polynomials, which is distinct

from previous efforts to compute sampling probabilities [43, 44]. Our approach enables us to

study selection signatures and deviations from neutrality on landscapes with arbitrary fitness

distributions.

We contrast our predictions with the effective population size approximation [37, 39]. We

also compare our results with explicit simulations, using the Moran population genetics model

[45] with single-point mutations as a benchmark against which the accuracy of the “full con-

nectivity” assumption is checked. Finally, we investigate the limitations of the infinite-allele

assumption. Our results are applicable to understanding the nature of allelic diversity under

selection, mutation and drift. Moreover, our sampling formulas can form a basis of a quantita-

tive, numerically feasible test for detecting the presence of selection and estimating its strength

in evolving populations. Population-level allele diversity data are made increasingly available

through high-throughput sequencing techniques, making our approach a practical and timely

tool for studying the role of selection in evolution—a topic of much current interest and debate

[14, 46–51].

Results

Sampling probability with selection

We consider a haploid population of fixed size N (our results also hold for diploid populations,

as long as fitness values are assigned to individual genes rather than organisms). Each organ-

ism in the population is represented by a single allele in the state i, with fitness fi; there are K
distinct allelic states. Mutations occur with a probability μ per generation, changing the origi-

nal allele into one of the K − 1 remaining alleles. Thus the probability of offspring Aj produced

by parent Ai 6¼ j is μ/(K − 1) (note that our approach can be easily generalized to the case of

Ewens sampling formula with selection
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final-state-dependent mutation rates: μij = μj, 8i in Ai! Aj). We can view this system as an

“allelic network” with the topology of a complete graph, with K vertices representing allelic

states and edges representing mutational moves. Stochastic evolution of the population can

then be described using Moran [45, 52] or Wright-Fisher [15, 52] models of population

dynamics.

The steady-state distribution of allelic frequencies for these models is given by [15–19]

pðxÞ ¼
1

Z
eNhf i

YK

i¼1

x�� 1

i ; ð1Þ

where x = (x1, . . ., xK) is a vector of allelic frequencies, � = θ/(K − 1) with θ = Nμ for Moran and

θ = 2Nμ for Write-Fisher models correspondingly, hf i ¼
PK

i¼1
fixi is mean population fitness,

and Z is a normalization constant.

In many situations relevant to molecular evolution, the number of alleles K is much larger

than the population size N. In this case, the steady state in terms of allele frequencies is unlikely

to be reached on relevant evolutionary time scales. Mathematically, the K!1 limit of Eq 1

becomes ill-defined [53, 54]. Nonetheless, the steady state is well-defined in terms of allelic

counts rather than frequencies of specific alleles [22]. In other words, the allelic diversity of the

population (e.g. as characterized by the mean and the variance of the distribution of the num-

ber of distinct allelic types) is tractable and will no longer change in steady state, although new

alleles will continue to be explored through mutation.

Since only a subset of the entire population is typically available for analysis, we shall focus

on the probabilities of allelic counts in samples of size n� N. To introduce the concept of

allelic counts, let us for a moment consider a finite number of allelic types, e.g. K = 5, and call

the corresponding alleles A, B, C,D, E. Suppose that we take a sample of n = 4 alleles from the

population and we first observe allele A, then C, then A again, and finally D. We can record

this sequence of alleles as an ordered list (A, C, A,D). However, typically we are not interested

in the order in which alleles appear in the sample, and therefore record the result as an

unordered list {A, A, C,D}, which shows that allele A has appeared twice and alleles C and D
have appeared once each. Here we have used the notation {a, b, . . ., z} for unordered lists

({a, b, . . ., z} = {b, a, . . ., z}), and (a, b, . . ., z) for ordered lists ((a, b, . . ., z) 6¼ (b, a, . . ., z)).

Alternatively, we can record non-zero allelic counts, which yields nA = 2, nC = 1, nD = 1.

Finally, we can dispense with the allele labels altogether, identifying each allele in the sample as

either new or already seen. In this case, we are left with an unordered list of counts {2, 1, 1},

meaning that we have observed 4 alleles of 3 different types, with one type represented by two

alleles and the other two types by one each. In general, we will refer to n = {n1, . . ., nk} as the

sample configuration or the allelic counts. An equivalent representation would be to use a his-

togram which records how many groups of j identical alleles occur in the sample, with j rang-

ing from 1 to n. In our example, there is one group of two identical alleles and two groups of

one allele each, so that (A, C, A,D) is recorded as the allelic histogram (a1 = 2, a2 = 1, a3 = 0,

a4 = 0). All results in the paper are presented in terms of the counts {n1, . . ., nk} rather than the

histogram (a1, . . ., an).
It turns out that the allelic counts are appropriate variables in the infinite allele limit. The

celebrated Ewens sampling formula [22, 23] expresses the probability of observing a particular

sample configuration n in the absence of selection:

P½n� ¼ NP
1

k!
n!

Qk
i¼1
ni

y
k

y
ðnÞ : ð2Þ

Ewens sampling formula with selection
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where NP is the total number of distinct permutations of the allelic counts, and θ(n) = θ(θ +

1). . .(θ + n − 1) is the rising factorial.

Following an approach developed by Watterson [18], we generalize the Ewens sampling

formula to the case of multiple fitness states. We define γ, a vector whose components, γm, are

fractions of all alleles with fitness fm. Allowingm to range from 1 toM (
PM

m¼1
gm ¼ 1) results

in a landscape withM� K distinct fitness states. Unless γm* 1/K, there is an infinite number

of alleles with the same fitness, so that the landscape looks likeM fitness planes interconnected

through mutations. For this reason we shall often refer to phenotypic states as fitness planes

and to the fitness landscape as the multiple-plane landscape.

Our main result is the following expression for the sampling probability (details of the deri-

vation are available in Materials and Methods):

P½n� ¼
n!
k!

1
Qk
i¼1
ni

y
k

y
ðnÞ �

X

n2PðnÞ

X

Y2YðnÞ

Fðγyþ νY ; yþ n; βÞ
Fðγy; y; βÞ

k
i1 . . . iM

� �

g
i1
1 . . . g

iM
M :

ð3Þ

Here, Fða; b; zÞ is a generalization of the confluent hypergeometric function 1F1ða; b; zÞ to vec-

tor arguments. The double sum in Eq 3 takes into account all possible ways of assigning

observed allelic counts n toM fitness planes; νY is an auxiliary vector which encodes these

assignments (see Materials and Methods and Fig 1 for extended explanations). Each assign-

ment contributes differently to the final expression due to the non-trivial fitness landscape.

Fig 1. Summations in the sampling formula for a population with multiple fitness states. Illustration of summations over YðI;nÞ and YðnÞ in Eqs

31 and 32 respectively, for a list of allelic counts n = {4, 1, 2}. (A) The finite plane case. Finite plane capacities are shown in parentheses. (B) The infinite

plane case.

https://doi.org/10.1371/journal.pone.0190186.g001
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The fitness values are stored in the vector β, whose components are fitness differences βm =

N(fm − f1) scaled by the population size N. For example, in the case of two fitness states β1 = 0

and β2 =N(f2 − f1) =Ns, where s is the selection coefficient. Finally, i1. . .iM indicate the number

of distinct allelic types sampled from the corresponding fitness plane (
PM

m¼1
im ¼ k).

The first line in Eq 3 is simply the Ewens formula (Eq 2) without NP, which is the value

returned by the double sum on the second line when all fitness values are equal. The version of

the sampling formula with selection (Eq 3) suitable for a finite number of alleles K is provided

in Materials and Methods. In the main text we shall focus on the infinite allele limit. Despite

the seemingly complicated structure of Eq 3, it can be used in efficient numerical calculations.

The following sections are devoted to exploring the properties of this formula and discussing

its applicability and accuracy if some of the model assumptions are relaxed.

The effective population size approximation

According to the effective population size (EPS) approximation [37, 39] in the monomorphic

limit population dynamics is effectively neutral with a rescaled population size N�. Indeed, in

this limit Eq 3 reduces to

P½n� � !
y!0

NP
k!

n!
Qk
i¼1
ni

y
k� 1
ð1 � gÞ

k� 1
ð4Þ

in the two-plane case. The θ! 0 limit corresponds to the s� μ regime with s being finite; Eq

4 is the same as the neutral sampling formula (Eq 2) in the monomorphic limit if the popula-

tion size is rescaled: N! N� = (1 − γ)N. This result can be generalized to the landscape with

multiple fitness planes, in which case N� = γmN, where γm is a fraction of nodes with the high-

est fitness.

However, the EPS approximation breaks down in the polymorphic regime. Indeed, if we

take the θ!1 limit while keeping s/μ finite, it can be shown for the two-plane landscape that

P½n�
P½n; s ¼ 0�

� !
y!1

X1

m¼0

cm
s
m

� �m

� l ð5Þ

where P½n; s ¼ 0� is given by Eq 2, and the coefficients cm depend solely on the allelic counts

n1, . . ., nk. Since the right-hand side of Eq 5 does not depend on the population size, it can be

used to define N� = λ1/(k − n) N. However, this definition will be sample-specific, as λ depends

on the allelic counts via cm’s. Thus there is no universal rescaling of the population size in the

strongly polymorphic regime, and therefore evolutionary dynamics is non-neutral.

Detection of selection signatures

As discussed above, in general we expect allele diversity to deviate from neutrality, making it

possible to detect selection signatures using a set of sequences sampled from the population.

To investigate non-neutral population dynamics, we compute probabilities for all integer par-

titions n = {n1, . . ., nk} of n alleles sampled from the population evolving under selection

(Eq 3), and compare them with steady-state partition probabilities obtained under neutral evo-

lution (Eq 2) and the monomorphic EPS approximation (Eq 4).

We use the Kullback-Leibler (KL) distance to quantify the difference between two probabil-

ity distributions [55]: KL(p||q) = ∑i pi log(pi/qi), where i is the partition label. For the two-plane

system, we first compare partition probabilities under selection, pi ¼ P½n; y;b�, with the corre-

sponding neutral probabilities, qi ¼ P½n; y; b ¼ 0�. In Fig 2A, we plot the KL divergence as a

function of the mutation rate and the selection strength for the two-plane fitness landscape.

Ewens sampling formula with selection
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We observe that evolutionary dynamics is essentially neutral if selection is weak (s� μ); in

addition, the range of selection coefficients for which neutrality holds increases in the mono-

morphic regime (Nμ� 1). On the other hand, population statistics is clearly non-neutral when

the population is polymorphic and when the separation between the two fitness planes is large.

Next, we compute the KL divergence KL(p||q�) between the EPS probability distribution,

q�i ¼ P½n; y
�
; b ¼ 0�, where θ� = (1 − γ)θ, and pi (Fig 2B). We see that the EPS approximation

fails in the polymorphic, weak-selection regime. Overall, the neutral and EPS approximations

are approximately complementary: for example, in the strong-selection (s� μ) polymorphic

regime, when evolutionary dynamics becomes non-neutral, it is well approximated by the EPS

model.

In Fig 2C we show KL divergences between partition probability distributions on two- and

three-plane fitness landscapes. We observe that the partition probabilities are essentially two-

plane (i.e., there are no selection signatures indicating presence of intermediate-fitness alleles)

if the population is monomorphic (Nμ� 1), or if the distance between the two upper planes is

smaller than the mutation rate (Δs� μ). However, there is a considerable parameter region in

which deviations between two and three-plane sampling probabilities appear to be significant

(with KL divergences between the two distributions of 0.01 or more), making it possible to

detect three distinct fitness states in the sampling data.

Mutation load

By definition, the mutation load is given by [52, 56] L = (fmax − h f i)/fmax, where fmax is the

maximum fitness and hf i ¼
PK
i¼1
xifi is the mean population fitness. To estimate the mutation

load at steady state, we compute the expected value of the mean population fitness over multi-

ple realizations of the stochastic process, E½hf i�.
For the two-plane system, this computation leads to

L ¼
sg

1þ s
1
F1ðgyþ 1; yþ 1; � NsÞ

1
F1ðgy; y; � NsÞ

: ð6Þ

Another indicative quantity is the average fraction of the population with low fitness, E½xlow�.

For the two-plane system it is given by E½xlow� ¼ Lð1þ sÞ=s:

Fig 2. KL divergences of partition probabilities. Probabilities of all possible partitions of n = 3 alleles ({3}, {2, 1}, {1, 1, 1}) were sampled from a

population of sizeN = 103. (A) and (B) KL divergences for the two-plane fitness landscape as a function of the mutation rateNμ and the selection

coefficientNs scaled by the population size, for partition probabilities with and without selection (A), and partition probabilities with selection

compared with the EPS approximation (Eq 4) (B). (C) KL divergences for the sampling probabilities of all possible partitions on a three-plane vs. two-

plane landscape. Alleles in the three planes have fitnesses 1, 1 + s − Δs and 1 + s − Δs respectively, withNs = 6 for both two and three-plane landscapes.

https://doi.org/10.1371/journal.pone.0190186.g002
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Values of mutation load for the two-plane fitness landscape are shown in Fig 3A over a

range of selection strengths and mutation rates. As expected, we observe that the largest devia-

tions from the maximum fitness occur in the strong-mutation, strong-selection regime, where

a fraction of the population is constantly displaced to the lower plane by mutation, incurring a

fitness cost. Correspondingly, at a given value of selection strength the mutation load increases

with the mutation rate. In the monomorphic regime the mutation load is vanishingly low

because the entire population condenses to a single allelic state and moves randomly on the

upper plane. The fraction of the population on the lower fitness plane is shown in Fig 3B. The

fraction is high when the separation between the two planes is low and, at a fixed separation, it

increases with the mutation rate.

Fitness landscape models and numerical simulations

To check our main result (Eq 3), we have compared it to the outcomes of numerical simula-

tions of two models. In the first model, each allele is allowed to mutate into any of the other

K − 1 alleles with equal probability. We call this model fully-connected (FC); derivations of

the Ewens sampling formula and our generalization of it (Eq 3) were carried out for the FC

model. The second model is more realistic: an organism is represented by a sequence of inte-

gers S = (a1, . . ., aL) of length L and alphabet size A, meaning that 0� ai� A − 1. A mutation

replaces an integer at a randomly chosen site with one of the remaining A − 1 integers; all the

replacements have equal probabilities. We call this model a single-point mutation (SPM)

model; it is a more realistic description of protein or nucleotide sequence evolution.

To assign a fitness value to each allele, we focus on the landscapes in which alleles can have

either low or high fitness values (the two-plane model), or low, intermediate, and high fitness

values (the three-plane model). The fractions of alleles found in each plane are given by γ:

γ = (γ, 1 − γ) for the two-plane model and γ = (γ1, γ2, 1 − γ1 − γ2) for the three-plane model. In

the FC model, the mutational neighborhood of each allele is the same, so that any desired allele

fractions γ can be implemented. However, in the SPM model the fractions of neutral, benefi-

cial and deleterious moves in each plane will depend on γ and the assignment of states to

Fig 3. Mutation load and population fraction for the two-plane fitness landscape. (A) Mutation load (Eq 6) and (B) population fraction in the lower

plane, as a function of the mutation rate (Nμ) and the selection strength (Ns) rescaled by the population size.

https://doi.org/10.1371/journal.pone.0190186.g003
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planes. We wished to produce non-trivial distributions of neutral moves on the fitness planes,

with mutational neighborhoods of some alleles being completely neutral in each plane.

Another condition was that the number of alleles in each plane should decrease with its fitness,

to reflect the fact that beneficial mutations are rare.

To fulfill these requirements, we chose to assign fitness values in the SPM model in the fol-

lowing way. We use the sequence length L = 10 and the alphabet size A = 4. For each sequence

S = (a1, . . ., aL) we compute a score z = a1 + . . . + aL. We compare these scores with a set of cut-

offs (c1, . . ., cM−1) for the M-plane landscape. For the two-plane landscape, the fitness is 1 if

z� c1, and 1 + s otherwise. We use the cutoff c1 = 17, which yields γ = (0.758, 0.242). For

the three-plane landscape, if z� c1 the fitness is 1, if c1 < z� c2 the fitness is 1 + s − Δs,
and if z> c2 the fitness is 1 + s + Δs. We choose the cutoffs c1 = 17 and c2 = 21, which lead to

γ = (0.758, 0.210, 0.032). In order to compare FC and SPM simulations directly, we use the

same values of γ in the corresponding FC models.

Our numerical simulations have been carried out using the Moran model of population

genetics [22, 45]. Specifically, we have evolved a population of N = 103 haploid organisms,

each of which could be in one of K allelic states. At each step a parent is chosen by randomly

sampling the population with weights proportional to the fitness of each individual. An

offspring is then produced as an exact copy of the parent. Next, the offspring undergoes

mutation with the probability μ. Finally, the population is uniformly sampled to choose an

organism that will be replaced by the offspring, keeping the overall population size constant.

Probabilities of sampling n individuals from the population were calculated as averages over

106 samples gathered from 103 independent runs. For each run, a randomly generated initial

population was evolved to steady state, after which n individuals were sampled from the

population with replacement 103 times, waiting *1/μ generations between subsequent

samples.

Note that in the neutral case the exact mapping between θ and μ is given by θ = Nμ/(1 − μ)

for the Moran model. [22] However, it is unclear if this mapping can be extended to the non-

neutral cases considered here. In any event, for the population size and the values of θ investi-

gated below, μ = θ/(N + θ)’ θ/N. Therefore, we use the diffusion theory result θ = Nμ in com-

paring theoretical predictions with numerical simulations.

Partition probabilities on fully-connected vs. single-point-mutant networks

Here we investigate the extent to which sampling probabilities change in the SPM sequence

evolution model described above, compared to the FC fitness landscape. We are especially

interested in the limits of the predictive power of our theoretical framework, which necessarily

involves the FC assumption. In Fig 4 and Table 1 we compare theoretical predictions with

numerical simulations on the FC and SPM networks in the two-plane system for the sample of

n = 3 alleles. Overall, as expected, we observe an excellent agreement between theory and simu-

lations on FC networks. Furthermore, we see that the agreement between SPM simulations

and our theoretical results is reasonable: in nearly all cases, the predicted ranking of the sample

partitions, as well as the ranking of any given sample partition with respect to the selection

strength, Ns, are preserved. The largest discrepancies occur in the weakly polymorphic

(Nμ = 1), non-neutral regime (Ns = 6, 13).

The situation is qualitatively similar when a three-plane fitness landscape is considered (Fig

5, Table 1). We again observe an excellent agreement between theory and FC simulations and,

overall, a reasonable agreement between theory and SPM simulations, with the largest discrep-

ancies again occurring in the weakly polymorphic, non-neutral regime. These observations

remain true when samples with n = 4 and 5 alleles are considered (Tables 2 and 3).
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Finally, we have checked whether our theoretical predictions, which rely on the full-connec-

tivity assumption, are closer to the non-neutral rather than neutral SPM steady-state dynamics

in numerical simulations: if this is the case, we should be able to predict selection signatures

in populations evolving under single-point mutations using our methodology. We have

Fig 4. Partition probabilities for the two-plane fitness landscape. Shown are sampling probabilities of all partitions with n = 3: {3}, {2, 1}, {1, 1, 1}.

Bars: theoretical predictions in the infinite allele limit. Black circles: numerical simulations on the FC sequence network. Grey circles: numerical

simulations on the SPM sequence network. In all simulations, alphabet size A = 4, sequence length L = 10, and population sizeN = 103 were used.

Partition probabilities were estimated from 106 samples as described in the main text. (A) Monomorphic population,Nμ = 0.1. (B) Weakly polymorphic

population,Nμ = 1.0. (C) Strongly polymorphic population,Nμ = 10.0. The corresponding KL divergences are listed in Table 1. Note that the error bars

of the partition probabilities are too small to be shown, due to extensive sampling in our numerical simulations.

https://doi.org/10.1371/journal.pone.0190186.g004

Table 1. KL divergences between theoretical predictions and numerical simulations for single-plane, two-plane (Fig 4), and three-plane (Fig 5) fitness landscapes,

with the sample size n = 3.

Single-plane landscape Two-plane landscape Three-plane landscape

Ns = 0 Ns = 6 Ns = 13 Ns = 6 ± 3 Ns = 13 ± 5

Nμ = 0.1 FC 1 × 10−5 2 × 10−5 3 × 10−5 4 × 10−5 2 × 10−6

SPM 1 × 10−5 9 × 10−3 2 × 10−2 2 × 10−2 3 × 10−2

Ratio 1.000 0.452 0.425 0.370 0.380

Nμ = 1.0 FC 2 × 10−5 8 × 10−5 1 × 10−4 1 × 10−6 6 × 10−6

SPM 1 × 10−4 2 × 10−2 9 × 10−2 8 × 10−2 2 × 10−1

Ratio 1.000 0.363 0.508 0.378 0.434

Nμ = 10.0 FC 1 × 10−6 6 × 10−5 2 × 10−4 2 × 10−5 4 × 10−5

SPM 1 × 10−4 4 × 10−5 3 × 10−3 2 × 10−4 2 × 10−2

Ratio 1.000 0.331 0.345 0.595 0.488

Note: FC = KL(p = numerical FC || q = theory), SPM = KL(p = numerical SPM || q = theory), Ratio = KL(p = theory || q = numerical SPM)/KL(p = theory || q =

numerical neutral SPM).

https://doi.org/10.1371/journal.pone.0190186.t001

Fig 5. Partition probabilities for the three-plane fitness landscape. All notation and symbols are as in Fig 4. The corresponding KL divergences are

listed in Table 1.

https://doi.org/10.1371/journal.pone.0190186.g005
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computed the ratio of KL distances defined in the Table 1 caption; this ratio is less than 1 if the

theoretical predictions with selection are closer to the corresponding SPM simulation than to

the neutral SPM simulation, and greater than 1 otherwise. We observe that the ratio is less

than 1 in all cases with selection and for all sample sizes (Tables 1–3), indicating that the error

introduced by the FC assumption is less than the distance between selective and neutral sys-

tems (note that the ratio is 1 by definition in the single-plane neutral case).

Infinite-allele assumption

Although our approach is valid for an arbitrary number of alleles K, statistics of allele diversity

in a population under selection become substantially easier to deal with in the infinite-allele

limit. As discussed in the Introduction, this limit is justified since our focus here is on evolu-

tion of protein, RNA and DNA sequences, where the number of alleles grows exponentially

with sequence length. Nonetheless, we have systematically investigated the extent of deviations

between our infinite-allele theoretical results and simulations as the number of alleles K
decreases and becomes comparable to the population size N. Fig 6 shows the KL divergence

between partition probabilities derived theoretically for the two-plane landscape in the infi-

nite-allele limit (Eq 3) and obtained numerically on finite-size FC networks. We consider

three regimes: monomorphic (Nμ = 0.1), weakly polymorphic (Nμ = 1.0), and strongly poly-

morphic (Nμ = 10.0). In the latter two cases, noticeable deviations between theory and simula-

tions begin to appear below the K* N regime; the agreement improves as the population

becomes more monomorphic. We conclude that our theory is applicable over a wide range of

Table 2. Same as Table 1, but for the sample size n = 4.

Single-plane landscape Two-plane landscape Three-plane landscape

Ns = 0 Ns = 6 Ns = 13 Ns = 6 ± 3 Ns = 13 ± 5

Nμ = 0.1 FC 1 × 10−5 6 × 10−6 6 × 10−6 1 × 10−6 5 × 10−6

SPM 1 × 10−5 9 × 10−3 2 × 10−2 2 × 10−2 4 × 10−2

Ratio 1.000 0.394 0.527 0.397 0.432

Nμ = 1.0 FC 9 × 10−5 3 × 10−5 8 × 10−5 2 × 10−4 2 × 10−4

SPM 9 × 10−4 3 × 10−2 1 × 10−1 1 × 10−1 3 × 10−1

Ratio 1.000 0.527 0.542 0.442 0.486

Nμ = 10.0 FC 2 × 10−5 6 × 10−6 7 × 10−5 7 × 10−6 1 × 10−5

SPM 2 × 10−4 1 × 10−4 3 × 10−3 2 × 10−4 2 × 10−2

Ratio 1.000 0.418 0.199 0.677 0.406

https://doi.org/10.1371/journal.pone.0190186.t002

Table 3. Same as Table 1, but for the sample size n = 5.

Single-plane landscape Two-plane landscape Three-plane landscape

Ns = 0 Ns = 6 Ns = 13 Ns = 6 ± 3 Ns = 13 ± 5

Nμ = 0.1 FC 1 × 10−5 2 × 10−5 3 × 10−5 5 × 10−6 3 × 10−6

SPM 3 × 10−5 1 × 10−2 2 × 10−2 3 × 10−2 4 × 10−2

Ratio 1.000 0.441 0.385 0.379 0.429

Nμ = 1.0 FC 9 × 10−5 1 × 10−4 3 × 10−4 7 × 10−4 4 × 10−5

SPM 5 × 10−4 4 × 10−2 1 × 10−1 1 × 10−1 3 × 10−1

Ratio 1.000 0.428 0.485 0.426 0.514

Nμ = 10.0 FC 1 × 10−5 1 × 10−5 5 × 10−4 1 × 10−4 1 × 10−3

SPM 1 × 10−3 5 × 10−4 8 × 10−3 4 × 10−4 4 × 10−2

Ratio 1.000 0.461 0.548 0.546 0.516

https://doi.org/10.1371/journal.pone.0190186.t003
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mutation rates, as long as the network size is comparable to, or greater than, the population

size.

Discussion and conclusion

One of the most challenging problems in evolutionary biology is to understand evolutionary

dynamics of molecular loci, such as protein or RNA-coding sequences, or gene regulatory

regions. The number of nucleotides at these loci, L, is large enough so that the total number of

possible sequences, K = AL, is astronomical, far exceeding the population size N. Under these

conditions the evolution of a molecular locus, assumed to be decoupled by recombination

from the rest of the genome, reaches a “de-labelled” steady state. The allelic diversity in the

steady-state population is determined by the balance of forces of selection and drift on one

hand, and mutation on the other. The former act to reduce allelic diversity, while the latter acts

to increase it. As a result, population statistics such as the mean number of distinct alleles, or

the probability of seeing a certain allelic configuration in a sample, do not change with time,

even though new genotypes continue to be explored on the effectively infinite allelic network.

The steady-state allelic diversity in an infinite-allele neutral system was explored by Ewens

[22, 23]. The main result of that study, the Ewens sampling formula, is widely used in popula-

tion genetics. However, selection is bound to play a key role in molecular evolution, and recent

high-throughput studies connecting protein sequences with phenotypes [1–4, 7, 10, 11] reveal

a more complex picture of molecular evolution: generally, a functional protein is disrupted by

a fraction of mutations (e.g., through substitution of a hydrophobic residue for a hydrophilic

one in the protein core). Other mutations do not significantly change protein stability, binding

affinity, or binding specificity, and are therefore effectively neutral. Occasionally, a mutation

is found which increases the fitness of an already functional, adapted protein, but these

Fig 6. Test of the infinite-allele assumption. Shown are KL divergences between computational and theoretical partition probabilities on the FC two-

plane fitness landscape (Ns = 6, γ = (0.758, 0.242)), as a function of the log ratio between the total number of alleles K and the population size N. The

sample size is n = 3; partition probabilities were estimated from 106 samples. Population size is N = 103, and the total number of alleles is K = 103 × 2i,

i 2 {−6. . .8}. For smaller networks, the number of sequences in the upper and lower planes had to be rounded to the nearest integer. Diamonds:

polymorphic population (Nμ = 10.0), squares: weakly polymorphic population (Nμ = 1.0), circles: monomorphic population (Nμ = 0.1). The solid

vertical line corresponds to K = N.

https://doi.org/10.1371/journal.pone.0190186.g006
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mutations are very infrequent. Overall, recent experimental studies indicate that “coarse-

grained” fitness landscapes comprised of multiple interconnected planes (i.e., several distinct

fitness states) are a reasonable representation. The simplest landscape of this kind has just two

fitness states, with functional sequences on the upper plane and non-functional sequences on

the lower plane [1]. Multiple-plane fitness landscapes constructed in this way are characterized

by extensive epistasis under the single-point mutational move set, which is likely to be perva-

sive in molecular evolution [6–9].

Since molecular evolution may be described by steady-state dynamics on multiple-plane fit-

ness landscapes, it is of great interest to generalize the Ewens sampling formula to arbitrary fit-

ness distributions, and to the case of several distinct fitness states in particular. Tractable

expressions for sampling probabilities would enable inference of selection coefficients, relative

numbers of alleles in each fitness state, and mutation rates, using DNA, RNA, or protein

sequences sampled from the population as input to the inference procedure. Here we report

an extension of the Ewens sampling formula to arbitrary fitness distributions, focusing on the

multiple-plane case which yields substantial simplifications in the infinite-allele limit. Unlike

techniques based on the Poisson random field framework [40], such as the sampling probabil-

ity formulas developed by Desai et al. [39], our approach does not rely on assuming indepen-

dent evolution at each site along the sequence. However, an essential drawback of the Ewens

sampling formula and our generalization of it is the “full-connectivity” assumption (i.e., that

each allele can mutate into every other allele). Furthermore, the sampling formula becomes

intractable for large sample sizes, since the number of terms to sum over in Eq 3 becomes too

large.

Therefore, in order to study the limits of applicability of our theory, we have carried out

extensive comparisons with numerical simulations on multiple-plane fitness landscapes. First,

we checked the full-connectivity assumption inherent in the Ewens approach by comparing

the sampling probabilities of our theory with those obtained by simulation of steady-state pop-

ulations evolving on single-point-mutant networks. We find that the agreement, although

dependent on the details of the fitness landscape model, the values of selection coefficients,

and mutation rates (and least reliable in the weakly polymorphic regime), remains strong

enough overall to encourage application of our theoretical results to sequence data. We also

find that the error introduced by the full-connectivity assumption, as measured by the KL dis-

tance, is less than the distance between sampling probabilities in neutral and non-neutral sys-

tems. Note that our SPM model of the fitness landscape was constructed specifically to create a

non-trivial distribution of neutral, deleterious and beneficial single-point mutations for the

alleles, in some sense making it as distant from the fully connected network as possible. Thus

we expect the errors inherent in our theoretical framework to be smaller (or at least not much

worse) in applications to natural systems. Second, we have checked the infinite-allele assump-

tion by systematically reducing the number of alleles until it became lower than the population

size. We find that, for a wide range of mutation rates, deviations between theory and simula-

tions become significant only when the number of alleles approaches the population size from

above. Thus our assumption of the infinite network size is justified for sufficiently long loci,

such as those encoding transcribed or regulatory regions.

Robust inference of selection coefficients from a sample of sequences collected from an

evolving population requires statistics of allelic diversity to deviate substantially from the neu-

tral expectation. If selection cannot be ruled out a priori, the use of our generalized Ewens sam-

pling formula, which is valid throughout the entire parameter space, is necessary for inferring

selection signatures and mutation rates from data. Moreover, allelic diversity generated by

steady-state evolutionary dynamics on a three-plane fitness landscape is sufficiently distinct

from its two-plane counterpart in the strong-selection, weakly polymorphic regime, opening
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up a possibility of inferring multiple selection coefficients from a sample of sequences. Another

hallmark of non-neutral population dynamics is de-localization of the population to multiple

fitness planes. With a two-plane landscape, we expect the fraction of the population on the

lower plane to increase with the mutation rate and decrease with the distance between the two

planes. Our investigation of the mutation load confirms these predictions.

In summary, we have generalized the Ewens sampling formula to populations evolving

under selection. Although in principle our results are valid for arbitrary fitness distributions,

focusing on the infinite allele limit and landscapes characterized by several distinct fitness

states yields substantial simplifications, making our approach computationally tractable and

thus applicable to inferring selection signatures from high-throughput sequence data. Such

multiple-state “coarse-grained” fitness distributions appear to be a reasonable starting point

supported by recent large-scale genotype-phenotype maps in molecular systems [1–4, 7, 10,

11]. Unlike previous approaches, we do not assume that each site along the sequence evolves

independently—an assumption that has recently been challenged in molecular evolution stud-

ies [6–9]. However, we do make the infinite allele assumption, and, as in the Ewens original

formula [23], assume that each allele can mutate into any other allele. Therefore, we check our

theory against numerical simulations in model systems where these assumptions are relaxed,

and find that our predictions remain accurate enough to enable inference of evolutionary

parameters from sequencing data.

Materials and methods

Allele frequency distribution

Eq 1 can be rewritten as follows:

pðxÞ ¼
1

BðϵÞFðϵ; jϵj;βÞ

YK

i¼1

x�� 1

i e
bixi ; ð7Þ

where ϵ = (�, . . ., �) is a K-dimensional vector of rescaled mutation rates, |ϵ| = K�’ θ is the

L1-norm of ϵ,

BðaÞ ¼
QK
i¼1

GðaiÞ
Gð
PK
i¼1
aiÞ

ð8Þ

is the generalized beta function, and

Fða; b; zÞ ¼
X1

j1¼0

. . .
X1

jK¼0

aðj1Þ1 . . . aðjK ÞK
bðj1þ...þjK Þ

zj11
j1!

. . .
zjKK
jK !
¼
X1

j¼0

Bjða1; . . . ; ajÞ

j!bðjÞ ð9Þ

is a generalization of the confluent hypergeometric function 1F1ða; b; zÞ to vector arguments.

Here, a(j) = Γ(a + j)/Γ(a) is the rising factorial, Bj is the jth complete Bell polynomial, and

aj ¼ ðj � 1Þ!
Pn
i¼1
aiz

j
i . To obtain Eq 7, we have used the following result for integrating over

the (K − 1)-dimensional simplex SK − 1:

Z

SK� 1

YK

i¼1

xni� 1

i dxi ¼
QK
i¼1

GðniÞ

Gð
PK

i¼1
niÞ
: ð10Þ

A (K − 1)-dimensional simplex SK − 1 is a subspace of RK : ðx1; . . . ; xKÞ 2 ½0; 1�
K

which satis-

fies
PK
i¼1
xi ¼ 1. We have expanded the exponent in Eq 1 in a Taylor series and applied Eq 10

to each term in the resulting expansion.
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Strongly monomorphic limit

In this limit the mutation rate tends to zero while the population size is kept fixed, �! 0 [52,

56–58]. Consider the Fourier transform of the steady-state distribution in Eq 7:

~pðkÞ ¼
Z

SK� 1

dx eik�xpðxÞ; ð11Þ

where the integral is over the (K − 1)-dimensional simplex. Using Eq 9, we can write the Fou-

rier transform as a ratio of two generalized hypergeometric functions:

~pðkÞ ¼
Fðϵ; jϵj;βþ ikÞ

Fðϵ; jϵj;βÞ
: ð12Þ

Taking the �! 0 limit yields

~pmonoðkÞ ¼
PK
m¼1
ebmþikm

PK
m¼1
ebm

: ð13Þ

Thus the steady-state distribution in the monomorphic limit is given by:

pmonoðxÞ ¼
Z

dx
VolðSK� 1Þ

e� ik�x ~pmonoðkÞ ¼
PK
m¼1
ebmdðx � 1mÞ
PK
m¼1
ebm

; ð14Þ

where VolðSK� 1Þ ¼
ffiffiffiffi
K
p

=ðK � 1Þ! is the volume of the (K − 1)-dimensional simplex and

(1m)i = δmi. The population resides in one of the Kmonomorphic states available to it, with the

probability of being in a particular state exponentially weighted by its fitness [59–61].

Probability of a sample of alleles

In this section we derive the sampling probability when the number of alleles K is finite. Let us

find the probability P½n� of observing counts n = {n1, . . ., nk}, assuming that the population has

reached steady state in terms of its allelic diversity. Before considering general case, we illus-

trate our approach using an example with only K = 3 allelic types: A ¼ ðA;B;CÞ. We wish to

calculate the probability of observing counts {2, 1} in a sample of size n = 3, which is assumed

to be much less than the population size N. There are 18 samples that contribute to this counts:

AAB ABA BAA

AAC ACA CAA

BBC BCB CBB

ABB BAB BBA

ACC CAC CCA

BCC CBC CCB
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The probability of choosing A first, then A again and finally B is

P½ðA;A;BÞ� ¼
Z

x2

Ax
1

B pðxA; xB; xCÞ dxAdxBdxC

¼

Z

x2

Ax
1

B pðxA; xBÞ dxAdxB;

ð15Þ

where p(xA, xB, xC) is given by Eq 7. Consequently, the probability of observing two A’s and

one B in any order is given by [18]

P½fA;A;Bg� ¼
3

2 1

� �Z

x2

Ax
1

B pðxA; xBÞ dxAdxB; ð16Þ

where 3

2 1

� �
is the multinomial coefficient. Introducing a set S2A ¼ fðA;BÞ; ðA;CÞ; ðB;CÞg,

which permutes allelic identities in an ordered manner (i.e., the overall allele ordering from A
to B to C is preserved in each pair of alleles), we can take into account the first 9 configurations

in the table above:

P½fA;A;Bg� þ P½fA;A;Cg� þ P½fB;B;Cg� ¼
3

2 1

� �
X

s2S2A

Z

x2

s1
x1

s2
pðxs1

; xs2
Þ dxs1

dxs2
: ð17Þ

In order to include 9 remaining configurations in the table, we need to switch the order of the

alleles: {(A, B), (A, C), (B, C)}! {(B, A), (C, A), (C, B)}. But switching the alleles in each pair

amounts to replacing x2
s1
x1

s2
with x2

s2
x1

s1
¼ x1

s1
x2

s2
in Eq 17. Thus we can summarize the entire

table by introducing a set P(n1, . . ., nk) of all distinct permutations of the counts {n1, . . ., nk},
which determine the powers to which the allelic frequencies are raised in Eq 17. In our exam-

ple P(2, 1) = {(2, 1), (1, 2)}. Therefore,

P½f2; 1g� ¼
3

2 1

� �
X

n2Pð2;1Þ

X

s2S2A

Z

xn1
s1
xn2

s2
pðxs1

; xs2
Þ dxs1

dxs2
ð18Þ

¼
3

2 1

� �
X

n2Pð2;1Þ

X

s2S2A
E
Y2

i¼1

xni
si

" #

: ð19Þ

The above example can be easily generalized to describe the probability P½fn1; . . . ; nkg� of

observing arbitrary counts. To do so, we enumerate all K alleles, forming a unique ordered list

A ¼ ð1; . . . ;KÞ. Second, we choose a subset σ = (σ1, . . ., σk) of size k from A without replace-

ment, so that the allelic order is preserved: σ1 < . . .< σk (note that no subsets are allowed to

contain repeating elements of A). Then SkA can be naturally defined as a set which contains

all ordered subsets of A of size k. Finally, as before P(n) is a set of all distinct permutations of

allelic counts. Following these steps we have

P½n� ¼
n

n1 . . . nk

� �
X

n2PðnÞ

X

s2SkA
E
Yk

i¼1

xni
si

" #

; ð20Þ

where the expectation is calculated with respect to the steady-state allele distribution, Eq 7.
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We can use sampling probability (Eq 20) to compute the distribution of the number of dif-

ferent allelic types k:

P½k� ¼
X

n1�...�nk
n1þ...þnk¼n

P½n�; ð21Þ

where the summation runs over all ordered partitions of n into k positive integers.

Generalized sampling formula

As Eq 20 demonstrates, evaluation of sample probabilities requires calculation of moments of

allele frequency distributions. This could be done by taking derivatives of the normalization

constant Z ¼ BðϵÞFðϵ; jϵj;βÞ in Eq 7 with respect to the corresponding components of β:

E
Yk

i¼1

xni
i

" #

¼
1

Z

Yk

i¼1

@

@bi

� �ni

Z: ð22Þ

Then Eq 20 takes the form

P½n� ¼
n

n1 . . . nk

� �Qk
i¼1
�ðniÞ

ðK�ÞðnÞ
X

n2PðnÞ

X

s2SkA

Fðϵþ νs;K�þ n; βÞ
Fðϵ;K�; βÞ

; ð23Þ

where νσ is a K-dimensional vector whose σi-th components are νi with i = 1, . . ., k and all the

other components are zero. Here, we have used the fact that differentiating Eq 9 with respect

to z yields a simple result similar to that known for the regular confluent hypergeometric func-

tion:

Yk

i¼1

@

@zi

� �ni

Fða; b; zÞ ¼

Yk

i¼1
ðaiÞ

ðniÞ

bðnÞ
F aþ

Xk

i¼1

ni1i; bþ n; z

 !

;

where n ¼
Pk

i¼1
ni and (1i)j = δij. As discussed above, the sum over σ extends over all distinct

subsets of k alleles sampled from K uniquely ordered alleles and subject to the σ1 < . . .< σk
constraint. Therefore νσ has K − k zero and k non-zero components which are distributed

according to σ. The sum over ν extends over all distinct permutations of allelic counts which

sum up to n. Eq 23 is valid for an arbitrary fitness landscape and an arbitrary number of

alleles K.

Neutral limit of the sampling formula

When all alleles have the same fitness, the general sampling formula given by Eq 23 should

reduce to the Ewens formula for neutral evolutionary dynamics [22, 23]. Indeed, with all βi set

to zero, the generalized hypergeometric function Fða; b; 0Þ (Eq 9) becomes 1. Then for the

finite number of alleles K

P½n� ¼ NP
n!
ðK�ÞðnÞ

K
k

� �
Yk

i¼1

�ðniÞ

ni!
; ð24Þ

where NP = |P(n)| is the total number of distinct permutations of allelic counts. In the limit of

an infinite number of alleles K!1, Eq 24 reduces to Eq 2. Changing variables to allelic
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histogram counts yields
Qk
i¼1
ni ¼

Qn
j¼1
jaj and NP ¼ k!=

Qn
j¼1
aj!, resulting in

P½ða1; . . . ; anÞ� ¼
n!

Qn
j¼1
aj!jaj

y
k

y
ðnÞ : ð25Þ

Eq 25 is a standard form of the Ewens sampling formula [22, 23].

Sampling formula for a population with two fitness states

As a straightforward generalization of the neutral case, consider a system with I alleles of fit-

ness f2 and K − I alleles with fitness f1 > f2. Thus the fitness landscape consists of two intercon-

nected “planes”. We can assume without loss of generality that alleles 1 through I belong to the

lower plane and alleles I + 1 through K belong to the higher plane. Then γ = I/K defines a frac-

tion of nodes on the lower plane and the fitness vector is

β ¼ ðb; . . . ; b
|fflfflfflffl{zfflfflfflffl}

I

; 0; . . . ; 0
|fflfflfflffl{zfflfflfflffl}
K� I

Þ; ð26Þ

with I non-zero entries followed by K − I zeros, and β = −Ns. If the first i counts come from the

lower plane and the other k − i counts come from the upper plane, we have

νY ¼ ðn1; . . . ; ni
zfflfflfflfflffl}|fflfflfflfflffl{

i

; 0; . . . ; 0
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

; niþ1; . . . ; nk
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

k� i

; 0; . . . ; 0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K� I

Þ; ð27Þ

plus all alternative assignments of the first i counts within the first I entries of νY, and the

remaining k − i counts within the last K − I entries of νY, such that the original order of the

non-zero count entries is not changed. In this case, the generalized hypergeometric function

reduces to the confluent hypergeometric function:

Fðϵþ νY ; jϵj þ n; βÞ ¼
1
F1ðgyþ

Xi

m¼1

nm; yþ n; bÞ: ð28Þ

Then for finite K the sampling probability is given by:

P½n� ¼
n

n1 . . . nk

 !Yk

i¼1
�ðniÞ

ðK�ÞðnÞ
K

k

 !
X

n2PðnÞ

Xk

i¼0

1F1 gyþ
Xi

m¼1
nm; yþ n; b

� �

1F1ðgy; y; bÞ

I

i

 !
K � I

k � i

 !

K

k

 ! : ð29Þ

Here, the I
i

� �
and K� I

k� i

� �
binomial factors are due to assigning non-zero counts to alternative

positions within νY, as described above. Taking the infinite allele (K!1) limit with γ fixed,

we arrive at

P½n� ¼
n!
k!

1
Qk
i¼1
ni

y
k

y
ðnÞ

X

n2PðnÞ

Xk

i¼0

1F1ðgyþ
Pi

m¼1
nm; yþ n; bÞ

1F1ðgy; y; bÞ

k
i

� �

gið1 � gÞ
k� i
: ð30Þ

Thus hypergeometric sampling of Eq 29 reduces to binomial sampling in the infinite-allele

limit.

Sampling formula for a population with multiple fitness states

Let us now generalize the result of the previous section to the case of multiple fitness states:

each allele can be assigned a distinct fitness value fm,m = 1, . . .,M. In other words, the fitness

landscape consists of multiple planes, with Im = γmK nodes of fitness fm on themth plane, so
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that
PM

m¼1
gm ¼ 1. Then the sampling probability for finite K is given by

P½n� ¼
n

n1 . . . nk

 !Yk

i¼1
�ðniÞ

ðK�ÞðnÞ
K

k

 !
X

n2PðnÞ

X

Y2YðI;nÞ

Fðγyþ νY ; yþ n; βÞ
Fðγy; y; βÞ

I1
i1

 !

. . .
IM
iM

 !

K

k

 ! ; ð31Þ

and its infinite allele limit is given by

P½n� ¼
n!
k!

1
Qk
i¼1
ni

y
k

y
ðnÞ

X

n2PðnÞ

X

Y2YðnÞ

Fðγyþ νY ; yþ n; βÞ
Fðγy; y; βÞ

k
i1 . . . iM

� �

g
i1
1 . . . g

iM
M : ð32Þ

The sums in Eqs 31 and 32 take into account all possible ways of sampling n alleles fromM
planes (Fig 1). To explain these sums, let us imagine distributing n books overM shelves. The

books come in k indivisible volume sets, and the ith set has νi identical books in it. We would

like to find all book-to-shelf arrangements, keeping in mind that shelves have finite capacities:

only Im books can be placed on them-th shelf. One way to describe any book-to-shelf arrange-

ment is to use anM-dimensional vector νY which records how many books are placed on each

shelf. For example, ifM> k, a vector νY = (ν1, . . ., νk, 0, . . ., 0) withM − k zeros following k
non-zero entries describes placing volume sets on shelves in a particular order: the first volume

set goes on the first shelf, the second volume on the second shelf and so on (assuming that the

shelves are large enough to accommodate the volume sets), until no more books are left, so

that the remainingM − k shelves remain empty. Permutations of this arrangement, expressed

as permutations of νY vector elements, are also allowed (again, assuming that all the shelves are

large enough). We can also put more than one volume set on a single shelf, leading to arrange-

ments such as (ν1 + ν2, ν3, . . ., νk, 0, . . ., 0) withM − k + 1 zero and k − 1 non-zero entries. As

before, this arrangement is allowed only if the number of books on each shelf does not exceed

shelf capacities. Note that the question of capacity does not arise in the infinite allele limit,

since the shelves become effectively infinitely long.

In order to systematically list all the arrangements for volume sets (ν1, . . ., νk), we follow a

simple rule: if the kth set of νk books is placed on themth shelf, the (k + 1)th set of νk + 1 books

goes either on the same shelf or on them0th shelf withm0 >m. Taking elements of (ν1, . . ., νk)
one by one and changing the initial shelf (onto which the 1st volume set is placed) and the

number of volume sets on each shelf, we can generate a set of all permutations of νY elements.

We shall call this set YðI;nÞ since it depends on both the shelf capacities I = (I1, . . ., IM) and

the volume sets n. In the limit of infinite shelf capacity the dependence on shelf sizes disap-

pears, and the set of all permutations will be called YðnÞ. To include all possible arrangements,

we need to perform the book-placing procedure for each distinct permutation of n.

Now, if we replace shelves with fitness planes and volume sets with allelic counts, we obtain

an algorithm for generating all allowed placements of allelic counts on fitness planes. The non-

negative indices i1, . . ., iM in Eqs 31 and 32 represent the number of volume sets (allelic counts)

on each shelf (fitness plane). The distribution of alleles among fitness planes of finite capacity

is illustrated in Fig 1A forM = 3 and a vector of allelic counts ν = (4, 1, 2); the infinite-plane

case is shown in Fig 1B.

Next, let us consider the monomorphic limit of Eq 32. It can be shown that

Fðyγ; y; βÞ � !
y!0

XM

m¼1

gme
bm ; ð33Þ
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leading to

P½fng� ¼ 1þ OðyÞ;

P½fn1; . . . ; nkg� ¼ Oðy
k� 1
Þ:

ð34Þ

Therefore, as expected, the P½fng� (k = 1) term dominates in the monomorphic limit.

By construction, Eq 32 reduces to the neutral limit, Eq 2, when all fitness values are the

same. In addition, the neutral limit is reproduced in the strongly polymorphic limit

Fðγyþ νY ; yþ n; βÞ � !
y!1

Fðγy; y; βÞ; ð35Þ

and Eq 32 reduces to the neutral result. This is expected since selection effects become vanish-

ingly small in this regime.

Efficient evaluation of sampling probabilities

To evaluate sampling probabilities, we need to compute Fða; b; zÞ (Eq 9) efficiently. The calcu-

lation of Fða; b; zÞ is performed by filling a square matrix with the partial Bell polynomials Bn,

k, from which complete Bell polynomials can be calculated from the rows as Bn ¼
Pn
k¼1
Bn;k.

We use the following convolution identity: ðx♢yÞn ¼
Pn� 1

j¼1
n
j

� �
xjyn� j. Note that the identity is

commutative, i.e. ðx♢yÞn ¼ ðy♢xÞn, and that the summation limits are such that the convolu-

tion of two vectors with nonzero elements will always have a zero as its first element. Let xk♢

denote the vector that results when x is convolved with itself k times. The convolution matrix

C is lower triangular and has the vector x = (x1, . . ., xn)T as its leftmost column, x2♢ as the sec-

ond leftmost, etc. Partial Bell polynomials can then be calculated as:

Bn;kðx1; . . . ; xn� kþ1Þ ¼
ðxk♢Þn
k!
¼
Cn;k
k!
: ð36Þ

The matrix elements Cn, k can be calculated starting from the top of the matrix, left-to-right

within each row. The sum in Eq 9 runs over complete Bell polynomials in ascending order, so

that convergence can be checked after the completion of each row. We specify a relative preci-

sion, e.g. ~� ¼ 10� 12, and terminate the computation of F once the contribution of the current

term j is small enough compared to the partial sum from 0 to j − 1: jF j=F partialj < ~�.
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