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Abstract

The correct identification of differentially expressed genes (DEGs) between specific condi-

tions is a key in the understanding phenotypic variation. High-throughput transcriptome

sequencing (RNA-Seq) has become the main option for these studies. Thus, the number of

methods and softwares for differential expression analysis from RNA-Seq data also

increased rapidly. However, there is no consensus about the most appropriate pipeline or

protocol for identifying differentially expressed genes from RNA-Seq data. This work pres-

ents an extended review on the topic that includes the evaluation of six methods of mapping

reads, including pseudo-alignment and quasi-mapping and nine methods of differential

expression analysis from RNA-Seq data. The adopted methods were evaluated based on

real RNA-Seq data, using qRT-PCR data as reference (gold-standard). As part of the

results, we developed a software that performs all the analysis presented in this work, which

is freely available at https://github.com/costasilvati/consexpression. The results indicated

that mapping methods have minimal impact on the final DEGs analysis, considering that

adopted data have an annotated reference genome. Regarding the adopted experimental

model, the DEGs identification methods that have more consistent results were the limma

+voom, NOIseq and DESeq2. Additionally, the consensus among five DEGs identification

methods guarantees a list of DEGs with great accuracy, indicating that the combination of

different methods can produce more suitable results. The consensus option is also included

for use in the available software.

Introduction

High-throughput sequencing has become the main choice to measure expression levels, i.e.,

RNA-Seq [1]. RNA-Seq can be performed without prior knowledge of the reference or

sequence of interest and allows a wide variety of applications such as: ‘de novo’ reconstruction

of the transcriptome (without a reference genome), evaluation of nucleotide variations, evalua-

tion of methylation patterns [2], to cite a few.

RNA-seq technology has some advantages over the cDNA microarrays, such as the high

level of data reproducibility through lanes and flow-cells, which reduces the number of
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technical replicates for the experiments. Besides, RNA-seq allows to identify and quantify the

expression of isoforms and unknown transcripts [3]. Regarding the increasing popularity of

high-throughput sequencing methodologies, the cost of next-generation sequencing experi-

ments has dropped considerably. However, a clear understanding about the qualitative and

quantitative analysis of RNA-Seq has not yet been achieved, especially when compared to

older methodologies such as cDNA microarray [4].

In general, the RNA-Seq technology is very useful for differential expression analysis

involving some specific conditions [5], in which is commonly adopted five steps [6, 7]. First,

the RNA samples are fragmented into small complementary DNA sequences (cDNA) and

then sequenced from a high throughput platform. Second, the small generated sequences are

mapped to a genome or transcriptome. Third, the expression levels for each gene or isoform

are estimated. Fourth, the mapped data are normalized and, e.g. using statistical and machine

learning methods, the differentially expressed genes (DEGs) are identified. Finally, the rele-

vance of the produced data is finally evaluated from a biological context [8]. With the increas-

ing popularity of RNA-Seq technology, many softwares and pipelines were developed for

differential gene expression analysis from these data.

The methods for differential gene expression analysis from RNA-Seq can be grouped into

two main subsets: parametric and non-parametric. Parametric methods capture all informa-

tion about the data within the parameters. In these cases, it is possible to predict the value of

unknown data from observing the adopted model and its parameters. When parametric meth-

ods are applied to differential gene expression assume that, usually after a normalization, each

expression value for a given gene is mapped into a particular distribution, such as Poisson

[9–11] or negative binomial [12–14]. On the other hand, non-parametric methods can capture

more details about the data distribution, i.e., not imposing a rigid model to be fitted. It is possi-

ble because non-parametric models take into consideration that data distribution cannot be

defined from a finite set of parameters, thus the amount of information about the data can

increase with its volume.

Regarding the RNA-Seq differential expression analysis, some tools such as edgeR [13] and

baySeq [11], adopt the negative binomial model as the main approach. Other software tools,

such as NOIseq [15] and SAMseq [16], adopt non-parametric methods. Some methods are

based on transcript detection, which have been developed in order to identify unknown tran-

scripts or isoforms and also can be applied to the identification of DEGs, such as EBSeq [17]

and Cuffdiff2 [18]. Nowadays, there is not a consensus about which methodology is most

appropriate or which approach ensures the validity of the results in terms of robustness, accu-

racy and reproducibility. This topic in Bioinformatics research is still developing [5, 19, 20].

Some research effort were developed in order to evaluate the statistical methods of normali-

zation and detection of DEGs and the influence of the libraries preparation on the results [10],

to evaluate the methodologies of differential expression analysis by considering microorgan-

ism, including the mapping methods used for the analysis [21] and to evaluate the softwares

and pipelines with simulated data [20, 22].

In particular, Rapaport et al. [23] evaluated a compendium of softwares for differential

expression analysis in real data sets, considering the characteristics of the analysis such as accu-

racy, normalization, detection of DEGs and conditions without detected expression. Zhang

et al. [5] evaluated the influence of the number of replicates, sequencing coverage and compar-

ing groups. Guo et al. indicated that the ranking between three methods of DEGs identifica-

tion can generate a more accurate identification [24]. Li et al. [8] evaluated standardization

methods for DEG detection, indicating that the joining of two standardization methods led to

better results. Seyednasrollah et al. [25] presented a comparison of eight software tools for

DEG analysis in real data. Germain et al. [26] presented a work regarding the steps of
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RNA-Seq data analysis, comparing different methods of transcripts mapping and quantifica-

tion, also presenting an on-line tool for the adopted methods comparison.

Recently, Yu et al. [27] presented a procedure based on simulation by adopting a negative

binomial distribution and a generalized linear model (at the gene level). The main goal of

this method is to reduce the high rates of type I errors reported in previous studies [17], i.e.,

false negatives. Abedalrhman and Rueda [28] presented the Zseq tool, indicating the impor-

tance of a pre-processing step in high-throughput sequencing data analysis. More specific-

ity, Zseq is focused on the improvement in assembly of transcripts, evaluating the results of

DEGs with different pre-processes. On the other hand, other approaches have been con-

cerned with evaluating other perspectives such as the number of biological replications

required for a RNA-Seq experiment and the most suitable tools for the analysis of differen-

tial expression based on the number of a experiment replicates [29]. A comprehensive and

systematic analysis of the RNA-seq data from different perspectives presented by Sahraeian

et. al (2017) can contribute significantly in addition to expression analyses from RNA-Seq

data previously produced [30].

Differently from these studies, we evaluated the impact of the mapping methodology on the

results of differential gene expression analysis. We also assess the methodologies of DEGs anal-

ysis through a different perspective, not only indicating the better methodologies. Previous

studies and its results were presented, indicating that DEGs analysis are influenced by many

factors such as preparation of libraries and the structure of the experiment. In this context, we

analyzed the influence of essential steps in DEGs identification with RNA-Seq data and devel-

oped a software that allows to obtain the results of the main DEGs identification methodolo-

gies. The comparative study among the six mappers, including one pseudo-alignment and one

quasi-mapping tool commonly used in differential expression studies led to identify the

importance of this step in the analysis and identification of DEGs. A gold standard qRT-PCR

data was also adopted in order to evaluate the accuracy of DEG identification tools and indi-

cate those with high reliability on its results. Another contribution of this work was the evalua-

tion of integrated results from DEGs identification methods, our tool allows to perform the

consensus of five different methods of differential expression analysis, as a result genes indi-

cated as differentially expressed have more reliability and accuracy.

In this study, we present an extended review of the main methodologies for differential

gene expression analysis with RNA-Seq data, evaluating the impact of the mapping and

quantification methodologies. For this study we adopted the mapping softwares Bowtie2

[31], TopHat [32], BWA [33] and STAR [34]. For other approaches, such as pseudo-align-

ment and quasi-mapping we adopted kallisto [35] and Salmon [36]. We analyzed differen-

tial expression analysis software that represents the state of the art in this field, such as

baySeq [11], DESeq [12], DESeq2 [37], EBSeq [17], edgeR [13], limma+voom [38], NOIseq

[15, 39] and SAMseq [16]. The mapping results were used as input for some differential

expression analysis software tools, and its results were compared with qRT-PCR [40],

thereby verifying the accuracy of each software associated with different mappers. The

results indicate that NOIseq [15, 39], limma+voom [38] and DESeq2 [37], are the most bal-

anced softwares by considering the precision, accuracy and sensitivity. We evaluated the

results from individual and integrated ways, among different methodologies. The results

indicate that a group of software can produce together high precision and accuracy than

individual solutions. Finally, this work still presents as contribution a software tool easily

applicable to different experiments for differential gene expression analysis. The software

tool presents an integrated execution with mapping, mapping count (if necessary) and

quantification of expression levels, indicating characteristics of the adopted methods with

respect to their properties and accuracy when identifying DEGs.

RNA-Seq differential expression analysis: An extended review and a software tool
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Materials and methods

Datasets

This work adopted a real data set produced for the Microarray Quality Control (MAQC) proj-

ect [10, 40]. The data set was obtained using the Illumina’s Genome Analyzer II. The experi-

ment analyzed two biological samples: RNA from Ambion’s human brain and Stratagene’s

human universal reference RNA, which we will refer in this work as Brain and UHR sets

respectively [10]. We used only the Brain and UHR samples that used PhiX Control. The data

set is available at the NCBI Short-Read Archive (SRA), under accession SRA010153. The reads

were mapped against the human genome/transcriptome, version 19 (GRCh37.p13).

As part of the MAQC project, approximately a thousand genes were analyzed by qRT-PCR

[41]. The qRT-PCR data is available at Gene Expression Omnibus, access: GSE5350, platform

GPL4097 [40]. The Ambion human brain and Stratagene universal human samples were also

adopted as biological references in this experiment. We considered the qRT-PCR data as a

gold standard for the evaluation of the DEGs identification methods.

The conversion from the annotation for the RNA-Seq data (ENSEMBL) to the qRT-PCR

data was performed by the on line tool bioDBnet [42], which excludes duplicate IDs or synon-

ymous. The conversion generated a list of 997 unique qRT-PCR genes. For detailed informa-

tion on the qRT-PCR gene listing see S1 Table.

Sequence alignment and gene counts

The adopted RNA-Seq data set was mapped in the human genome/ transcriptome (hg19),

with the annotation file of the same version, both from the GENCODE project [43]. The con-

version from transcriptome to genome annotation was performed by the R package txImport

[44]. For the mapping and quantification, various approaches were used: spliced read aligner,

unspliced read aligners, pseudo-alignment and quasi-mapping. For the spliced read aligner

approach the TopHat software was used (v.2.1.0) [18], which applies the exon-first methodol-

ogy. For the unsigned read aligner approach two mapping softwares were used, BWA

(v.0.7.12-r1039) [33] and Bowtie (v.2.2.6) [31], which apply the Burrows-Wheeler transform.

For pseudo-alignment approach kallisto software was used (v.0.43.1) [35]. For quasi-mapping

approach Salmon (v0.8.2) software was used [36]. For the mapping execution, the default

parameters of each software were adopted. Table 1 presents the adopted mappers.

The HTSeq software (v.0.6.0) [12] was adopted to generate the count matrix, with default

parameters. The adopted annotation file to generate the count matrix was the same one used

in the mapping.

Fig 1 presents an overview of the present work. The RNA-Seq dataset (denoted as

“NCBI-SRA” in Fig 1) was mapped by each adopted method to the human genome (hg19),

thereby obtaining counting matrices. The matrices were used as input for the adopted

Table 1. The adopted mapping methods.

Name Version Mapping Reference

Bowtie 2.2.6 Unspliced read aligner [31]

BWA 0.7.12-r1039 Unspliced read aligner [33]

TopHat 2.10 Spliced read aligner [18]

STAR 2.5.3 Spliced read aligner [34]

kallisto 0.43.1 pseudo-alignment [35]

Salmon 0.8.2 pseudo-alignment [36]

https://doi.org/10.1371/journal.pone.0190152.t001
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differential expression methods. In order to evaluate the impact of the mapping software on

the DEGs identification, we analyzed four differential expression software using the six gener-

ated counting matrices. For Salmon, STAR and kallisto we analyzed two differential expression

software.

The mapper performance were obtained by considering the following DEG identification

methods: edgeR, DESeq, baySeq and NOIseq, to Tophat, Bowtie2 and BWA, to analyze

Salmon, STAR and kallisto were performed edgeR and NOISeq. DESeq and baySeq can be run

only with count data (Fig 1).

Differential expression

In this work we compared eight methods for the DEGs or transcripts identification. When

applying each software we focus on the most used approaches. Thus, we follow the guidelines

available in the manual, applying the default parameters, including the standardization

Fig 1. Overview of the pipeline presented in this work. The adopted biological samples to generate the qRT-PCR data were the same as those used to

generate the RNA-Seq data.

https://doi.org/10.1371/journal.pone.0190152.g001
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methodology of each software. All differential expression analysis were performed using the

same counting matrix, generated by HTSeq.

For each evaluated mapper a counting matrix, or abundance matrix was generated, in this

way the mapper tools were evaluated for DEG methods. Table 2 presents a summary of the

adopted DEG identification methods and its properties.

RNA-Seq data were mapped using BWA, TopHat, Bowtie and STAR mappers. The quanti-

fication was obtained from Salmon and kallisto tools. The counting table of each mapper was

used as input for the DEG identification methods (edgeR, DESeq, baySeq and NOISeq), thus

generating lists of DEGs for each DEG identification method which different mapper. Results

of Salmon, STAR and kallisto was used as input for edgeR and NOISeq. The results were com-

pared with qRT-PCR (gold standard), allowing to evaluate if the mapping influences the per-

formance of DEGs detection. The EBSeq, SAMSeq and limma+voom, DESeq2 and sleuth

methods were added to the study for individual evaluation of DEG identification tools, using

only the mapping results of the TopHat mapper. Exceptionally sleuth received quantification

output from the kallisto tool, as indicated in its user guide. Fig 1 presents an overview of the

pipeline presented in this work.

The DEGs identified by the adopted methods (with TopHat mapper) are used to evaluate

the performance statistics presented in the Results Section.

• baySeq [11]: Uses the Bayesian empirical approach to estimate a posteriori probability of

each set of models, which defines differential expression patterns for each tuple.

• DESeq [12]: Based on a negative binomial distribution, with variance and mean bound by

local regression.

• EBSeq [17]: Developed with the main objective of identifying differentially expressed iso-

forms, it is also robust in the identification of DEGs. It is similar to baySeq [11], which

applies the Bayesian empirical approach.

• edgeR [13]: A Poisson super dispersion model is used to account for technical and biological

variation. Apply the Bayesian empirical method to moderate the degree of over dispersion

against transcripts.

• limma+voom [38]: Based on the linear model and originally developed to analyze data from

microarray and currently extended for RNA-Seq analysis. The limma user guide recom-

mends the use of the TMM normalization of the edgeR package associated with the use of

the voom conversion, which essentially transforms the normalized counts to logarithms base

Table 2. Adopted methods for DEGs identification.

Name Version Normalization Reference

baySeq 2.4.1 Scaling factors (quantile/ TMM/ total) [11]

DESeq 1.22.1 DESeq size factors [12]

EBSeq 1.12.0 DESeq median normalization [17]

edgeR 3.12.1 TMM/ Upper quartile / RLE / None (all scaling factors are set to be one) [13]

limma+voom 3.26.9 TMM [38]

NOIseq 2.14.1 RPKM / TMM / Upper quartile [15, 39]

SAMseq (samr) 2.0 Based on the read count mean over the null features of data set. [16]

DESeq2 1.10.1 DESeq size factors [37]

sleuth 0.29.0 DESeq size factors (with slight modifications) [35]

https://doi.org/10.1371/journal.pone.0190152.t002
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2 and estimates the mean-variance relation to determine the weight of each observation

made initially by a linear model [45].

• NOIseq [15, 39]: Adaptive to the data and non-parametric, empirically models the noise in

the counting data and allows the data analysis without replication.

• SAMseq: [16]: Non-parametric method with re-sampling for sequencing counts with differ-

ent depths. It can be applied to data with quantitative results, two-class, or multiple-class.

• DESeq2 [37]: DESeq2 firstly build a model with observed counts. Secondly, it fits using the

same method from the original DESeq, or fit in two steps: find the value of the parameter

that makes the likelihood largest, which is called maximum likelihood estimation. Then, it

takes all the gene values and move these values towards a average value. DESeq2 uses Bayes

theorem to guides the amount of movement for each gene: if the information for the gene is

low, its value is moved close to the average, if the information for the gene is high, its value is

moved very little. Thus, the moved values are useful to evaluate different sets of genes as well

as to apply a threshold;

• sleuth [35]: The sleuth workflow begins with a filtering of low abundance transcripts, fol-

lowed by the application of two normalizations and then parameter estimation for the model

of each transcript. This enables the regularization of the biological variance contributing to

transcript abundance variance across samples, and finally to an overall total variance esti-

mate for each transcript.

Results and discussion

Read mapping in reference genome

In order to evaluate the mapping methods, the human genome described in subsection Data-
sets. To evaluate the impact of the genomic mapping tool on DEG analysis, all the mapping

software with default parameters were adopted. The counting matrix of each mapping was

generated by the HTSeq package [12], through the htseq-count function, using the genome

annotation file and default parameters. The counting matrix of each mapping tool was used as

input for the DEG detection methods. Regarding qRT-PCR data, the DEG was unidentified by

adopting the GEO2R tool from default method (Benjamini & Hochberg). It were considered

as DEGs only the transcripts with log2FC� ±2 and P–value� 0.05. The complete list of DEGs

is available in S1 Table.

We compared the identified DEGs in RNA-Seq (baySeq, edgeR, DESeq and NOIseq)

against the DEGs from qRT-PCR. It is possible to observe in Fig 2 and in Table 3 that DEGs

are concentrate on the intersections between the mappers, showing that the methods maintain

the identification behavior even with the change of the mapping methodology.

In this way, we observed that the impact of the mappers on the final results is minimal. In

Fig 2A and 2C, it is possible to observe that the number of DEGs correctly identified (in agree-

ment with qRT-PCR) is more related to the methodology of DEG identification than to the

adopted mapper. The baySeq and NOIseq methodologies obtained a low amount of unidenti-

fied DEGs, and this amount was not changed with different mappers.

In order to evaluate methods that do not use mapping, but other strategies to quantifying

reads, we compared edgeR and NOISeq results using Salmon and STAR to quantification of

mapped genes. Table 3 presents the number of DEGs identification from different RNA-Seq

mapping methods. It was considered only NOISeq and edgeR because baySeq and DESeq are

not able to receive inputs different of integers values. Once again the result indicates that

RNA-Seq differential expression analysis: An extended review and a software tool
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differential expression analysis is more influenced by the methodology of DEGs identification

than the adopted methodology of mapping or quantification of reads.

S2 Table presents more details about the performance of each DEGs identification method

with different mappers.

DEG identification methods

As presented in the previous section, the impact of the mappers on expression analyses is mini-

mal. In this way, all following analysis were developed considering only the TopHat mapping

results. At this step of the present work, we analyze the results of the following software tools:

limma+voom [38], EBSeq [17], SAMseq [15], DESeq2 [37] and sleuth [35]. For more details

regarding the evaluated tools see the subsection Differential Expression.

Fig 2. Comparison of identified DEGs from different expression analysis tools, associated to distinct RNA-Seq mapping methods compared to

qRT-PCR. (A) Venn diagram comparing identified DEGs by the baySeq tool with BWA, TopHat, Bowtie and qRT-PCR mappers. (B) Venn diagram comparing

identified DEGs by the edgeR tool with BWA, TopHat, Bowtie and qRT-PCR mappers. (C) Venn diagram comparing identified DEGs by the NOIseq with

BWA, TopHat, Bowtie and qRT-PCR mappers. (D) Venn diagram comparing identified DEGs by the DESeq with BWA, TopHat, Bowtie and qRT-PCR

mappers.

https://doi.org/10.1371/journal.pone.0190152.g002

RNA-Seq differential expression analysis: An extended review and a software tool

PLOS ONE | https://doi.org/10.1371/journal.pone.0190152 December 21, 2017 8 / 18

https://doi.org/10.1371/journal.pone.0190152.g002
https://doi.org/10.1371/journal.pone.0190152


We compared the genes indicated as differentially expressed by the nine tools and the

DEGs indicated by qRT-PCR. The softwares were performed as defined in each manual, and

the genes listed by the tools were considered as differentially expressed, through the limit indi-

cated by the manual of each tool. The performance of the adopted DEG identification methods

were evaluated based on the match between each method results and the qRT-PCR. Table 4

presents the performance of each adopted method.

It is possible to notice that the EBSeq, SAMseq and DESeq methods, although using differ-

ent approaches for DEG identification have similar behavior, presenting low TPR (True Posi-

tive Rate) and low ACC (Accuracy). The performance of the DESeq can be justified by the fact

that the tool obtains better results with small samples (two samples per condition), as pre-

sented in [22]. The results of the SAMseq are very influenced by the sample size and the

Table 3. Comparison of the number of identified DEGs from different expression analysis tools, associated to different RNA-Seq mapping meth-

ods compared to qRT-PCR. DEGs indicated by the edgeR and NOISeq tool using data from different mappers. qRT-PCR row indicates the amount of cor-

rectly labeled DEGs.

edgeR

Tophat Bowtie BWA STAR Salmon kallisto qRT-PCR

Tophat 328

Bowtie 324 327

BWA 325 324 332

STAR 319 319 319 370

Salmon 299 298 300 304 333

kallisto 302 303 307 306 325 354

qRT-PCR 294 294 296 338 294 304 413

NOISeq

Tophat Bowtie BWA STAR Salmon kallisto qRT-PCR

Tophat 357

Bowtie 286 310

BWA 284 306 309

STAR 295 293 292 303

Salmon 284 295 295 284 332

kallisto 282 292 292 283 323 323

qRT-PCR 330 275 274 281 276 274 413

https://doi.org/10.1371/journal.pone.0190152.t003

Table 4. Performance of the DEGs software tools regarding the qRT-PCR results. Performance measures adopted: TPR (True Positive Rate), SPC

(Specificity), PPV (Positive Predict Value), ACC (Accuracy) and F1 measure [46, 47].

Tool TPR SPC PPV ACC F1 measure

edgeR 0.71 0.94 0.90 0.85 0.79

baySeq 0.92 0.40 0.52 0.61 0.66

DESeq 0.44 0.59 0.43 0.53 0.44

NOIseq 0.80 0.95 0.92 0.89 0.86

SAMseq 0.44 0.52 0.39 0.49 0.42

limma+voom 0.81 0.93 0.89 0.88 0.85

EBSeq 0.68 0.55 0.52 0.60 0.59

DESeq2 0.84 0.95 0.92 0.90 0.88

sleuth 0.77 0.54 0.54 0.63 0.64

https://doi.org/10.1371/journal.pone.0190152.t004
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number of replicates. The SAMseq is able to ranking the most relevant DEGs, however its

results produce many false positives [22, 25].

The NOIseq, DESeq2 and limma+voom methods performed well, with high TPR and ACC

rates. The limma+voom tool had already been pointed out in previous works as one of the bet-

ter results in the DEG ranking and for analyses with more than two samples [22]. NOIseq and

DESeq2 tools showed consistent results, indicating these methods are suitable for experiments

with a large number of samples and an annotated genome.

Integration of DEG identification methods

The individual evaluation of DEG identification methods indicate clearly that each method led

to distinct results. Moreover, some methodologies have better results with a greater amount of

samples, while others present variations on its results influenced by other characteristics, such

as sequencing depth and outliers with abnormally high counts.

In order to verify the compatibility between the individual results of each DEG identifica-

tion method and to identify possible improvement in performance, we evaluated the results by

integrating the adopted methodologies in this work. We evaluated the performance among the

results with the integration of nine to one methods, so that for each gene identified as differen-

tially expressed by x methods, where x is number of methods that have identified each DEG.

The results of each combination of DEG identification methods was compared to the gold

standard from qRT-PCR.

In order to evaluate the performance of the DEG integration methods, we verified the com-

bination of methods that performs better. Fig 3 present the integration from one to nine DEG

identification methods. It is possible to notice that there were no congruence of differentially

expressed transcripts from the integration of nine methods. From the nine evaluated methods,

the frequency of eight simultaneous indications occurs for 165 transcripts also indicated by

qRT-PCR as differentially expressed. However, when observing the number of DEGs indicated

by qRT-PCR, it is possible to observe that integration of eight methods fails to identify a large

number of genes indicated by qRT-PCR.

To identify the combination of methods that has a more effective DEGs indication and,

with the least amount of errors, we evaluated the DEGs identification performance for each

subset of methods: nine, eight, seven, six, five, four, three, two and one. The performance

results of each subset is presented in Table 5.

As expected, the performance of each subset indicate that to consider more methods

together tends to improve the accuracy and to reduce the error rates. As reported in the con-

text of the inference of gene networks, the collective knowledge or data integration can pro-

duce better results than individual results [48, 49]. Based on this principle, we identified that

the integration of five methods can obtain higher TPR and SPC values than any other tested

subset.

In order to identify the best combination of DEG identification methods of each cardinality

(1, 2, . . ., 9), we adopt the ROC (Receiver operating characteristic) curve [50], a standard pat-

tern recognition tool. Fig 4 present the better combination of DEG identification methods

consensus. It is possible to notice that combination of five methods presents the most efficient

solutions among all the tested combination. The consensus among six methods led to a slight

improvement in FPR, however also present a decline in TPR.

The consensus of five DEGs identification methods presented the best integrated result

with higher SPC and TPR values that lead to results with high accuracy. Fig 5 presents the evo-

lution of the TPR and SPC values related by increasing the integration of DEGs identification

methods.

RNA-Seq differential expression analysis: An extended review and a software tool

PLOS ONE | https://doi.org/10.1371/journal.pone.0190152 December 21, 2017 10 / 18

https://doi.org/10.1371/journal.pone.0190152


The inclusion of methods brought considerable gains in specificity (SPC), however from

integration of six methods, TPR values goes through a considerable decline. This result indi-

cated the default value for the software available at https://github.com/costasilvati/

consexpression, in which the user can choose between executing the methodology with the

default consensus (five methods), thus obtaining the best balance between SPC and TPR.

Another possibility for the application of this methodology is to change the number of

Table 5. Performance of each subset of DEGs identification methods.

Number of indications TPR SPC PPV ACC F1 measure FPR

1 0.95 0.18 0.95 0.62 0.61 0.82

2 0.93 0.32 0.93 0.74 0.64 0.68

3 0.92 0.40 0.92 0.88 0.67 0.60

4 0.88 0.63 0.88 0.89 0.73 0.37

5 0.83 0.91 0.83 0.86 0.85 0.09

6 0.79 0.96 0.79 0.74 0.86 0.04

7 0.71 0.97 0.71 0.59 0.81 0.03

8 0.40 0.98 0.40 0.00 0.56 0.02

The subsets did not have a selection of specific methods, only the frequency of indications was observed. There are no performance values for nine tools,

since there was no convergence of the results with transcripts indicated by nine methods as DEG.

https://doi.org/10.1371/journal.pone.0190152.t005

Fig 3. Histogram from DEGs identification methods integration. The red bars indicate the DEGs identified as differentially expressed (True Positives).

The blue bars indicate the not differentially expressed transcripts identified as DEGs from methods (False Positives). The Y axis indicates the amount of tools

that identified correctly the transcripts as differentially expressed or not. The first row (bars with 0 in Y axis) indicate DEGs and not differentially expressed

genes from qRT-PCR (gold standard) with 413 DEGs and 584 not differentially expressed transcripts, totaling 997 genes analyzed. There are no performance

values for nine tools, since there was no convergence of the results with transcripts indicated by nine methods as DEG.

https://doi.org/10.1371/journal.pone.0190152.g003
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methods that define the consensus for the desired quantity of methods, taking into account the

cost of the change, for the other performance measures, as well as to use only one of the

adopted methods in this work.

Table 6 presents an overview of the groups of methods that correctly identified the DEG

according to qRT-PCR. Regarding the 413 DEGs from qRT-PCR, 19 of them were not identi-

fied by any method. It is possible to observe that when considering one indication as differen-

tially expressed (accepting any tool) it was not possible to reach the 413 genes indicated by

qRT-PCR.

Fig 4. ROC curve from integration of DEG identification methods. Each point indicate the performance of the best subset

regarding the adopted qRT-PCR.

https://doi.org/10.1371/journal.pone.0190152.g004
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In order to define which group of methods has the best consensus, it is important to evalu-

ate how each method behaves in the aggregate results, especially in the group of five indica-

tions. Table 7 presents the frequency of each method in the aggregate results. Comparing the

results presented in Tables 7 and 6, we can observe that 343 DEGs pointed out by consensus of

five methodologies, the methods that most correctly pointed out (almost all indications) were

baySeq [11], DESeq2 [37], limma+voom [38] and NOISeq [15, 39], respectively.

Regarding the consensus of five methods, the baySeq method indicates all DEGs presented

in the five consensus results. The DESeq2 indicate 97.6%, limma+voom methods indicate

96.5% of them, and NOISeq indicates 95.9%. For the analysis with baySeq, it is necessary to

define a collection of models and each model is a subdivision of the samples into groups, the

samples in the same group are assumed to share the same parameters of the underlying distri-

bution. In the DESeq2 method, a model is created to the counts observed, this model is fit

Fig 5. Projection curves of TPR and SPC. Projection curves of TPR and SPC values when combining DEGs identification methods. The X axis is the

quantity of combined DEGs identification methods. The Y axis is the evolution of TPR and SPC values regarding the adopted qRT-PCR.

https://doi.org/10.1371/journal.pone.0190152.g005
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using Bayes theorem to guide the movement by each gene. In the NOISeq method, the tran-

script is differentially expressed if the ratio of log2 between two conditions and the value of the

difference between the two corresponding conditions are likely to be higher than a noise. The

noise distribution is obtained by comparing all pairs of repetitions within the same condition.

In the limma+voom method, the read counts are converted into log2 of counts per million

(logCPM) and the mean variance ratio is modeled with precision weights.

In summary, the baySeq method tends to higher FP values, as presented in Table 4 which

indicates 100% of the DEGs consensus of five methods. The parameter sharing of the sample

groups of this methodology, mitigates the variation of the genes of the same group, thus lead-

ing to a greater probability of correctness for the methodology. On the other hand, NOISeq,

DESeq2 and limma+voom methods perform in a balanced way regarding its relation to the

correctly DEGs identification allowing a high reliability of the results, which justifies only the

’3.8% DEGs not identified by them and identified by qRT-PCR. Regarding edgeR results, we

can verify that its TPR tends to a lower reliability, presenting 81.3% of correct identification of

the DEGs indicated by qRT-PCR.

Table 6. Relation between True Positives (TP) and aggregate results from number of methods.

No methods TP

0 19

1 394

2 384

3 382

4 364

5 343

6 327

7 292

8 165

9 0

Regarding the 413 genes identified as differentially expressed (DE) by qRT-PCR, we grouped by number of

methods that indicated DEGs correctly.

https://doi.org/10.1371/journal.pone.0190152.t006

Table 7. Number of correctly identified DEGs from each method considering the aggregate results (consensus).

No of methods edgeR baySeq DESeq NOISeq SAMSeq limma+voom EBSeq DESeq2 sleuth

9 0 0 0 0 0 0 0 0 0

8 165 165 90 165 75 165 165 165 165

7 248 292 147 292 145 287 236 292 270

6 271 327 158 326 160 316 252 326 283

5 280 343 167 329 164 331 259 335 291

4 285 363 176 330 174 334 273 340 308

3 293 378 180 330 181 335 281 348 311

2 293 379 181 330 182 335 282 348 311

1 294 379 183 330 182 335 282 348 318

https://doi.org/10.1371/journal.pone.0190152.t007
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Conclusion

This work presents an extended review regarding methods for the identification of differen-

tially expressed genes (DEGs) or transcripts. We evaluated the influence of six mapping meth-

ods, including one pseudo-alignment and one quasi-mapping, nine main methods for the

DEGs identification and the integration of these methods in order to produce a consensus

from their results. The evaluation of the adopted methods was performed by comparing the

respective results from a reference qRT-PCR for the same tested transcripts.

We have identified that the impact of the mapping tool on the final results is minimal, indi-

cating the DEGs identification method is the main choice for differential expression analysis

in RNA-Seq data.

We did not identify among the evaluated methods a tool that obtained optimum results in

all performance measures, for the evaluated experimental conditions. The NOIseq, DESeq2

and limma+vomm methods present the best individual results with 95%, 95% and 93% of

Specificity and 80%, 84% and 81% of True Positive Rate, respectively.

Regarding the integration of DEG identification methods, we identified that the combina-

tion of five methods improves the sensitivity of identification and provides more reliable

results. The five methods used integrated produced results with 91% of Specificity and 83% of

True Positive Rate, thus indicating the consensus of five methods present better balance than

individual solutions.

Finally, this study also contribute to present a freely available software at https://github.

com/costasilvati/consexpression, which implements the presented analysis and can be easily

used in order to replicate this work, as well as to analyze other RNA-Seq data sources.
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