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Abstract

This paper aims to explain the macroeconomic volatility due to microeconomic shocks to

one or several sectors, recognizing the non-symmetrical relation in the interaction among

the Ecuadorian economic sectors. To grasp the economic structure of this emerging econ-

omy, a statistical analysis of network data is applied to the respective input-output matrix of

Ecuador from 1975 until 2012. We find periods wherein the production of domestic inputs is

concentrated in a few suppliers; for example, in 2010, the concentration significantly affects

sectors and their downstream providers, thus influencing aggregate volatility. Compared to

the US productive structure, this emerging economy presents fewer sectors and degree dis-

tributions with less extreme fat-tail behavior. In this simpler economy, we continue to find a

link between microeconomic shocks and aggregate volatility. Two new theoretical proposi-

tions are introduced to formalize our results.

Introduction

The impact of aggregate volatility, both economically and socially, influences the political and

economic strategies of a country. Timely analysis and preparation to avoid the profound

impacts of volatility are desired, but its estimation and calculation are not trivial and represent

a major challenge. Aggregate volatility has been calculated in classical macroeconomics using

the central limit theorem, which assumes that all economic sectors are equally important

within an economy and which suggests that while the economy has more sectors, the effect of

aggregate volatility is minimized. "This argument, however, ignores the presence of intercon-

nections between different firms and sectors, functioning as a potential propagation mecha-

nism of idiosyncratic shocks throughout the economy." [1]

Similarly, [2] shows that "Because of random growth at the micro level, the distribution of

firm sizes is very fat-tailed. . . That fat-tailedness makes the central limit theorem break down,

and idiosyncratic shocks to large firms. . . affect aggregate outcomes." This debate is at the core

of the papers in [3] and [4,5].

More recently, [6], [7], [1], and [8] analyzed the effects of the interrelationships between the

economic sectors and their effect on aggregate volatility in the U.S. In fact, [8] modeled tail

comovements of the input-output linkages to support their argument that a reduction in

PLOS ONE | https://doi.org/10.1371/journal.pone.0190076 January 2, 2018 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Romero PP, López R, Jiménez C (2018)
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aggregate volatility, such as the one experienced by the U.S. during the ‘Great Moderation,’

could occur in tandem with an increase in the likelihood of large economic downturns (see

also [9–11]).

Conversely, [12] analyzed the industrial production index of the U.S. and extended the

model of [13] by including capital in the production function in addition to the input-output

variable (for an earlier dynamic model, see [14]). The main interest of that paper was to sepa-

rate the common versus sectoral shock effects during the ‘Great Moderation’ period; the

researchers found that the period was characterized by a reduction in the relevance of common

shocks to aggregate volatility in favor of sectoral ones.

In this paper, we analyze the structure of production with a special focus on the sectoral

linkages of the input-output matrix of an emerging country such as Ecuador. We found that

emerging economies are less complex than more developed ones, such as the U.S.; when we

compare the number of economic sectors, the exponents of the fat tails of the distribution of

output degrees are less noticeable. In addition, since 2000, there has been an increase in the

input-output network connectivity, thus increasing the level of criticality due to microeco-

nomic shocks diffused through the network.

In Ecuador, there have been studies aimed at understanding the impact that a microeco-

nomic shock would have; [15] analyzes the "Impact on the Ecuadorian economy by exogenous

shocks on the agricultural sector (using the Input-Output method for the year 2007),” wherein

they assert that “. . .the impact analysis is independent of the intersectoral analysis" [15]. In this

study, we show that this assertion is false.

In [16], the breadth of products exported by Ecuador is shown, as are their interconnec-

tions. There is evidence that the major exports of Ecuador are produced by peripheral sectors

but have certain interconnections with other sectors, suggesting that there are possibilities for

the development of more economic sectors. The generalization of this approach to study eco-

nomic development can be found in [17] and [18].

In [19], a study of how the relations between economic sectors can boost the economy

through backward and forward linkages is presented, obtaining the demand and supply of the

inputs of a sector, respectively. In this paper, we develop an additional step in analyzing the

aggregate volatility, considering the interaction of economic sectors.

Empirical evidence for France at the sectoral and firm levels also shows that firm linkages

contribute as much as three times more than direct shocks in aggregate fluctuations [20]. For

other major countries in the OECD, how the international economic crisis of 2007–2009 was

not exogenous but rather a consequence of the evolution of input-output structures from

being dominated by manufacturing toward more service sectors, especially the financial sector,

is presented in [21]. Finally, another related study that considers geographical links and distin-

guishes between supply- and demand-side shocks in the production network is [22].

This paper is organized as follows. In the next section, a model of an input-output economy

is introduced. We then present the methodology of network graphs and how is applied to the

input-output matrix; then, the results obtained, and the implications of the presence of heavy

tails in the distributions of the data are analyzed. Subsequently, we introduce our two main

propositions to formalize our results, and discuss the economic policy implications derived

from them. Finally, we present the conclusions.

Materials and methods

A model of an input-output economy

In this section, we present a static model of an input-output neo-classical economy, which is a

canonical version introduced by [13] and applied by [1,7,23].

Networks and macroeconomic tail risks
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Here, an input-output economy describes a market process wherein firms produce within

different industry sectors. In their production processes, these firms demand inputs from

other firms within or outside their industry sectors. Thus, there is intra-sectoral and inter-sec-

toral trade. In addition to inputs from other firms, a given firm also demands labor, and the

output is subject to constant returns to scale and Harrod-neutral productivity exogenous

shocks in this Cobb-Douglas production technology. Capital has not been included; otherwise,

the required model must be dynamic.

The input-output relationships within and outside industrial sectors form the network

through which firms interact. This feature is key for our empirical specification, since it allows

us to capture the heterogeneity embedded in the input-output matrices. Although the model is

static, the different years available in our database let us study the change in the network of the

input-output relationships of the Ecuadorian economy over a span of more than 30 years. We

depict a basic version of this networked economy in Fig 1.

In this model, there are n industrial sectors represented by In = {1,2,. . .,n}. Each sector is

subject to technology shocks zi that are independent and identically distributed (i.i.d.) across

sectors, and the distribution of log(zi)� φi is represented by Fi. By assumption, these shocks

present a symmetric distribution around zero and have finite variance normalized to one. In

addition, the input-output matrix An contains a typical element aij, which represents the tech-

nical coefficients that relate the proportion of good j in the inputs of firms in sector i. Since

there is intra-sectoral trade, we have aii> 0. Thus, the input-output network is a weighted

directed graph, wherein an element of A represents the weights from sector j to sector i. The

sectoral production behaves according to a Cobb-Douglas technology.

yi ¼ za

i l
a

i

Q
j�@i
xð1� aÞaij
ij ð1Þ

The participation of the labor factor, li, in the output is α � (0,1). Here, ℵi represents the j

input providers of firms in sector i. The quantity of commodity j demanded by producers of

commodity i is xij. We assume constant returns to scale; thus,
Pn

j¼1
aij ¼ 1.

In this economy, consumers or a representative household per sector has consumption

preferences cover the goods of sector i, with a constant relative risk aversion (CRRA) utility

Fig 1. Network example. A stylized input-output network for firms and industries; blue arrows indicate intra-

sectoral trade, and red arrows indicate inter-sectoral trade.

https://doi.org/10.1371/journal.pone.0190076.g001
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but with σ = 1 and a linear disutility for labor.

u ¼
1

n
Pn

i¼1
ðlnci � clnliÞ ð2Þ

Given competitive markets, households maximize their utilities subject to a resource con-

straint; firms maximize profits subject to input prices and wages, and markets are cleared. In

the S1 Appendix, we show that by following the foregoing process, the real value added or

GDP in this economy is y = log(GDP) = v0φ and is expressed in vector form. The vector of

influence v is:

v ¼
a

n
½I � ð1 � aÞA0�� 1

1 ð3Þ

Thus, the Leontief inverse [I − (1 − α)A0]−1 captures the input-output network of weighted

links between the different sectors and translates well to our empirical analysis of actual input-

output matrices. We also have 1 as a vector with dimensions appropriate for the operation and

I as the identity matrix. The real value added also includes the idiosyncratic shocks to sector

productivity, which propagates to downstream sectors due to the sectoral network. If α is

equal to one, then we have a simple economy with no input-output relationship and no shock

transmission. When this case does not occur, some sectors are more connected than others,

i.e., implying higher degrees; thus, these sectors are more prone than others to spread these

shocks to the economy.

From the first-order conditions, we know that the input demand for the producer of good j
is given by:

x�ij ¼
ð1 � aÞaijpiyi

pj
ð4Þ

If we have two economies with different (real) income levels, A and B, where YA> YB, then

economy A will demand more than economy B from intermediate sectors. In fact, the deriva-

tive of input demands with respect to real output is positive. Hence, more developed econo-

mies will demand inputs from more sectors than a less developed economy.

Differences in capital intensity will also matter. Economies that exhibit distinct participa-

tion of inputs in national income will be asymmetrically affected by input-output relationships.

In our case, variations in alpha in Eq 4 are negative or, in other words, they reduce input

demands (see S1 Appendix).

Data and definitions

To conduct this study, we use the input-output matrices presented by the Central Bank of

Ecuador for the following years: 1975, 1980, 1985, 1990, 1993, 1995, 2007, 2010 and 2012.

The methodology used to build these matrices varies over time; prior to 1995, the matrices

had 34 economic sectors; in 2007, the matrices expanded to 71 economic sectors; and in 2012,

these 71 economic sectors were maintained, and an additional detailed matrix with 245 eco-

nomic sectors is presented. These changes were due to an increase in the scope of the data by

including more digits of the ISIC, initially from two to three digits, and then from three to four

digits (see [24]). In the detailed 2012 matrix, the economic sectors that are most disaggregated

are the following: Tubers, vegetables, melons and fruits (26 subsectors); Business services and

production (17 subsectors); Transportation and storage services (11 subsectors); Live animals

and animal products (11 subsectors); Oilseeds (10 subsectors); Machinery, equipment, and

electrical appliances (8 subsectors); and Cereals (7 subsectors).

Networks and macroeconomic tail risks
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It is noteworthy that the Central Bank of Ecuador has no information on input-output

matrices between 1996 and 2006. Between 1998 and 2000, the country was experiencing a

financial crisis with harsh social consequences, which led to an emigration of both low-skilled

and highly skilled workers; within the latter group, central bank personnel were included.

Additionally, to calculate the parameters of the heavy tail for the weighted degrees of pro-

duction of the first and second order, we implemented the code developed by [25].

To measure aggregate volatility, we specify the criteria as follows: firstly, doing an analysis of

heavy tails through maximum likelihood estimators and, secondly, by using the vector of influ-

ence introduced in the model section.

Let us begin with first-order connections that consider the direct relationship between one

sector and all sectors with which it trades. The input-output matrix A comprises these connec-

tions. Below, we provide more precise definitions emphasizing economic relationships, since

we are using graph-theoretical concepts. For instance, when we discuss the degree of demand,

it is the same as the weighted indegree of a node or the element of the network; meanwhile, the

degree of production is the same as the weighted outdegree of a node.

First-order weighted degree of demand: The degree of the input demand of sector i is the

sum of the j-th columns of the matrix of technical coefficients of the input-output matrix A; it

is denoted as dc
i , where superscript c is identified as the degree of demand, and the subscript i

represents the i-th sector:

dc
i ¼

Xn

j¼1

aij ð5Þ

For the subsequent analysis, we do not normalize dc
i .

First-order weighted degree of production: The degree of production of a sector j is the sum

of the i-th rows of the matrix of technical coefficients of the input-output matrix A, denoted as

dp
j , where the superscript p is identified as production, and the subscript j represents the j-th

sector. To perform calculations of the degree of production, the An matrices are normalized to

compare the distributions between different periods, thus standardizing the data. Once stan-

dardized, the following calculation is used:

dp
j ¼

Xn

i¼1

aij ð6Þ

Next, the estimation of the density distribution of the degrees of demand and production is

performed through a Gaussian kernel, which is a function defined by:

w t; hð Þ ¼
1
ffiffiffiffiffiffi
2p
p

h
e� t2=2h2ð Þ; � 1 < t <1; ð7Þ

where h is the bandwidth or smoothing constant, and t is equal to x − xi, in which x is a ran-

dom variable and xi are the observations [26,27].

A quantity x obeys or follows a power law if the probability is given by the function

p(x)/ x−β. The function noted diverges when x tends toward zero; therefore, it must be

defined as a minimum value. We will show that, in our data, the degrees of production appear

to follow a power law, for which the parameter is defined and the goodness of fit of the power

law is measured.

Networks and macroeconomic tail risks
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The parameter of the heavy tail of first order degrees of production, through maximum

likelihood estimators for the case of a continuous distribution, is defined as:

b̂ ¼ 1þ n
Xn

i¼1

ln
xi
xmin

" #� 1

ð8Þ

where xi, i = 1 . . . n, are the observed data for all x such that xi� xmin. From now on, we refer

to bb1 as the parameter for connections of the first-order weighted outdegrees.

We cannot apply the same strategy as in [6,7] to compute the minimum value of x (xmin) for

the estimation of a heavy tail due to the small number of sectors present in the Ecuadorian

input-output matrices; instead, we adopt the strategy proposed by [25] who estimate xmin by

the following Kolmogorov-Smirnov (KS) statistic:

D ¼ maxx�xmin
jSðxÞ � PðxÞj ð9Þ

where S(x) is the cumulative density function of the observed data greater than xmin, and P(x)
is the cumulative density function of the power law that best fits the empirical data in the

region greater than xmin. Hence, xmin minimizes D. In addition, P(x) is constructed using a

resampling bootstrap, generating synthetic data that have similar distributions to the empirical

data. To verify that the data follow a power law, we calculate the p-value to test the goodness of

fit.

This p-value is obtained by measuring the fitness of the series to a power law, calculates the

distance between the empirical data and the theoretical distribution, and uses the KS statistic.

Based on the points made in [25], the p-value is estimated, first by assuming that for n observa-

tions, the observed data have ntail observations with x at least greater than xmin. Then, with

probability ntail/n, a random number xi is generated from a power law that has parameter b̂

and a quantity of data equal to ntail. With probability 1-ntail/n, we uniformly select at random

an element of the observed data with x< xmin to set xi to that number. This process is repeated

for all i = 1. . . n. The synthetic data follow a power law above xmin but a non-power law distri-

bution below, as is the case of the observed data.

This semi-parametric method builds 1000 sets of theoretical data that have the same distri-

bution as the empirical data and that allow one to compare them, obtaining a p-value that is

the fraction denoting the times that the KS statistic for the theoretical data is greater than that

for the empirical data. The criteria remain the same as those used by [25], who establish that a

series follows a power law if the p-value is greater than 0.1.

We also need to specify concepts to analyze second-order connections in the network. These

connections represent the indirect relationships that exist between sectors k and i, when sector

j is connected to sectors k and i, but the former is not linked to i. For example, the iron sector

trades directly with the construction sector, which, in turn, trades with the sector of real-estate

services. Thus, there is only an indirect connection between the iron and real-estate sectors.

These connections allow us to study what occurs when the price of iron increases. This behav-

ior may reduce the amount of goods produced by the construction sector, which, in turn,

affects the real-estate industry; this is the cascade effect that the second-order connections seek

to measure.

Next, we define the second-order weighted degree of production of the i-th sector as the linear

combination of the first-order weighted degrees of production by the matrix of technical

Networks and macroeconomic tail risks
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coefficients:

qpi �
Xn

j¼1

dp
j aji ð10Þ

where dp
j is the first-order weighted degree of production of the j-th sector, and aij is the com-

ponent of the matrix of technical coefficients in the j-th location.

Finally, we estimate the parameter of the heavy tail for the second-order degrees of produc-

tion using maximum likelihood estimators; this parameter is denoted by bb2 , again considering

the process suggested in [25].

Results and discussion

During our empirical analysis we will be comparing the results obtained for Ecuador with

those better known of the United States. First of all, both the theoretical and the empirical

model are adequate to study both type of economies. At least, formally the differences between

the two countries could be interpreted as different positions in a wide range parameter space.

Moreover, we believe such comparison makes our argument clearer for audiences not very

familiar with developing and unknown countries like Ecuador.

Analysis of input demand

In our analysis on the interconnections between sectors of the Ecuadorian economy by the

demand for inputs, we applied a nonparametric estimation of the empirical density for degrees

together with a smoothing Gaussian kernel.

Figs 2 and 3 plot the concentration of the empirical density for degrees of demand in all

available years. The curves look similar in most periods, except for the detailed level matrix of

2012 (2012a) and those for 1995, 1980 and 1975, where the medians are lower than other peri-

ods, as shown in Table 1.

These results imply that firms in different Ecuadorian economic sectors have historically

imported, on average, between 60% and 75% of the inputs required for production. Addition-

ally, when we analyze the concentration, we obtain that, on average, 66% of the sectors are

within one standard deviation of the mean input share, while 91% of the sectors are within two

standard deviations of the mean input share.

In the next section, we analyze the concentration that exists with respect to sectors that pro-

duce inputs for the remainder of the Ecuadorian sectors. There is a large difference in certain

Fig 2. Density first-order weighted indegree input-output matrices 1995–2012. (A) Detailed matrix 2012,

245 economic sectors. (B) Summary matrix 2012, 71 economic sectors. (C) Matrix 2010, 71 economic

sectors. (D) Matrix 2007, 71 economic sectors. (E) Matrix 1995, 34 economic sectors.

https://doi.org/10.1371/journal.pone.0190076.g002
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periods, where the concentration is much higher than that found in the first-order degrees of

demand.

Analysis of input supply

Degree of first-order production. Fig 4 shows the interconnections between the Ecua-

dorian economic sectors for the detailed level input-output 2012 data and summary input-out-

put data for 2012, 2010, 2007 and 1995.

Examining Table 2 in chronological order, we observe that the quantity of sectors with a

higher concentration of degrees of first-order production is decreasing, depending on the dis-

aggregation of economic sectors. From 1980 to 1995, approximately 40% of the economic sec-

tors have a higher concentration; between 2007 and 2012 (summary), there is an approximate

concentration between 33% and 37%, respectively. However, for the detailed 2012 data, the

concentration is only in 15.92% of sectors. To deepen our knowledge on the sectors that are

becoming most connected, in Figs 5 and 6, we present the log-log plots of the empirical and

theoretical distribution of density for the first-order production degrees.

In Figs 5 and 6, we observe that the density distribution of the 2012 detailed matrix (2012a)

compared with that for the same year but more aggregated (71 economic sectors) shows a

greater difference from the theoretical distribution. This behavior is similar to that found by

[1] in the U.S., where with a greater disaggregation of the input-output matrix, one can detect

Fig 3. Density first-order weighted indegree input-output matrices 1975–1993. (A) Matrix 1993, 34

economic sectors. (B) Matrix 1990, 34 economic sectors. (C) Matrix 1985, 34 economic sectors. (D) Matrix

1980, 34 economic sectors. (E) Matrix 1975, 34 economic sectors.

https://doi.org/10.1371/journal.pone.0190076.g003

Table 1. Average, standard deviation, and median of the degrees of demand.

Period Number of Sectors Average Standard Deviation Median

2012a 245 0.3474 0.1983 0.2856

2012 71 0.3802 0.1883 0.3748

2010 71 0.3858 0.1923 0.3636

2007 71 0.4015 0.1928 0.3816

1995 34 0.4153 0.212 0.339

1993 34 0.3836 0.2111 0.3352

1990 34 0.3827 0.2397 0.3335

1985 34 0.3498 0.237 0.3337

1980 34 0.3644 0.2415 0.2771

1975 34 0.3763 0.2566 0.2976

https://doi.org/10.1371/journal.pone.0190076.t001
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the increase in the interconnections between sectors and an impact of a microeconomic shock

of at least double in size compared to that which can be obtained in more aggregated matrices.

Due to the behavior presented in Figs 5 and 6, we proceed to examine whether the concen-

tration of first-order degrees of production have a heavy tail by applying maximum likelihood

estimators as described in section 3.1. In Table 2, we present the results of the estimation of

heavy tails for Ecuadorian input-output matrices.

The p-value obtained indicates that in only 1975, 1980 and 1985, the data does not follow a

power law. These years include the first oil boom and its subsequent decline until the mid-

1980s. Meanwhile, in the other periods, there is the presence of power-law behavior, particu-

larly in 2007, 2010 and 2012. Previously, this behavior only occurred in 1990. Any difference

between the summary and the detailed 2012 data, which are represented by a reduction in the

exponent, may be attributed to the disaggregation of economic sectors. We should keep in

mind that the results for 1975–1995 are based on two-digit ISIC sectorial classification, while

Fig 4. Network evolution of the input-output Ecuadorian matrix. (A) Detailed matrix 2012, 245 economic

sectors. (B) Summary matrix 2012, 71 economic sectors. (C) Matrix 2010, 71 economic sectors. (D) Matrix

2007, 71 economic sectors. (E) Matrix 1995, 34 economic sectors. Each node represents a sector of the

economy, and an edge has been mapped between two nodes when they have a percentage of trade equal to

or greater than 1%.

https://doi.org/10.1371/journal.pone.0190076.g004

Table 2. Power-law test for first-order degrees of production.

Period xmin Sectors Sectorsxmin bβ1
p-value Standard error

2012a 1.698 245 39 2.4215 0.453 0.0364

2012 0.8463 71 26 2.5977 0.768 0.0614

2010 0.8912 71 24 2.5934 0.95 0.0664

2007 0.7369 71 27 2.3721 0.97 0.0508

1995 0.6621 34 15 2.243 0.09 0.0829

1993 0.6622 34 15 2.2436 0.104 0.0829

1990 0.6805 34 14 2.2132 0.252 0.0867

1985 0.7421 34 14 2.2874 0.037 0.092

1980 0.6914 34 15 2.2865 0.071 0.0858

1975 0.1664 34 25 1.6385 0 0.0255

https://doi.org/10.1371/journal.pone.0190076.t002
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data from 2007 to 2012 are based on three-digit ISIC to understand the limits of our compara-

tive analysis.

The distribution of the first-order degrees of production is due to various factors that

affected the Ecuadorian economy after the oil boom of the 1970s. In 1990, certain sectors

related to manufacturing began to become the focus in national production, but over time, the

diversification and expansion of these leading sectors have been reduced, while service sectors

have become more prominent since the 2000s. Hence, in the detailed matrix for 2012, the 39

sectors that presented a power law are primarily service sectors, the top five more concentrated

of which are the following sectors: trade services, employment services, road freight transpor-

tation services, services related to agriculture, and financial intermediation services of other

depository institutions and SIFMI (Financial Intermediation Services Indirectly Measured). In

2010 and 2007, of the 24 and 26 sectors, respectively, that presented a power law, the three

with the highest concentration were trade services, business services and production, and

transport and storage services.

Conversely, in 1995, of the 15 sectors that presented a greater concentration, the five sectors

with the highest concentration were basic metallic and nonmetallic mineral products;

Fig 5. CCDF first-order weighted outdegree input-output matrices 1995–2012. (A) Detailed matrix 2012,

245 economic sectors. (B) Summary matrix 2012, 71 economic sectors. (C) Matrix 2010, 71 economic

sectors. (D) Matrix 2007, 71 economic sectors. (E) Matrix 1995, 34 economic sectors. Log-log plots of the

empirical counter-cumulative density functions (CCDF) of the weighted first-order outdegree.

https://doi.org/10.1371/journal.pone.0190076.g005

Fig 6. CCDF first-order weighted outdegree input-output matrices 1975–1993. (A) Matrix 1993, 34

economic sectors. (B) Matrix 1990, 34 economic sectors. (C) Matrix 1985, 34 economic sectors. (D) Matrix

1980, 34 economic sectors. (E) Matrix 1975, 34 economic sectors. Log-log plots of the empirical counter-

cumulative density functions (CCDF) of the weighted first-order outdegree.

https://doi.org/10.1371/journal.pone.0190076.g006
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chemicals, plastics and rubber products; businesses services; machinery, equipment and trans-

port equipment; and oil refining products.

There is a difference between the productive matrix arrays of 1995 and the matrices for

2007, 2010 and 2012; the latter present concentrations primarily in service sectors, while for

1995, the sectors with the highest concentration were manufacturing sectors. This finding is

related to the data results of [21] from the UK, Japan, Germany, and France.

Despite the concentrations presented above in degrees of first-order production, it is

important for this study to understand the volatility generated by the spreading of a microeco-

nomic shock through indirect relationships between economic sectors. Next, we present the

results of second-order production degrees.

Second-order degrees of production. In this analysis, we will discern how microeco-

nomic shocks spread through the input-output network in the presence of any power-law dis-

tribution in these more indirect relationships between economic sectors.

As can be observed in Figs 7 and 8, the second-order weighted degrees of production present

distributions that differ from the theoretical densities, in particular, for 2007 and 2012. This

finding may indicate that there are sectors with a high concentration of second-order connec-

tions, which can generate significant aggregate volatility in the event of a microeconomic shock.

Fig 7. CCDF second-order weighted outdegree input-output matrices 1995–2012. (A) Detailed matrix

2012, 245 economic sectors. (B) Summary matrix 2012, 71 economic sectors. (C) Matrix 2010, 71 economic

sectors. (D) Matrix 2007, 71 economic sectors. (E) Matrix 1995, 34 economic sectors. Log-log plots of the

empirical counter-cumulative density functions of the weighted second-order outdegree.

https://doi.org/10.1371/journal.pone.0190076.g007

Fig 8. CCDF second-order weighted outdegree input-output matrices 1975–1993. (A) Matrix 1993, 34

economic sectors. (B) Matrix 1990, 34 economic sectors. (C) Matrix 1985, 34 economic sectors. (D) Matrix

1980, 34 economic sectors. (E) Matrix 1975, 34 economic sectors. Log-log plots of the empirical counter-

cumulative density functions of the weighted second-order outdegree.

https://doi.org/10.1371/journal.pone.0190076.g008
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Then, we conducted the test to determine whether the distributions of second-order degrees of

production follow a power law for each of the years in our sample, and we obtained the results

shown in Table 3.

We can confirm that from 2007 to 2012 (summary and detailed), the distribution of the sec-

ond-order outdegree follows a power law, as it does for 1975 and 1980. These last two years are

not in agreement with what we found in the previous analysis. Their magnitude is higher than

those for 2007 and 2010. A parsimonious explanation is that in the second half of 1970s, each

economic sector may have had fewer direct providers but, due to the overall small number of

indirect relationships of sectors, these providers were unavoidable and significant. This finding

may also point to the economic dynamism generated by the oil boom, which increased sec-

ond-order interconnections between different sectors. In contrast, between 1985 and 1995, the

subsequent disappearance of this effect due in part to the ‘lost decade’ and the slow recovery in

the early 1990s occurred. We do not have a similar explanation for 2007, 2010 and 2012; in

contrast to 1980 and 1975, these periods show concentrations of first-order connections,

which show that recent periods are more sensitive and that the aggregate volatility could be

caused by microeconomic shocks spread through the input-output network, in addition to

common shocks to the economy.

Given the foregoing results and to obtain a better grasp of the impact of aggregate volatility,

in Table 4, we present a comparison between the calculations of the norm two of the vector of

influence (kvk2) and the estimate of aggregate volatility defined in classical macroeconomic

Table 3. Power law test for second-order degrees of production.

Period xmin Sectors Sectorsxmin bβ2
p-value Standard error

2012a 3.3164 245 20 2.7426 0.678 0.0871

2012 1.0199 71 16 2.1892 0.749 0.0743

2010 0.4668 71 29 1.9732 0.503 0.0336

2007 0.411 71 31 1.9441 0.894 0.0326

1995 0.1215 34 25 1.5851 0.004 0.0234

1993 0.1971 34 21 1.6593 0.021 0.0314

1990 0.1338 34 24 1.5975 0.003 0.0249

1985 0.0854 34 27 1.5221 0.001 0.0193

1980 0.5958 34 15 2.22 0.37 0.0813

1975 0.4766 34 17 2.13 0.507 0.0665

https://doi.org/10.1371/journal.pone.0190076.t003

Table 4. Analysis of the impact of aggregate volatility.

Period 1/(n)^(1/2) ||v1||2 ||v1||2/(1/(n)^(1/2)) ||v2||2 ||v2||2/(1/(n)^(1/2))

2012a 0.0639 0.123 1.9247 0.0937 1.4664

2012 0.1187 0.2028 1.7084 0.1546 1.3024

2010 0.1187 0.2008 1.6916 0.1536 1.294

2007 0.1187 0.2009 1.6916 0.1543 1.2999

1995 0.1715 0.2201 1.2833 0.1882 1.0974

1993 0.1715 0.2204 1.2852 0.1883 1.0979

1990 0.1715 0.2256 1.3153 0.1904 1.1102

1985 0.1715 0.2196 1.2804 0.1882 1.0974

1980 0.1715 0.2292 1.3364 0.1907 1.1119

1975 0.1715 0.223 1.3004 0.1872 1.0915

https://doi.org/10.1371/journal.pone.0190076.t004
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theory 1= ffiffinp
� �

with n as the number of sectors. Two different values of α are evaluated in Eq 3

for the vector of influence, the first value making reference to the proportion typically used in

the context of a developed economy, α1 = 0.3333 [1], and the second value corresponds to the

proportion calculated for Ecuador, α2 = 0.57 (29). Moreover, the Euclidean norm of the vector

of influence helps to determine the speed of the spreading of a shock in the event of a network,

which represents the non-symmetric interaction between economic sectors.

We have computed two vectors of influence, v1 and v2; the results show that there are

important differences between the estimate of aggregate volatility under the classical macro-

economic methodology and that using the vector of influence. The fact that the vector of influ-

ence based on the smaller alpha is higher than that originating from the Ecuadorian economy

implies that, overall, this economy is not as volatile as the U.S. economy to the transmission of

microeconomic shocks through the input-output network. Indeed, as [28] noted, countries

that have grown faster between 1960 and 2000 have also experienced a greater incidence of

financial crises compared to more stable economies.

If the rate of decay of volatility was behaving according to conventional macroeconomics,

then the ratios in the fourth and sixth columns should be one; instead, we obtain ratios greater

than 1 for both vectors of influence. In addition, we observe that between 1975 and 1995,

the average ratio is 1.1, while this ratio is 1.3 for the 2007, 2010 and 2012 summary matrices

in the last column. For 2012, we could also compute the ratio between the detailed and sum-

mary matrices, which is close to 0.61 for both vectors of influence. This result is higher than

the ratio between ð1=
ffiffiffiffiffiffiffiffi
245
p

Þ=ð1=
ffiffiffiffiffi
71
p
Þ, which is 0.54. This last finding implies that network

effects are more relevant at higher levels of disaggregation, since conventionally, there should

be a decline in the role of sectoral shocks for aggregate volatility of 46%; however, we only

obtain a reduction of 7% in the data. Finally, the impact using the parameter of the U.S.(one

third) is nearly double the estimate by traditional macroeconomics; using the Ecuadorian

parameter, the impact is approximately an additional 47%. This finding reflects that this

emerging economy presents a simpler economy than that which characterizes the more devel-

oped U.S. economy.

The extent of the market and complexity

In our analysis thus far, we have shown that there are several economic characteristics that

make a developing economy, such as Ecuador, different from a developed country such as the

U.S. ([31] and see also [32] for an analysis of 155 countries). Firstly, in 2002, the number of

economic sectors with a similar 4-digit ISIC code classification for the U.S. was 417 sectors,

while Ecuador only had 245. Secondly, the relative contribution of labor is strikingly different.

Thirdly, our analysis of power laws yields that this item has recently become a characteristic of

the Ecuadorian economy in the 2000s but has been present in the U.S. for a while; for instance,

[1] showed this characteristic with input-output data since 1972. We focus on the detailed

matrix of 2012 and compare the shape parameter for first-order degrees, 2.42, with that for sec-

ond-order degrees of 2.74; this increment reflects that there is not much decay in the rate of

shock transmission in a developing economy. Thus, fewer economic sectors engender less

dynamism to the benefit of greater stability.

Let us revise the formula for Eq 8 for the heavy-tail exponent, remembering that the for-

mula is the same for both first- and second-order weighted outdegrees bb1 and bb2 , where the

random variable is the degrees in each case, dp and qp. An economy with a smaller number of

sectors, everything else being constant, should tend to yield lower estimates for the heavy tail.

Whenever this assertion is not the case, the difference between heavier tails in the distribution
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of weighted outdegrees between economies with different levels of development should lie in a

greater number of economic sectors with higher degrees or connectivity.

Proposition 1 Two economies, A and B, will present different estimates for the heavy tail of

the distribution of their outdegrees; in particular, one economy will have a lower estimate if it

is more connected:

Pn
i ln

di

dmin
in A >

Pn
i ln

di

dmin
in B:

Proof: To make our proposition more precise, now assume that two economies, A and B,

have the same number, n, of economic sectors at a given level of disaggregation and that both

present a similar minimum degree, that is, dmin is equal for A and B. Re-expressing either side

of the above inequality as
Pn

i lndi � n � lndmin, the inequality simplifies to:

Xn

i

lndi in A >
Xn

i

lndi in B

This equation implies that the magnitude of the elements of the sum to the left of the

inequality is higher than for those to the right. Everything else being equal, there must be at

least one sector with a higher degree in economy A than in economy B for the inequality to

hold. Anything above this threshold will strengthen that relationship. Q.E.D.

In sum, for an economy to have a lower or more critical value for the exponent of the tail of

the degree distribution, it is necessary for the economy to have more connections.

Proposition 2 Economies with many economic sectors will have a lower value of b̂ as long

as they present more sectors with higher connectivity, that is, higher degrees.

Proof: Suppose that economy A has twice as many economic sectors than economy B, nA =

2nB. Moreover, both economies present an economic sector with a similar minimum degree.

Then, for economy A, it must be true that:

X2nB

i

lndi >
XnB

i

lndi þ nBlndmin

That is, the larger economy must have economic sectors that are more connected to others.

An economy with more economic sectors has a higher threshold regarding its connectivity

than when both economies are of the same size.

For example, let the degree sequence for economy A be {122223}, while for economy B, let

the degree sequence be {112}; that is, nA is 6, and nB is 3. Given the degree sequences and that

the minimum degree for A and B is 1, the result will be 3.871> 0.693, as we would have

expected. Q.E.D

What we have discussed thus far notes the relevance of link creation in this context. This

process implies better opportunities for profit-seeking economic activities with local and

global effects throughout the network [29–31].

The economic policy implications derived from our work are several. Firstly, to increase

connectivity among sectors those frictions that negatively affect the costs in the labor and the

inputs markets must be alleviated. For example, in Ecuador during the period being analyzed

part-time labor contracts have been mostly banned by the legislation, and that has forced a lot

of workers; between 40 and 50 percent of the labor force; to remain self-employed in the infor-

mal sector in very low value-added economic activities. Also, an autarkic perspective has char-

acterized Ecuador’s foreign trade policy with tariffs still being an important tool for fiscal

policy, which has increased the costs to import technology and other intermediate goods.
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Moreover, an emerging economy like the one studied here is not as dynamic as one more

developed, this is reflected in the fewer economic sectors present in the production structure.

This implies that the extent of the market is more limited for the former economy than the lat-

ter. According to the World Intellectual Property Organization between the years 2000 and

2015, the maximum number of patents in a given year for Ecuador was 27 in 2003, while for

the U.S. that number was a bit more than a half million in 2015. This is a ratio of almost twenty

thousand times. Hence, to stimulate the flourishing of new economic sectors, more innovation

is required in Ecuador. At this moment in Ecuador is more relevant to implement policies that

eliminate obstacles to entrepreneurship to unleash innovation. For example, to reduce the

time it takes to legally open a new business.

Finally, we emphasize that the main problem in Ecuador is not too much economic (or

even financial) connectivity causing more volatility in the economy, instead, is the lack of con-

nectivity causing an economy not growing at enough high rates to overcome poverty traps.

What we mean by this is that Ecuador, also, lacks the institutional framework that helps entre-

preneurs and investors to be more willing to take risks and start businesses than in a developed

economy. Therefore, one important necessary reform is to establish an independent judicial

system to guarantee rights and solve trials in an impartial manner. This will, also, insert the

required efficiency to trade in the market.

Conclusions

To obtain deeper understanding regarding why some countries are richer than others, it may

be useful to compare modern economies at different stages of development. Input-output

models could help us to uncover mechanisms that hamper the convergence of lagged econo-

mies toward more developed economies. Here, we studied the evolution of an emerging econ-

omy that contrasts with what is currently known of more sophisticated economies, which are

usually the focus of research.

In this regard, our analysis describes how an emerging economy, in this case, Ecuador, has

been changing its production structure in different stages. Ecuador is characterized as an econ-

omy that continues to need to import much of the inputs it needs for production, which

makes it vulnerable to conditions in the international market. The concentration of the

degrees of demand is not as high as those of production, such as is the case for the U.S. The

degrees of production show higher concentrations over time and even more in the disaggre-

gated matrix for 2012.

Ecuador’s input-output network has 245 sectors at 4-digits ISIC disaggregation, while that

of the U.S. has 417 at the same level. In addition, our estimations for the tail exponents are

larger than those found in the U.S., reflecting productive structures with different levels of crit-

icality. However, we emphasize that our results note that the Ecuadorian economy is currently

more sensitive when confronted with a microeconomic shock than it was before 2000, and,

therefore, its impact would be more serious than the economic crisis that Ecuador experienced

in 1999 [32].
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Methodology: Pedro P. Romero.

Supervision: Pedro P. Romero.

Validation: Carlos Jiménez.
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