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Abstract

Rationale

Clinical phenotyping, therapeutic investigations as well as genomic, airway secretion meta-

bolomic and metagenomic investigations can benefit from robust, nonlinear modeling of

FEV1 in individual subjects. We demonstrate the utility of measuring FEV1 dynamics in rep-

resentative cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD)

populations.

Methods

Individual FEV1 data from CF and COPD subjects were modeled by estimating median

regression splines and their predicted first and second derivatives. Classes were created

from variables that capture the dynamics of these curves in both cohorts.

Results

Nine FEV1 dynamic variables were identified from the splines and their predicted derivatives

in individuals with CF (n = 177) and COPD (n = 374). Three FEV1 dynamic classes (i.e. sta-

ble, intermediate and hypervariable) were generated and described using these variables

from both cohorts. In the CF cohort, the FEV1 hypervariable class (HV) was associated with

a clinically unstable, female-dominated phenotypes while stable FEV1 class (S) individuals

were highly associated with the male-dominated milder clinical phenotype. In the COPD

cohort, associations were found between the FEV1 dynamic classes, the COPD GOLD

grades, with exacerbation frequency and symptoms.

PLOS ONE | https://doi.org/10.1371/journal.pone.0190061 December 20, 2017 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Conrad DJ, Bailey BA, Hardie JA, Bakke

PS, Eagan TML, Aarli BB (2017) Median regression

spline modeling of longitudinal FEV1

measurements in cystic fibrosis (CF) and chronic

obstructive pulmonary disease (COPD) patients.

PLoS ONE 12(12): e0190061. https://doi.org/

10.1371/journal.pone.0190061

Editor: Yuanpu Peter Di, University of Pittsburgh,

UNITED STATES

Received: August 11, 2017

Accepted: December 7, 2017

Published: December 20, 2017

Copyright: © 2017 Conrad et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The CF cohort data

requires 6 clinical factors which are together

individually identifiable particularly in this small

subset of CF patients. These factors were required

to match the patients into the clinical phenotypes.

Each CF subject in the current study was mapped

to a regional clinical phenotype. These predicuted

phenotypes and all of the pulmonary function

studies needed to generate the median regression

splines and the lung function dynamic classes will

be made available in a supplementary table. The

https://doi.org/10.1371/journal.pone.0190061
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190061&domain=pdf&date_stamp=2017-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190061&domain=pdf&date_stamp=2017-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190061&domain=pdf&date_stamp=2017-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190061&domain=pdf&date_stamp=2017-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190061&domain=pdf&date_stamp=2017-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190061&domain=pdf&date_stamp=2017-12-20
https://doi.org/10.1371/journal.pone.0190061
https://doi.org/10.1371/journal.pone.0190061
http://creativecommons.org/licenses/by/4.0/


Conclusion

Nonlinear modeling of FEV1 with splines provides new insights and is useful in characteriz-

ing CF and COPD clinical phenotypes.

Introduction

Longitudinal lung function assessments in Cystic Fibrosis (CF) and Chronic Obstructive Pul-

monary Disease (COPD) are critical for monitoring disease progression and response to ther-

apy. Population-based modeling of lung function typically uses least-squares trendlines,

median quantile linear regression, or smoothing spline curves [1–9]. These approaches are

useful in assessing long-term disease progression as well as genomic/genetic risk in both CF

and COPD populations. However, some studies including airway secretion microbiome and

metabolomic studies require quantification of individual short-term (i.e. weeks to months)

lung function variability. In most cases, individual lung function data is modeled with least-

squares trendlines focusing on the slopes and intercepts [5,10]. At least two investigations

focused on individual variability as a marker of disease risk in CF and COPD populations

[10,11]. However, these studies used one or two variables and only captured some of the full

dynamic complexity of a specific individual’s lung function.

The purpose of this analysis was to model lung function dynamics of individuals with

median regression splines in order to capture clinically relevant, subject-specific variability.

Furthermore we aimed to determine if this variability provides additional insights to CF and

established COPD phenotypes as well as commonly assessed clinical parameter.

Methods

Study populations

The study was reviewed and approved by the UCSD HRPP (application #081500) and the Nor-

way Regional Ethics Committee (REK 165.08) and performed in accordance with the Declara-

tion of Helsinki and the Good Clinical Practice guidelines. All subjects signed informed

consent.

The CF population consisted of all adult (�18 years of age) patients seen at the San Diego

adult CF program at least once during the calendar year 2014 (n = 177). For each CF patient,

we collected basic demographic (gender, age), nutritional data (height and weight) and all

available clinically-indicated spirometry results dating back to 1/1/2012. Spirometry was per-

formed in accordance with ATS guidelines and normalized using the Hankinson equations

[12]. The age�FEV1% predicted (AF) product is a derived variable calculated by multiplying

the age of the individual at the most recent FEV1 by the best FEV1% during the previous year

and is used to assess disease risk [5,13]. Each CF subject was mapped into a specific CF multi-

dimensional clinical phenotype (MDCP) based on the most recent clinical data and the pub-

lished random forests prediction model [13]. These clinical phenotypes were generated using

age, gender, FEV1, FVC, height and weight and two derived variables: Body Mass Index (BMI)

and the AF product (S1 Table). These phenotypes represent clinically relevant groups that dif-

fer not only in the class forming variables but also in microbiology (13).

The COPD data derives from the Bergen Cohort COPD Study (BCCS) [14,15]. Only

patients with a minimum of four visits were included in the present study (n = 374). BCCS

evaluations were attempted every 6 months for 3 years with an additional visit 3 months after
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baseline, totaling 8 visits. Smoking habits and exacerbations since last visit were recorded by

the study physician at each visit. Breathlessness was quantified using modified Medical

Research Council dyspnea scale score (MMRC) [16]. Lung function was normalized to the

ECCS 1993 equations [17]. The COPD subjects were classified into their specific GOLD grades

of airway obstruction using their FEV1% values.

Nonlinear modeling of Forced expiratory volume 1 (FEV1)

We modeled each subject’s FEV1% using the estimated median regression spline. A median

spline is similar to the traditional cubic smoothing spline except that the conditional median is

estimated. The estimation of this spline is reproducible, and generates statistically robust

smoothing curves. The median quantile regression spline is not sensitive to technical or bio-

logical outlier values [18]. Details of fitting the median splines are found in the Supporting

Information (S1 Fig).

For each subject, the time between the first and most recent spirometry was divided into

1000 equally spaced time points. The predicted spline values as well as the estimated first and

second derivatives were determined at each time point. From these, the following nine sum-

mary variables were determined for each subject: a) the effective degrees of freedom of the

median spline, b) the range between the 95th and 5th percentile of the median spline and the

derivatives, c) the number of local minima and maxima of the median spline and the deriva-

tives, d) and the median values of the first and second derivative of the splines. The effective

degrees-of-freedom is a proxy for the approximate degree of the equivalent polynomial fit

needed to generate the median spline and is thus a measure of the variability of the data. Simi-

larly, the number of local maxima and minima identify the instances when the spline or deriv-

atives change direction; another but distinct measure of variability. The range between the 5th

and 95th percentile values of the spline and derivatives quantifies the magnitude of change

occurring in these curves during the study period. Finally, the median values of the first and

second derivatives identify the overall rate of change of lung function and the general curva-

ture of the median spline, respectively (S1 Fig). In addition to these variables, the slopes of the

least-squares trendlines and the median of differences from the best FEV1% were estimated for

each patient [10].

FEV1 dynamic class formation

Class formation used the algorithms previously described [13]. The CF and COPD cohorts

were analyzed separately. The nine variables were used to generate a proximity matrix using

the unsupervised Random Forests algorithm [13,19]. Partitioning Around Medoids (PAM)

clustering was used to create the classes (i.e. k = 3, 4 or 5) [20]. The classification error rates

(i.e. out of bag error rates) were minimized using the three-class strategy (i.e. k = 3).

Dimension reduction demonstrated that the use of four variables (the effective degrees of

freedom and the ranges between the 5th and 95th percentile of the median regression spline

and the two derivatives) created classes with out-of-bag error rates of about 8%.

Statistical analysis

Notch, mosaic and matrix plots were generated using R Version 3.4.0 (base and vcd packages)

[21–23].
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PLOS ONE | https://doi.org/10.1371/journal.pone.0190061 December 20, 2017 3 / 13

https://doi.org/10.1371/journal.pone.0190061


Results

Patient population

For this study, 177 adult CF patients signed consent and had complete datasets including a

minimum of 4 spirometry studies (Table 1). This patient population did not differ significantly

from other adult CF populations in terms of age, gender, nutritional parameters or lung physi-

ology [13,24]. There was a median of six spirometric assessments per patient in this cohort.

Each CF subject was mapped to one of five regional clinical phenotypes and as a group they

closely resemble the original published phenotypes (Fig 1A) [13]. The distribution of demo-

graphic and physiological parameters between the GOLD grades for the Bergen Cohort COPD

Study is shown in Fig 1B [14,15]. There were no clinically significant differences in age, gender,

Table 1. Baseline demographics in the San Diego CF cohort and the Bergen Cohort COPD study.

San Diego CF cohort Bergen Cohort COPD Study

Subjects (n) 177 374

Age (years) 29 (11) 63 (7)

BMI kg/m2 22 (3) 26 (6)

Pack-years (years) - 40 (23)

MMRC - 1.6

Exacerbation rate* - 1.4

FEV1 (%) predicted 63 (21)† 52 (15)

FVC (%) predicted 81 (21)† 93 (18)

Data presented as mean or mean (standard deviation). BMI: Body Mass Index. Pack-years: packs of 20

cigarettes smoked per day x years as a smoker, MMRC: modified Medical Research Council dyspnea scale

score–mean. FEV1: Forced expiratory volume in 1 second, FVC: Forced Vital Capacity.

*Exacerbation rate the first year of the study.
†Best FEV1 and FVC (%) predicted for the prior 12 months.

https://doi.org/10.1371/journal.pone.0190061.t001

Fig 1. Clinical phenotype characterization. Notched boxplots of basic clinical and physiological characteristics of the CF (Fig 1A) and

COPD (Fig 1B) cohorts. Each subject was mapped to either a MDCP class [13] or COPD GOLD grade. The AF product of an individual is

the age at the most recent FEV1 multiplied by the best FEV1% during the study period. The linear slope is the slope of the least squares

trendline fitted to the FEV1 data during the study period.

https://doi.org/10.1371/journal.pone.0190061.g001
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BMI or loss of lung function as assessed by the slope of the least-squares trendlines between

the GOLD grades. Patients in GOLD 3 and 4 had higher MMRC scores.

Lung function dynamic variables in CF MDCP classes and in the COPD GOLD grades. In

the CF population, there were no differences in the dynamic variables including the slope of

the least-squares trendlines between subjects mapped into the published regional clinical phe-

notypes except for minor differences in the ranges of the median regression splines and their

estimated first derivatives (Fig 2A). Similarly, the BCCS cohort demonstrated slightly smaller

ranges of the splines and estimated first derivatives in GOLD grade 4 compared to grade 2.

There were no significant differences in the other dynamic variables between the GOLD

grades 2–4 (Fig 2B).

FEV1 dynamic class formation

These modest associations of the individual FEV1 dynamic variables with the CF clinical phe-

notypes and COPD GOLD grades suggested that combinations of the variables were needed to

characterize the dynamics of the median regression splines. In the CF cohort, the classification

error rates using the k = 3 strategy decreased slightly from 10% to 8% with the use of just four

of the original nine variables i.e. effective degrees of freedom, and the ranges between the 5th

and 95th percentile values of the spline, the first and second derivatives. Similar results were

obtained with the COPD cohort data. In both cohorts, the classification error rates were the

lowest with the k = 3 and increased with the k = 4,5 or 6 strategies.

The three resulting classes or lung function phenotypes differed significantly in terms of the

ranges of the splines and the derivatives as well as the effective degrees of freedom. The groups

with the highest and lowest ranges and effective degree of freedom were labeled as hypervari-

able (HV) and stable (S) respectively. The class with values that were between was labeled

intermediate (I). The four classifying variables were clearly separated between the CF and

COPD classes (Fig 3).

Spaghetti plots of the CF subjects show the values of the median spline and the first two

derivatives as a function of time (Fig 4). These plots demonstrated that all three classes of

splines had similar absolute values and general rate of decline in FEV1% predicted. In contrast,

Fig 2. FEV1% dynamic variables in CF and COPD clinical phenotypes. Notched boxplots of the FEV1% dynamic variables for CF

(A) and COPD (B) subjects are shown for each CF MDCP class and COPD GOLD grade.

https://doi.org/10.1371/journal.pone.0190061.g002
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the derivative plots clearly demonstrate that the FEV1 dynamic class S has little dynamic

change whereas class HV was hypervariable. Class I had intermediate variability.

Spaghetti plots of the three COPD FEV1 dynamic classes showed similar median spline val-

ues and the mean rates of lung function loss in each of the GOLD grades (Fig 5). As with the

CF cohort, the plots of the derivatives clearly showed that the COPD FEV1 dynamic class S

was very stable compared to class HV. Again, class I demonstrated intermediate variability.

FEV1 dynamic classes versus clinical parameters

In the CF cohort, there were no differences in age, AF product, BMI, or slope of the least-

squares trendlines between subjects in the three lung dynamic classes (Fig 6). Similarly, sub-

jects in the BCCS FEV1 dynamic classes did not differ significantly in terms of age, AF prod-

uct, BMI or slopes of the least-squares trendlines. The median difference from the best FEV1%

is associated with a faster rate of lung function decline in CF patients [10]. Compared to CF

patients with the stable phenotype, the hypervariable CF subjects had a higher median differ-

ence from the best FEV1% (HV/S ratio of 1.71 with a p value < .001) which is compatible with

the higher risk associated with this hypervariable lung function phenotype.

FEV1 dynamic classes vs clinical phenotypes

Mosaic plots were used to compare the distribution of categorical variables between the FEV1

dynamic classes (Fig 7). Mosaic plots assume proportional distribution of the categorical vari-

ables to be the same in the subclasses as it is in the whole population [22,23]. The size of the

boxes is proportional to the number of subjects that share the attributes of the categories.

Boxes that statistically deviate significantly from expected result are shaded.

Fig 3. CF and COPD FEV1% dynamic classes classifying variables. Notched boxplots demonstrate the distribution of FEV1% dynamic

classifying variables for CF and COPD subjects in each of the FEV1% Dynamic Classes, i.e. stable (S), intermediate (I) and hypervariable

(HV).

https://doi.org/10.1371/journal.pone.0190061.g003
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In the CF cohort, the stable CF FEV1 dynamic class (S) occurred 2.1 times as often than

expected (expected values calculated by the Chi-squared test of independence) in male subjects

of the regional CF MDCP D, a milder clinical phenotype (Fig 7A). In contrast, the females in

regional CF MDCP C were classified twice as much as expected with the hypervariable FEV1

dynamic class HV. This clinical phenotype is female-dominated and has a high rate of pheno-

type transition over a three-year period [13]. Finally another strong association noted in CF

data is one between the FEV1 dynamic class I with male subjects in regional CF MDCP B (2.1

times the expected level), an older, male-dominated phenotype with poor lung function and

nutritional status and a high rate of death and lung transplantation.

The COPD cohort demonstrated a strong positive association between the stable COPD

FEV1 dynamic class S in GOLD grade 4 patients with the number of pulmonary exacerbations

(4.0 times the expected value) and high MMRC dyspnea scores (2.4 times the expected value)

(Fig 7B and 7C). In contrast, the more variable COPD FEV1 dynamic class I was associated

with milder GOLD grade 2 and lower MMRC dyspnea scores (1.3 times expected value). In a

Fig 4. Spaghetti plots of the regional CF cohort. The individual estimated median regression splines and their predicted first and

second derivatives are depicted in the three CF FEV1% Dynamic Classes. A thousand equally spaced values of the estimated median

regression spline and their predicted first and second derivatives were plotted for each subject in each FEV1% dynamic class (thin grey

lines). The mean value at each interval point is plotted as the black solid line.

https://doi.org/10.1371/journal.pone.0190061.g004

Nonlinear modeling of FEV1 in CF and COPD patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0190061 December 20, 2017 7 / 13

https://doi.org/10.1371/journal.pone.0190061.g004
https://doi.org/10.1371/journal.pone.0190061


similar manner, COPD FEV1 dynamic class HV was positively associated with milder GOLD

grade 2 patients and fewer exacerbations (1.4 times the expected value).

Discussion

We demonstrate the feasibility of modeling individual FEV1% with median regression splines

in CF and COPD subjects. Variables capturing the dynamics of the splines and their predicted

first and second derivatives were used to form lung function variability classes. A dimension

reduction strategy that reduced the data complexity identified groups of subjects with similar

spline dynamics. This strategy retained variables which capture the magnitude and variability

of the changes in these curves and maintained classification error rates in the 5–10% range. In

larger studies, it will likely be more useful to further refine the FEV1 dynamic classes by using a

greater number of the variables for class formation.

The dynamics of FEV1 were not included in the formation of the regional CF phenotypes

and yet the different airway lung function dynamic classes were enriched in specific clinical

phenotypes. For example, males in the regional CF clinical phenotype, CF MDCP D, were pos-

itively associated with the most stable FEV1 dynamic class S consistent with this phenotype’s

milder, more stable clinical course. The intermediate CF FEV1 dynamic class I was over-repre-

sented in CF MDCP B, another older, male-dominated phenotype that is associated with the

Fig 5. Spaghetti plots of the BCCS COPD cohort. This figure was similarly labeled as Fig 4.

https://doi.org/10.1371/journal.pone.0190061.g005
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highest rates of death and lung transplantation. Finally, the hypervariable CF lung function

phenotype was seen more frequently than expected in two female-dominated CF clinical phe-

notypes, MDCP C and E. CF MDCP C is clinically unstable with the highest rate of phenotype

transition over three years and a high frequency of sputum cultures positive for fungal species

Fig 6. Distribution of physiologic variables of CF and COPD subjects in the FEV1% dynamic classes. Notched boxplots of age, AF

product, BMI and slope of the least-squares trend line are shown for CF (6A-D) and COPD (6E-H) subjects in the FEV1% Dynamic Classes.

Also shown is the distribution of the median difference between best FEV1% (CF subjects) and the MMRC dyspnea score (COPD subjects).

https://doi.org/10.1371/journal.pone.0190061.g006

Fig 7. Mosaic plots of the FEV1% dynamic classes. Mosaic plots were used to assess positive or negative associations between clinical

phenotypes and FEV1 dynamic classes with other categorical variables. Since width and length of the boxes are proportional to the

observed frequencies in the datasets, the area of the boxes represent the proportion of subjects that share the attributes. To the extent that

the observed proportions of subjects differs from expected proportions, the boxes are shaded to different levels of Pearson residuals. The

associations between FEV1% Dynamic Class with MDCPs and gender in the CF cohort are shown (A). The associations between FEV1%

Dynamic Class, COPD GOLD grades and either MMRC dyspnea scores or pulmonary exacerbations are depicted (B,C).

https://doi.org/10.1371/journal.pone.0190061.g007
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[13]. It is unclear if the distinctive characteristics of the airway microbiome in these two phe-

notypes are responsible for the lung function variability.

The modeled lung function in the COPD cohort behaved distinctly from the CF cohort.

The ranges of the estimated second derivatives of the COPD cohort was approximately 10% of

the CF cohort which likely resulted from differences in the pathophysiology of the disease and
the indications for the spirometry assessments i.e. irregularly-timed, clinically indicated stud-

ies for the CF population versus more regularly-spaced research spirometries in the BCCS

cohort. Although the COPD cohort showed no strong associations between gender, the FEV1

dynamic classes and GOLD 2,3,or 4 grades, it surprisingly showed positive associations

between the stable COPD FEV1 dynamic class (S), the severe GOLD grade 4 and both the

number of exacerbations and higher MMRC dyspnea scores. The more variable FEV1 dynamic

classes (class I and HV) were enriched in subjects with milder GOLD grades 2 and 3 and lower

pulmonary exacerbations rates and MMRC dyspnea scores. In this COPD cohort lung func-

tion variability appeared inversely associated with the MMRC scores, exacerbation rates and

underlying FEV1%. A survivor effect might explain the overrepresentation of the stable FEV1

dynamic class in GOLD grade 4. With very low FEV1, even small changes in FEV1 may lead to

exacerbation.

This analysis modeled individual lung function measurements over time, summarized the

changes, and then used the summary statistics to generate groups of subjects with similar

dynamic behavior. Depending on the modeling objective, there are many alternative statistical

models that can be considered. Linear mixed models are a common approach for modeling

longitudinal data, where population-level mean response is modeled as a linear function of

time and subject specific random effects are used to characterize the between subject and

within subject variations. Szczesniak et al. successfully extended this approach in CF patients

by using semi-parametric mixed models and penalized regression splines for a more flexible

mean structure in the mixed modeling approach [25]. Their modeling of FEV1% decline using

semi-parametric nonlinear models suggested that the trends for survivors and non-survivors

diverged around 12 years of age. Using a Bayesian framework, Moss et al. investigated several

change point models including mixture models, for the decline of lung function in children

and adolescents with CF [8]. The objective was to estimate the magnitude of lung function

decline, along with the factors associated with the decline, and still account for individual

changes over time. The results supported the hypothesis that there are two groups of CF ado-

lescents, one with a change point in the decline of lung function and one without a change

point. Recently, Szczesniak et al. used the statistical approach of sparse functional principal

components analysis to classify patients into distinct phenotypes using longitudinal FEV1 tra-

jectories [9]. The classes were determined by a quantile rule using the first and third tertiles of

scores from the first functional principal component. This is in contrast to our study where the

groups were determined by the data in an unsupervised method.

Two additional studies demonstrated the utility of characterizing individual variability of

FEV1% in CF and COPD populations using a single measure of lung function variability

[10,11]. Morgan et al. demonstrated that the median deviation from the best FEV1 was the best

predictor of lung function loss over a two-year period. Casanova et al. looked at a very different

model of individual FEV1 variability i.e. the number of spirometry studies that exceeded the

annual loss of lung function and found that FEV1 variability was not significantly associated

with 2 year mortality. In contrast, this current study captures the complexity of lung function

dynamics using multiple measures of the variability of the median regression splines.

There are several limitations of this study. The generalizability of the clinical associations

presented in this study will be limited to the extent that the datasets may not represent the

adult CF population or the general COPD population. Comparisons of basic demographic

Nonlinear modeling of FEV1 in CF and COPD patients
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data of the CF cohort and the CF Foundation Patient Registry and also the BCCS cohort to the

broader ECLIPSE dataset suggest that the findings will generally hold up in larger studies

[4,24]. Another limitation involves how the number and timing of the spirometry data affects

spline dynamics or FEV1 dynamic class assignment in both clinical cohorts. We expect that

stable patients with milder CF clinical phenotypes would have fewer studies and would more

likely be classified into the stable FEV1 dynamic class. To the extent that CF dynamic class for-

mation is based on real life use of spirometry, CF lung function class formation with encoun-

ter-based registry data may improve its associations with clinical phenotypes. In contrast,

mapping COPD patients with clinically-indicated spirometry data into these COPD lung func-

tion dynamic classes would likely not provide valid insights.

In summary, nonlinear modeling of lung function using median regression splines provides

unique opportunities to quantify short-term airway physiology variability and to associate this

variability with important clinic parameters including clinical phenotypes and other dynamic

factors that alter airway physiology such as the airway microbiome and metabolome or the

host acute immune response.

Supporting information

S1 Fig. Median regression spline and derivative generation and dynamic variables. Each

subject’s FEV1% is modeled and estimated using a median regression spline with the smooth-

ing parameter chosen by generalized cross validation (GCV) based on the quantile function.

The median smoothing spline is the solution to a minimization problem and fits a piecewise

cubic polynomial with the join points at the unique set of time or x-values. The piecewise poly-

nomials are constructed so that the entire curve has continuous first and second derivatives.

The analysis and computations were performed using R and the qsreg median spline regres-

sion function with the default parameters [21,26].

Case Report. A case report demonstrates how the median regression spline was used to capture

the short-term dynamics of the FEV1% predicted. The patient is a 43-year old, pancreatic suffi-

cient woman with a CFTR genotype of dF508/Q372Q. The latter, synonymous mutation is a

variation of a canonical splice site sequence at the exon-intron boundary at Exon 7. Although

dF508 is considered not responsive to ivacaftor therapy, the responsiveness of this specific

Q372Q mutation was unclear. The patient grows Escherichia coli, Aspergillus fumigatus, Scedos-
porium azoospermia and methicillin-sensitive Staphylococcus aureus. Therapies include inhaled

7% hypertonic saline, recombinant human DNase, and tobramycin. Oral medications include

the chronic use of oral azithromycin and voriconazole. In the past, she was on chronic inhaled

amphotericin because of recurrent hemoptysis.

The Figure demonstrates the summary variables of the median regression spline that were used

to capture the dynamics of the FEV1 used in the CF and COPD cohorts. The measured FEV1%

predicted values (black circles) and the median spline (black curve) are shown for the patient in

the case report. Also depicted, are the periods of oral antibiotic (horizontal grey) and intrave-

nous antibiotic (horizontal black) therapy. Off-label use of ivacaftor therapy is indicated with

the horizontal red bar. The interval between the earliest and most recent FEV1 value was subdi-

vided into 1000 equal spaced points. From these points, the median, as well as the 5th and 95th

percentile values were predicted. Additional derived variables include the range between the

values of 5th and 95th percentile points (vertical grey) bar and the number of local maxima and

minima (red triangles). These variables were also identified in the first and second derivatives.

Finally, in addition to these variables, the slope of the least squares regression line (thin grey

trendline) and the effective degrees of freedom of the median regression spline were estimated.

(TIF)
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S1 Table. Multi-dimensional Clinical Phenotypes (MDCPs). The mean values of the FEV1%

predicted (NHANES III), Brasfield chest Xray score, age, AF product, BMI and percent of

male subjects in each of the regional Cystc Fibrosis clinical phenotypes. Adapted from PLOS

ONE 2015;10:e0122705 (13).

(TIF)

S2 Table. Cystic fibrosis cohort lung function.

(XLS)

S3 Table. Chronic obstructive pulmonary disease cohort lung function.

(XLS)
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