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Abstract

The North China Plain is one of the most important grain production regions in China, but is

facing serious water shortages. To achieve a balance between water use and the need for

food self-sufficiency, new water efficient irrigation strategies need to be developed that bal-

ance water use with farmer net return. The Crop Environment Resource Synthesis Wheat

(CERES-Wheat model) was calibrated and evaluated with two years of data which con-

sisted of 3–4 irrigation treatments, and the model was used to investigate long-term winter

wheat productivity and water use from irrigation management in the North China Plain. The

calibrated model simulated accurately above-ground biomass, grain yield and evapotranspi-

ration of winter wheat in response to irrigation management. The calibrated model was then

run using weather data from 1994–2016 in order to evaluate different irrigation strategies.

The simulated results using historical weather data showed that grain yield and water use

was sensitive to different irrigation strategies including amounts and dates of irrigation appli-

cations. The model simulated the highest yield when irrigation was applied at jointing (T9) in

normal and dry rainfall years, and gave the highest simulated yields for irrigation at double

ridge (T8) in wet years. A single simulated irrigation at jointing (T9) produced yields that

were 88% compared to using a double irrigation treatment at T1 and T9 in wet years, 86% of

that in normal years, and 91% of that in dry years. A single irrigation at jointing or double

ridge produced higher water use efficiency because it obtained higher evapotranspiration.

The simulated farmer irrigation practices produced the highest yield and net income. When

the cost of water was taken into account, limited irrigation was found to be more profitable

based on assumptions about future water costs. In order to increase farmer income, a sub-

sidy will likely be needed to compensate farmers for yield reductions due to water savings.

These results showed that there is a cost to the farmer for water conservation, but limiting

irrigation to a single irrigation at jointing would minimize impact on farmer net return in North

China Plain.
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Introduction

The North China Plain (NCP) is one of the most important grain production regions in

China, accounting for 56% the wheat grain production of China [1]. Annual precipitation is

unevenly distributed both within and across seasons, which does not satisfy seasonal water

demand for winter wheat [2]. For this reason, irrigation is required to achieve high grain yields

for winter wheat in NCP. Because there are no reliable surface water sources for irrigation,

groundwater is the primary source of water for irrigation. However, groundwater use exceeds

the recharge rates, and the groundwater levels are dropping, causing a range of adverse envi-

ronmental and economic impacts [3,4]. It was reported that one way to alleviate groundwater

depletion is to decrease sown area of winter wheat and irrigation amount [3,5]. However, this

would threaten national food security if winter wheat production was significantly reduced in

NCP [6]. The scale of the problem is such that it is now imperative to find ways to reduce agri-

cultural water use without affecting food supplies [7]. To achieve the trade-offs between allevi-

ating water resource over-exploitation and food self-sufficiency, a greater adoption of water-

efficient production systems appears to be the best solution [8,9].

In agricultural production in NCP, farmers usually irrigate three to five times via flood irri-

gation over the winter wheat growing season. Previous studies have shown that double irriga-

tion, one at jointing and the second at heading or anthesis results in higher water use

efficiency and yield [10]. Nevertheless, groundwater use is not sustainable even under opti-

mized irrigation regimes. To stabilize the groundwater table, new irrigation strategies must be

developed that will maintain yield and increase water use efficiency (WUE) [11].

Reducing the frequency of irrigations and the amount of water applied would help alleviate

groundwater depletion. This strategy is referred to as deficit irrigation. Deficit irrigation is

defined as the application of water below full crop water requirements. Moderate water deficit

during grain filling increases mobilization of assimilate stored in vegetative tissues and grain,

resulting in greater grain yield and WUE. Supplemental irrigation at early growth stages

enables roots to grow deeper into soil layers, which enhances uptake of soil-stored water from

the deeper subsoil layers [12]. Thus, deficit irrigation promotes vegetative growth and more

efficient soil water use during the reproductive stage [13]. Recommendations for limited irri-

gation differ. Some research reported that irrigation applied before planting under limiting

condition increases yield [14,15]. Other studies suggest that one irrigation at jointing can

increase grain yield and maximize WUE [11,12]. Some studies have tested irrigation strategies

based on pan evaporation or monitoring soil water levels. These strategies recommended irri-

gation amounts of 50–100 mm divided into applications of 20–40 mm each [16,17]. However,

in practice it is still difficult for farmers to use such criteria. Thus it is important to clarify how

to schedule supplemental irrigation to minimize yield loss under a limited water supply.

Agricultural systems modeling has proven to be an effective tool to investigate the potential

impacts of climate variability and management strategies on crop productivity, resource use

efficiencies and environmental impacts of farming systems [18,19]. In recent years, the Deci-

sion Support System for Agrotechnology Transfer (DSSAT) model [20,21] has been success-

fully used to analyze irrigation strategies for wheat in China [22–28]. However, these studies

did not evaluate how the yield of winter wheat and soil water balances are affected by water

limiting irrigation strategies to conserve water over the long term.

Water pricing plays a significant role in coordinating water use and benefits increases [29].

In the NCP, irrigation water is currently free, and farmers currently only pay the power costs

associated with pumping groundwater [30]. Thus farmers are not charged volumetric prices

and so are not encouraged to conserve water [31]. In China, much research has been con-

ducted to assess water rights and irrigation price policy [32–36]. However, there is limited
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research available to evaluate the impact of potential water cost policies on crop productivity

under deficit irrigation strategies.

The objectives of this study were: 1) to calibrate the DSSAT-CERES-Wheat model to accu-

rately simulate winter wheat growth and yield in the North China Plain under limiting irriga-

tion condition; 2) to simulate winter wheat grain and biomass yields, evapotranspiration, and

water use efficiency responses to different irrigation scheduling practices using long-term

weather data; 3) evaluate the impact of water price on economic return under different irriga-

tion strategies.

Materials and methods

Study site

The study was carried out in Gaocheng District, Shijiazhuang City, Hebei Province, China,

which is in the middle of NCP. The typical cropping system is a winter wheat and summer

maize double cropping system. The area is semi-arid with a monsoon climate, with average

annual temperature of 11–14˚C. The average precipitation of winter wheat is 108.7 mm form

1994 to 2015 (Fig 1). More than 70% of the precipitation occurs from July to September [37].

Only 20–30% of the precipitation occurs from October to early June during the wheat growing

season. The soil type was clay-loam.

Field management and experiment data

Field experiments were conducted in 2013–2014 (experiment 1) and 2014–2015 (experiment

2). Experiment 1 (Table 1) consisted of three irrigation treatments, including normal farmer

practice (100 mm applied at jointing and 100 mm at anthesis with 240 N kg ha-1), deficit irriga-

tion level 1 (60 mm applied at jointing and 60 mm at anthesis with 195 N kg ha-1), deficit irri-

gation level 2 (45 mm applied at jointing and 30 mm applied at anthesis and 30 mm applied at

Fig 1. Distribution of precipitation, maximum (Tmax) and minimum temperature (Tmin) at Gaocheng, over 22

growth season.

https://doi.org/10.1371/journal.pone.0189989.g001
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grain filling with 195 N kg ha-1). Experiment 2 was set up as a split-plot design with four irriga-

tion treatments in the main plots and three nitrogen levels in the sub-plots. A local winter

wheat cultivar, Shimai 18 was planted, and the plot size was 7 m × 10 m with three replications

in all experiments. In experiment 1, the winter wheat was sown on October 8 with a plant den-

sity of 300 plants m-2. In experiment 2, winter wheat was sown on October 9 with a plant den-

sity of 317 plants m-2. Weeds, insect pests, and diseases were properly controlled and the crops

were not limited by other nutrients. Thirty plants were selected to determine the above ground

dry matter accumulation at pre-winter, double-ridge, jointing, booting, anthesis, grain filling

and maturity in all experiments. The leaf area index (LAI) was determined from the same sam-

ples as used for dry matter weight. Leaf area was calculated as leaf length × leaf width × 0.83.

All plant samples were oven dried at 105˚C for 30 min, then dried at 75˚C for 72 h until reach-

ing constant weight. At maturity, 2 m2 of plants in each plot was harvested for the determina-

tion of grain yield.

CERES-Wheat model calibration and evaluation

The DSSAT-CERES-Wheat model version 4.6[20,21] was used to simulate above-ground bio-

mass, grain yield, and evapotranspiration at the study site. The model requires daily weather

data, soil profile characteristics, crop management data, and genotype coefficients as general

inputs. Daily weather data from 1994 to 2016 including daily average, maximum and mini-

mum temperature, precipitation, and sunshine hours were obtained from the weather station

located in Gaocheng, China. Daily solar radiation was calculated using daily sunshine hours

using the Weatherman software provided with DSSAT 4.6. The data of Yang et al. [22] were

used to establish soil profile characteristics including lower limit, drained upper limit and satu-

rated water holding capacity. The cultivar coefficients required to run the DSSAT-Wheat

model were calibrated with field observations of biomass obtained in the 2013–2014 experi-

ments. The cultivar coefficients required to simulate crop growth are shown in Table 2. For

Table 1. Water and nitrogen treatments in the experiments conducted at Gaocheng, China (2013–2015).

Total irrigation amount (mm) Jointing Irrigation (mm) Anthesis Irrigation (mm) Grain Filling Irrigation (mm) N application (N kg ha-1)

Experiment 1 200 100 100 0 240

120 60 60 0 195

105 45 30 30 195

Experiment 2 67.5 67.5 0 0 120, 180, 240

67.5 37.5 30 0 120, 180, 240

67.5 37.5 15 15 120, 180, 240

135 67.5 67.5 0 120, 180, 240

https://doi.org/10.1371/journal.pone.0189989.t001

Table 2. Genetic coefficients calibrated for the 2013–2014 and 2014–2015 seasons.

Genetic

coefficient

Definition Calibrated values

P1V Days, optimum vernalizing temperature, required for vernalization 45

P1D Photoperiod response (% reduction in rate/10 h drop in pp) 68

P5 Grain filling (excluding lag) phase duration (˚C day) 800

G1 Kernel number per unit canopy weight at anthesis (g) 31

G2 Standard kernel size under optimum conditions (mg) 35

G3 Standard, non-stressed mature tiller weight (including grain) (g dry

weight)

1.4

PHINT Interval between successive leaf tip appearances (˚C day) 100

https://doi.org/10.1371/journal.pone.0189989.t002
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the remaining growth and yield coefficients, an iterative procedure was used to obtain a close

match between simulated and measured leaf area index (LAI), biomass and grain yield. Fol-

lowing calibration, the model was evaluated using field experiment 2. To quantify the goodness

of fit of the model, two common statistical indicators were used: root mean square errors

(RMSE), and coefficient of determination (R2).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðSi � MiÞ

2

n

s

R2 ¼
½
Pn

i¼1
ðMi � MavgÞðSi � SavgÞ�

2

Pn
i¼1
ðMi � MavgÞ

2Pn
i¼1
ðSi � SavgÞ

2

Where Mi and Si are the observed and simulated values, Mavg and Savg are the mean

observed and simulated values, respectively; n is the number of samples.

Evaluation of long-term irrigation strategies

The genetic coefficients calibrated (2013 and 2014) and evaluated (2014 and 2015) were used

in the DSSAT-CERES-Wheat model (Verson 4.6) to simulate winter wheat biomass and grain

yield, evapotranspiration and water use efficiency in response to different irrigation schedules

using historical weather data from 1994–2016. The irrigation schedules that were evaluated are

shown in Table 3. The fertilizer strategy used in all simulations was 120 N kg ha-1, 150 P2O5 kg

ha-1, 100 K2O kg ha-1 applied at sowing and 120 N kg ha-1 was applied at jointing. Since inter-

annual variation of precipitation varies strongly in local areas, the rain fall datasets were classi-

fied into three categories. Wet year (n = 6), normal year (n = 9) and dry year (n = 7) were years

with percentage of deviation of averages above 10%, between -10% and 10%, and below -10%,

respectively [38].

Water use efficiency was calculated as the ratio of grain yield (kg ha-1) to evapotranspiration

(mm). Net water use was described by consumption of groundwater. The meaning of a nega-

tive use is that storage in the aquifer has been dropping. The net water use was calculated using

the following equation [39]:

NWU ¼ D � I

Where, D = groundwater recharge, mm and I = irrigation pumping from groundwater,

mm.

Table 3. Irrigation schedules simulated with the CERES-Wheat model.

Treatment Sowing, mm Double ridge, mm Jointing, mm Anthesis, mm Grain filling, mm Total, mm

T1 70 70 140

T2 30 30 60

T3 30 30 30 90

T4 30 30 30 90

T5 30 30 30 30 120

T6 70 30 100

T7 70 70

T8 70 70

T9 70 70

T10 70 70

https://doi.org/10.1371/journal.pone.0189989.t003
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The marginal net return (MNR, $ ha-1) and relative marginal net return (RMNR, $ mm-1

irrigation water) were computed for each scenario by the following equations:

MNR ¼ ðYI � Y0Þ � Price � Cost

RMNR ¼
MNR

irrigation amount

Where YI (kg ha-1) is the grain yield from treatments with irrigation, Y0 (kg ha-1) is the

grain yield from treatment without irrigation, Price is the wheat grain price of 0.36 $ kg-1 and

Cost is the sum of all fixed costs ($ ha-1).

Results

Model calibration and evaluation

The genetic coefficients for the CERES-Wheat model were calibrated to accurately simulate

winter wheat growth and yield response to irrigation management experiments conducted in

the North China Plain. The genetic coefficients for winter wheat that were obtained by fitting

the model simulation to observed biomass data are shown in Table 2. The data for 2013–2014

were chosen to calibrate the model (Fig 2A and 2C). Biomass simulations of winter wheat

Fig 2. Comparisons of measured and observed above-ground biomass (a for 2013–2014 and b for 2014–2015) and LAI (c for 2013–2014 and d for

2014–2015). a and c were used to calibrate the model, b and d were used to validate the model.

https://doi.org/10.1371/journal.pone.0189989.g002
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agreed well with observations with an R2 of 0.99 and RMSE of 1090.1 kg ha-1 across different

irrigation treatments. The simulated leaf area index also agreed well with observed measure-

ments with an R2 of 0.94 and RMSE of 0.68 m2 m-2. Thus, the model did an excellent job in

describing the yield response to different irrigation treatments for the calibration and evalua-

tion treatments and years.

Once calibrated, the model was evaluated for LAI and above-ground biomass in 2014–

2015, and grain yields and evapotranspiration in 2013–2015. The model gave a good predic-

tion of the grain yield and evapotranspiration (ET) with an R2 of 0.82 and an RMSE value of

529.1 kg ha-1 and 32.5 mm of ET, respectively (Fig 3A and 3B). In addition, simulated above-

ground biomass agreed well with observations with an R2 of 0.95 and 1589.6 kg ha-1. Accept-

able performance of the LAI prediction was indicated by the R2 of 0.85 and RMSE of 0.83 m2

m-2. These results indicated that the model was able to accurately simulate above-ground bio-

mass, grain yield and evapotranspiration of winter wheat in response to different irrigation

management treatments in the North China Plains.

Grain and biomass yield in response to different irrigation strategies and

precipitation amounts

The calibrated and evaluated CERES-Wheat model was used to investigate winter wheat bio-

mass and grain yield, evapotranspiration, and WUE responses to different irrigation schedul-

ing practices using historical weather data from 1994–2016 for the North China Plain (Figs 4

and 5). Simulated grain yield was significantly affected by the timing and amount of irrigation

across the simulation years (Fig 4). Simulated double irrigation at jointing and anthesis (T1)

gave the highest simulated yield for wet, normal and dry years. Four irrigations (T5) and dou-

ble irrigation (T1) gave no differences in simulated yield. Single irrigation at jointing (T9),

with half of the irrigation amount of the double irrigation treatment (T1), gave 88% of the sim-

ulated yield for the double irrigation treatment (T1) grain yield in wet years, 86% of that in

normal years, and 91% of that in dry years. Compared with reduced irrigation at jointing and

anthesis (T2), a single irrigation at jointing (T9) increased yield by 13% in wet years, 15% in

normal years, and 19% in dry years. A single irrigation at jointing (T9, 70 mm) produced

higher simulated grain yield than triple irrigation treatments (T3 and T4, 90 mm) in normal

and dry years. The highest simulated yield was found for irrigation at jointing (T9) in normal

Fig 3. Validation results of the CERES-wheat model for evapotranspiration (a) and grain yield (b).

https://doi.org/10.1371/journal.pone.0189989.g003
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years and dry years, and for irrigation at the double ridge stage (T8) in wet years. Overall, this

indicates that it is better to irrigate at critical stages rather than irrigate multiple times in low

volumes. A single irrigation during early spring (double ridges or jointing) produced simu-

lated yields that were not significantly different from double irrigation.

Similar to grain yield, simulated biomass yield was significantly affected by the timing and

amount of irrigation across the simulation years. Single irrigation at jointing (T9) produced

approximately 89% of the biomass yield compared to double irrigation (T1) across the simula-

tion years, which is equal with that of triple irrigation at double ridge and jointing and anthesis

(T4), and produced little higher biomass yield than triple irrigation at jointing and anthesis

Fig 4. Simulated grain and biomass yield for different irrigation treatments. The triangle indicates the median. The circle indicates the 75 and 25

percent. The middle line indicates 50 percent.

https://doi.org/10.1371/journal.pone.0189989.g004

Fig 5. Simulated evapotranspiration (ET) and water use efficiency (WUE) for different treatments. The triangle indicates the median. The circle

indicates the 75 and 25 percent. The middle line indicates 50 percent.

https://doi.org/10.1371/journal.pone.0189989.g005
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and grain filling (T3). Moreover, a single irrigation at earlier spring growth stages (T8 and T9)

produced higher biomass yield than single irrigation at sowing (T7) or anthesis (T10). It is sug-

gested that single irrigation at earlier spring growth stages (double ridge or jointing) may be

the optimal measures.

Evapotranspiration and water use efficiency in response to different

irrigation and precipitation

Evapotranspiration and water use efficiency for different years and irrigation treatments are

shown in Fig 5. Simulated evapotranspiration reduced with the decreasing irrigation amount

over the 22 year simulation period. Evapotranspiration also was affected by the timing of irri-

gation across the simulation years. Compared to the other single irrigation treatments, single

irrigation at anthesis (T10) reduced the evapotranspiration over the simulation period. While

deficit irrigation at jointing (T9) and that at double ridge (T8) exhibited no differences. When

come to water use efficiency, it not only depended on irrigation amount and timing, but also

on precipitation. The maximum mean water use efficiency was obtained for irrigation at joint-

ing (T9) in dry years, followed by double irrigation treatment (T1) and four times irrigation

(T5). While in normal years double irrigation resulted in the highest water use efficiency, fol-

lowed by four times irrigation (T5) and single irrigation at jointing (T9). Under the condition

of single irrigation in wet years, the water use efficiency was higher for single irrigation at dou-

ble ridge (T8) than that for single irrigation at jointing (T9). The water use efficiency for dou-

ble irrigation (T1) was not significantly different from that of single irrigation at jointing (T9)

in wet years and normal years. Hence, during the winter wheat growing season, single irriga-

tion should be applied at earlier spring growth stages (double ridge and jointing) to save water

and to obtain high WUE and grain yield.

Fig 6 showed the water use efficiency response to grain yield, and grain yield response to

evapotranspiration and transpiration and soil evaporation across simulation years. The

response of water use efficiency to grain yield can be described using a quadratic equation (R2

= 0.764, P<0.01). The relationships indicated the importance of obtaining relatively high yield

for attaining high WUE. The relationships between grain yield and evapotranspiration or tran-

spiration were described by a quadratic equation. However, there was no relation between

grain yield and soil evaporation. That suggested that attaining high grain yield should maintain

high evapotranspiration, especially transpiration.

Economic analysis

In traditional cultivation systems of high-yielding wheat, it was usual to irrigate more than 3 to

5 times during wheat growing seasons. So three times irrigation (pre-winter, jointing and

anthesis) was selected as farmer irrigation with more sowing seeds, which was simulated over

22 years in this study. In the North China Plain the water is free. In this study the water price is

power cost of pumping groundwater. Grain yield and economic costs for different irrigation

regimes were shown in Table 4. With the increasing of irrigation amount, the yield and net

income increased, but the net water use decreased. The farmer irrigation produced the highest

yield and net income. Compared with farmer irrigation, recommending irrigation reduced

grain yield by 5.25%, but the net income only decreased by 7.73% because of irrigation and

seed costs decreasing. While limiting irrigation produced acceptable yield of 8244.3 kg ha-1,

the net income of that produced 86.59% of farmer irrigation, the relative marginal return was

98.71% higher than farmer irrigation.

Marginal net return, net water use and relative marginal net return in response to irrigation

amount were shown in Fig 7. With the increasing of irrigation amount, the marginal net

Limited irrigation strategies in the North China Plain
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return increased, but the relative marginal net return and net water use decreased. The maxi-

mum relative marginal net return was 13.77 $ ha-1 mm-1. Take the maximum relative marginal

net return as the standard rate, a range of water price rate was set out. So the cost of water was

the sum of water power cost and water price rate which is the percentage of the maximum rela-

tive marginal net return. The marginal net return in response to water price rate was shown in

Fig 8 under different irrigation strategies. The marginal net return was reduced as the rate of

irrigation water price increased. The slope of farmer irrigation was higher than others, because

Fig 6. Grain yield response to evapotranspiration (ET) and transpiration and soil evaporation over 22 years.

https://doi.org/10.1371/journal.pone.0189989.g006

Table 4. Economic costs for different irrigation regimes over 22 seasons.

Irrigation Regime Irrigation

Amount

mm

Yield

kg ha-1
Cost

$ ha-1
Income

$ ha-1
MNR

$ ha-1
RMNR

$ ha-1 mm-1
NWU

mm

Rainfed 0 5280.6 673 1228.0 29.4

Limiting irrigation 80 8244.3 753 2214.9 986.9 12.34 -50.6

Recommending irrigation 140 9021.1 815 2432.6 1204.6 8.60 -110.6

Farmer irrigation 210 9520.9 894 2533.5 1305.5 6.21 -180.6

US$ = 6.6 Chinese Yuan. The prices for land preparing and sowing were: water power ($0.08 m-3), plough ($68 ha-1), rotary ($45 ha-1), sowing wheat ($56 ha-1), wheat

seed ($0.52 kg-1), herbicides and pesticides ($23 ha-1), harvest ($145 ha-1). Fertilizer prices: N ($0.59 kg-1), P2O5 (0.52 kg-1). Labor price: $8 day-1.

https://doi.org/10.1371/journal.pone.0189989.t004
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of much more irrigation amount than others. When the rate was 7.33% of the maximum rela-

tive marginal net return, the marginal net return between recommending irrigation and

farmer irrigation were equal, and both were higher than limiting irrigation. As water price rate

was lower than 7.33%, the marginal net return of farmer irrigation was lower than that of rec-

ommending irrigation. The marginal net return of farmer irrigation was not lower than that of

limiting irrigation until the rate increased to above 14.47%. At the rate of 26.4%, the marginal

net return of both limiting irrigation and recommending irrigation was 696.5 $ ha-1. The rec-

ommending irrigation produced lower marginal net return than limiting irrigation as the rate

exceeds 26.4%.

Fig 7. Simulated marginal net return (MNR), relative marginal net return (RMNR) and net water use (NWU) for different irrigation over 22 year

seasons.

https://doi.org/10.1371/journal.pone.0189989.g007

Fig 8. Simulated net return for different irrigation strategies over 22 seasons.

https://doi.org/10.1371/journal.pone.0189989.g008
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Discussion

Extensive studies showed that once the model was properly calibrated, it was able to predict the

biomass growth, grain yield, crop water uptake in response to water supply, therefore it can be

used to explore strategies for increasing water use efficiencies in NCP [18]. In this paper, the cali-

brated and validated DSSAT-Wheat model was used to investigate winter wheat growth and soil

water balance in response to different irrigation schedules over 22 years. The results of this study

were able to determine the quantitative analysis of the winter wheat total productivity in response

to changes in water availability for irrigation schedules. The results of this study showed that

reduction of irrigation amount will decrease the total productivity. The results were similar to

those of Zhao et al. [18]. However, there was a possibility of reducing irrigation amount as well

as getting acceptable grain yield and higher WUE with reasonable irrigation schedule.

The preface of this paper indicates that there is a conflict of optimum irrigation schedule.

This research showed that intensive irrigation at critical stage was better than multiple irriga-

tion with low amount each time, because the appropriate soil water and higher root density

under later conditions was in the surface soil layer [40]. Taking previous researches into con-

sideration, single irrigation should be applied at pre-winter or from recovering to jointing or

anthesis of winter wheat. This research also showed that single irrigation at the stages from

double ridge to jointing produced higher grain yield than others. Single pre-winter irrigation

encouraged root growth at topsoil layer, which restricted water use from deep soil layers [41].

Applying pre-winter irrigation increased soil evaporation from winter to spring. Thus, there

was a serious drought stress after anthesis under single pre-winter irrigation. Single irrigation

at anthesis cannot alleviate severe drought at spring, which inhibited the tiller emergence.

Moreover, dry winds at the end of the growing season can dehydrate wheat very rapidly and

reduced the positive effect of applying anthesis irrigation on grain yield. Overall, single irriga-

tion should be applied at early spring growth stages.

Extensive research showed the relationships between grain yield and evapotranspiration.

Some research suggested that grain yield increased linearly with evapotranspiration [42]. How-

ever, other studies found a quadratic equation between grain yield and evapotranspiration

[43–47]. Moreover, Man et al. [48] found that winter wheat grain yield decreased linearly with

increasing evapotranspiration. Kang et al. [47] reported that grain yield required a minimum

evapotranspiration of 152 mm for winter wheat. The grain yield response to evapotranspira-

tion varied considerably due to differences in soil moisture contents and irrigation scheduling

between seasons. This study showed that the relationships between water use efficiency and

grain yield or between grain yield and evapotranspiration or transpiration was described by a

quadratic equation. And the grain yield increased rapidly as evapotranspiration and transpira-

tion exceeded a certain value. This indicated that obtaining higher yield necessary to maintain

a quantity of evapotranspiration and transpiration. Overall, it highlights the importance of

supplement irrigation to limited duration and severity of drought stress for attaining relative

high yield [49]. This research showed that single irrigation at earlier spring growth stages can

obtain high evapotranspiration, and thus it produced higher water use efficiency. Xu et al. [12]

reported that single irrigation at earlier spring growth stages could increase soil reservoir

capacity to store more accessible rain-water in the soil during the summer season, thereby it

increased annual water use.

This study showed that farmer irrigation produced higher income and marginal net return

than limiting irrigation and recommending irrigation when there was no water price. Water

pricing is a key component of currently agricultural water policy reforms in China, and rea-

sonable pricing reform can improve water management [33]. This study found that the mar-

ginal net return of limiting irrigation was equal to that of farmer irrigation at rate of 14.47%,
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and was equal to that of recommending irrigation at rate of 26.4%. If no subsidies are granted,

the farmers would lose money due to the reform. The marginal net return of farmer irrigation

and limiting irrigation respectively decrease 762.3 $ ha-1 and 290.73 $ ha-1 at rate of 26.4%.

Zuo [50] reported that the acceptable cost of farmer due to water price reform was 253.27 $ ha-

1. Liu et al. [51] reported that the subsidy standard was 2.17 times as much as cost due to apply-

ing saving irrigation. According to this standard, total marginal net return of irrigation was

1387.5 $ ha-1, which is little higher than that of farmer irrigation with no rate.

Conclusions

Further reduction in irrigation times and amount of water is considered a trade-off to alleviate

groundwater overexploitation in NCP. The DSSAT-Wheat model was able to simulate winter

wheat development, yield and water balance very well after it was calibrated and validated by

the field experimental database which was carried out in NCP. Simulation scenarios of winter

wheat response to irrigation scheduling using 22 years of historical weather data showed that

obtaining higher yield necessary to maintain a quantity of evapotranspiration and transpira-

tion. Single irrigation at earlier spring growth stages produced a similar water use efficiency

compared to recommending irrigation with higher grain yield. Water pricing reform can

ensure extension of irrigation strategy in agricultural production. When the water pricing rate

was 26.4% maximum value of relative marginal net return, limiting irrigation and recom-

mending irrigation obtained same marginal net return. In order to increase farmer income,

there should be subsidy due to applying water-saving irrigation.
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