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Abstract

The conventional gait model (CGM) is a widely used biomechanical model which has been

validated over many years. The CGM relies on retro-reflective markers placed along anatomi-

cal landmarks, a static calibration pose, and subject measurements as inputs for joint angle

calculations. While past literature has shown the possible errors caused by improper marker

placement, studies on the effects of inaccurate subject measurements are lacking. Moreover,

as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait

(Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not

easily accomplished. This paper introduces a Python implementation for the CGM, referred to

as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance

computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic out-

puts from the Vicon CGM and (2) be implemented in a parallel approach to allow integration

on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM

can systematically and efficiently examine the effect of subject measurements on joint angles

and (2) be updated to include new calculation methods suggested in the literature. The results

show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a max-

imum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical

system, the ankle joint is the most vulnerable to subject measurement error. Leg length has

the greatest effect on all joints as a percentage of measurement error. When compared to the

errors previously found through inter-laboratory measurements, the impact of subject mea-

surements is minimal, and researchers should rather focus on marker placement. Finally, we

showed that code modifications can be performed to include improved hip, knee, and ankle

joint centre estimations suggested in the existing literature. The pyCGM code is provided in

open source format and available at https://github.com/cadop/pyCGM.
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1 Introduction

1.1 Conventional gait model

Human locomotion has been a central theme of biomechanics research for centuries (c.f. [1]

for a historical perspective). Fundamental to the evaluation of human motion is the precise

quantification of three-dimensional joint kinematics (angles); however, as the technology to

record motion grew over time, the translation between engineering and clinical approaches to

measure this motion became a challenge [2]. Biomechanical models with clinical relevant mea-

sures have been developed to overcome this problem.

There are many biomechanical models available for kinematic analyses [3–8]. Of these, the

CGM, also known as the Newington, Davis, Gage, Helen Hayes, or Kadaba model, has been

used extensively in clinical and research settings for many years. More specifically, Vicon’s

CGM implementation via the plug-in-gait modeler [9] is popular as it is distributed in their

software packages such as Nexus [10]. As with many other models, the CGM relies on retro-

reflective skin mounted markers capable of tracking body movements in order to compute

joint kinematics [11]. This paper focuses on the Vicon CGM implementation. This model

began to be defined by Kadaba, first with experiments in repeatability [8] and then as a method

to calculate lower-limb joint angles [12], based on the orthopedic knee angle definitions of

Grood and Suntay [13].

Although the CGM has been validated, it is not without problems. Directly related to the

calculation methods of the CGM, four main issues appear. (1) As a direct kinematic and hier-

archal method, a proximal origin’s frame definition influences more distal segments [12, 14].

For example, the definition of the tibia local coordinate system (distal) relies on the correct

definition of the femur (proximal) local coordinate system. (2) Incorrect placement of markers

along predefined anatomical landmarks is a known source of error in the CGM joint kine-

matic outputs [14–16]. (3) As with other marker-based models, the CGM is prone to errors

from skin movement artifacs [17–19]. (4) The definition of the hip joint center location relies

on regression equations from the early work of Davis et al. [20]. In practice, another issue has

been the location of the knee and ankle joint centers having been generated by a proprietary

formula known as the “Chord function” [9]. Improved approaches have been suggested in the

literature (c.f. Harrington et al. [21] for refined regression equations for hip joint center identi-

fication and Stief et al. [22] for improved methods to identify the locations of the knee and

ankle joints), but have not been natively implemented into the CGM model. An open-source

CGM distribution could allow researchers to refine model outputs using these, or any other

method described in the literature. Finally, the CGM maintains a low marker count (full kine-

matic analysis possible using 16 markers on the lower body and 19 markers on the upper

body) through the input of subject anthropometric measurements and a static calibration trial,

both of which allow previously defined quantities to act as virtual markers during the compu-

tation of joint kinematics. This approach introduces subject measurements as another poten-

tial source of error.

Previous work has shown that subject measurement error can propagate to joint kinematic

quantities [23]. In the work of Benedetti et al. [23], the analysis of a single healthy subject at 7

different laboratories resulted in inter-laboratory differences of 30 mm in pelvic width (inter

anterior-superior iliac spine distance), 25 mm in leg length, 5 mm in knee width, and 10 mm

in ankle width measurements. The extent to which subject measurement error can affect joint

angles has not been thoroughly explored. This last problem can be systematically investigated

via the implementation of high performance computing methods in pyCGM.

High performance computing of the conventional gait model
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1.2 Computational power and parallelization

Computational power has been continuously increasing for decades [24]. Through these

advancements, numerous problems that were previously unsolvable due to the length of time

needed for computations have been tackled using High Performance Computers (Computing)

(HPC). Likewise, parallelization, in which multiple calculations can be executed simulta-

neously on different computer cores, especially when dealing with large numbers of indepen-

dent variables, has been vital to understanding complex systems.

In the case of kinematic analysis, recording motions at high sampling rates over long peri-

ods of time can result in a significant amount of data to be processed, suggesting an important

use-case for HPC and parallelization solutions. For example, a study on the effect of high heels

on gait, in which 10 subjects walked at 5 cadences with 3 different heel heights, resulted a total

of 150 trials to be analyzed [25]. For analyses of dynamic stability during gait, experiments

often require considerably more data. In the work of Bruijn et al. [26], data were collected for 9

subjects during trials of 10 to 20 minutes. Furthermore, research has shown the usefulness of

parallelization for auto-labeling of marker sets [27].

Currently, open source biomechanics tools such as OpenSim [28] and BTK [29] provide a

platform for motion capture data visualization and biomechanics calculation. Additionally, the

CGM has been implemented by [30]; however, the source code is not readily available and the

literature does not discuss computational times and methods. Accessible open source and easy

to modify code for joint kinematics is lacking, making it difficult for researchers to take advan-

tage of the long history of motion capture and joint kinematic research for application in their

own work. Recently Vicon Nexus has released an API to use their CGM, although this still

requires a Vicon Nexus license. However, open source code that is only concerned with an

input of marker locations disconnects it from any commercial software. This disconnect allows

for identical calculations of joint kinematics from any hardware system (ex. Qualisys, Vicon,

OptiTrack). For example, a user can leverage the Qualisys API to send marker data to pyCGM

for kinematic calculations. Similarly, pyCGM could be used in conjunction with OpenSim to

simulate and visualize movement. Without readily accessible code, each user must port bio-

mechanical models to his or her own system, or rely on the real-time streaming ability of com-

mercial products. For example, in robotics, research has been done on translating human

motion to humanoid robots [31–33] and on using human motion capture data and analysis to

work with humanoids through the development of HuMoD, an open database of a variety of

gait motions and related measurements [34], largely in isolation from the developments in the

gait community. The literature lacks exploration into the role of HPC and parallelization in

terms of computational performance of joint kinematic analysis algorithms, such as with the

CGM. At the same time, the introduction of HPC to the masses, such as Amazon Web Ser-

vices, allows an easy platforms for development [35].

1.3 Python CGM

The basis of this paper is an open source Python script for the CGM, referred to as pyCGM

[36]. First, a validation of the pyCGM joint kinematic outputs against the CGM model imple-

mented by Vicon (Vicon Motion Systems Ltd., Oxford, UK) is presented. Second, the non-

optimized direct kinematic approach of pyCGM allows for a frame-by-frame calculation for

joint kinematics and, as such, provides an opportunity for easy HPC implementation to assist

in the kinematic processing. Similarly, the portability and modularity provided by pyCGM

allows researchers to quickly modify the parameters of the model and distribute workloads of

either frame-by-frame or trial-to-trial calculations to an HPC. Thus, the reduction in joint

kinematic computation times using pyCGM through HPC and parallelization approaches are
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explored. Third, the HPC setup is used to systematically explore the effect of subject measure-

ment error on joint kinematics. Finally, examples of how pyCGM can be modified to include

improvements to the CGM suggested in the literature are provided.

2 Methods

2.1 pyCGM process

The pyCGM code can be run through either a command line or by directly calling the func-

tions. Data can be passed to the joint angle calculations directly or by functions loading files

which store data as a python dictionary. The process for calculating a dynamic trial is detailed

in Fig 1.

Files are loaded or data is created in section B, with an argument passing the number of

cores to use for calculations. Subject measurements can be loaded through a.VSK file (Vicon

Skeleton), which may contain either subject measurements or subject measurements and

Fig 1. Process of the pyCGM system. There are five key parts to the computation. (A) A python terminal is passed arguments or the pyCGM is integrated into a larger

python code. (B) Data is loaded for subject measurements, static and dynamic trials, and optional input for the number of cores to use. (C) If static offsets have not

been provided, they are calculated using the static trial; otherwise, the calculation is passed. (D) Frames of the dynamic trial are divided and distributed to the number

of specified cores. Subject measurements and static offsets are passed to each core as well. The results are gathered by the original process. (E) Data is saved in a user-

specified format.

https://doi.org/10.1371/journal.pone.0189984.g001
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corresponding static calibration information. Joint angles of a static trial can be obtained by

using the same file for the dynamic trial. In section C, the static offsets are calculated when this

information is missing. Static offsets rely on the computation of the CGM for each frame of

the static trial and averaging the results at the end. Once the subject measurements and offsets

are known, the frames of the dynamic trial are divided evenly among the number of cores

defined and the data is distributed.

One of the key aspects to the CGM is estimating a joint center using subject measurements

and virtual markers. While this method has been explained for the hip in [20], the authors are

unaware of any paper that mathematically describes how the “Chord function” [9] computes

knee and ankle joint centers. The calculation used here is with the Rodrigues rotation formula

[37], as seen in S1 Equation. This formula allows for the minimum marker set by creating a

virtual marker in the joint center that is used as the segment frame origin. The description is

shown in S1 Fig, with the offset value being half of the knee width measurement, denoted by

kw. As such, this joint center is directly dependent on the subject measurement. Implementa-

tion of this formula in pyCGM can be seen in the sample code shown in S2 Fig.

While pyCGM has followed the methods defined in the literature, one significant difference

is implemented in the calculation of joint angles. While Kadaba [12] defined theta using arcsin,

this only works up to a 90-degree rotation. As such, motions such as sitting in a chair or walk-

ing up stairs in which hips or knees will bend more than 90 degrees should be calculated using

the arctan function, as seen in S3 Fig.

2.2 Parallelization

The CGM has three main parts: a static trial, dynamic trial, and subject measurements. While

a static calibration is required, the calculated values act as constants in the calculations. This

independence is important for the parallelization efficiency and scalability of the system. The

process requiring an average or other calculation over all frames can be seen in Fig 2(a), com-

pared to Fig 2(b), in which each frame is independent.

While both Fig 2(a) and 2(b) begin with individual frames in row 1, Fig 2(a) row 2 must col-

lect results from each process and pass them for further processing in row 3. Each time this

occurs, an overhead for communication between processes is created. The static calibration of

the CGM averages the offset angles of the ankle and neck, and averages the distance between

ASIS markers. For this reason, the short static trials used in static calibration in this research

are not parallelized and are instead calculated sequentially on a single core. However, the lon-

ger and frame-independent dynamic trials are the focus of the parallelization due to the higher

increase in performance through optimal use of cores and low overhead, similar to Fig 2(b).

In a similar way, an increase in frames requires a linear increase in computation, giving the

method in Fig 2(b) a computational complexity OðnÞ. In terms of computational time, an n
increase in frames can be mitigated with an n increase in processors, with an overhead consis-

tent with the communication algorithm.

2.2.1 Desktop parallelization. While access to HPC is increasing, the use of multi-core

desktop computers is nearly ubiquitous, and as such, methods for parallelizing the CGM are

applicable on these platforms as well. For simple cross-platform testing, the python multipro-

cessing module was used for parallel processing of dynamic trials (Fig 3). The original process

on core 0 reads the required data such as dynamic trial, static offsets, and subject measure-

ments (1). The data is stored as a python dictionary, which is split between keys and values for

fast IO communication. Data are divided between frame length and number of cores to be

used, then written as a temporary file to memory using mmap (2) while passing the file loca-

tion to each process, which has a lower overhead than full use of serial communication directly

High performance computing of the conventional gait model
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between processes. The filename, memory size, and object size are stored, then later read and

combined by each process (3) for use in the joint angle calculation. The multiprocessing.Pro-

cess (an object of the multiprocessing library) method of python is used to instantiate a new

instance of python for the calculation. After the result is put and aggregated by the original

process, the open processes are exited(4).

2.2.2 High performance computation. Similar to the method for desktop parallelization,

a single dynamic trial can be distributed among multiple nodes on an HPC. In this method, an

initial processor (rank 0) is responsible for loading and distributing data (Fig 4). Rank 0 loads

subject measurements, the static trial, and the dynamic trial. The static offsets are calculated

and the dynamic trial is divided into dictionary labels and values, which are distributed among

the number of ranks available along with the static information.

Calculation of multiple trials or, in the case of this research, multiple iterations of a single

dynamic trial can be done by either passing data using MPI or by relying on the IO luster sys-

tem. In Fig 5, the method for distributing data using MPI is detailed. Rank 0 loads subject mea-

surements, the static trial, and the dynamic trial. In addition, an array of subject measurement

offsets is equally divided among the number of ranks used in the calculation. Rank 0 uses MPI

scatter to distribute the offsets among ranks, and uses bcast to distribute the static trial, subject

measurements, and dynamic trial to all ranks involved in the calculations. Each rank then uses

Fig 2. Abstraction of averaged calculation vs. direct calculation. (a) The first row shows data being passed to each theoretical core. Between rows 2 and 6, data is

calculated in relation to itself, which reduces the maximum number of usable cores after each process. This method would be used to parallelize the static trial offsets,

creating overhead between each data combination. (b) Calculations that are independent of the data can be calculated at once, making the maximum usable cores

equal to the number of datum. This is the method used to parallelize the dynamic trial calculations.

https://doi.org/10.1371/journal.pone.0189984.g002
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the given array of subject measurement offsets to recalculate the static trial and calculate the

new joint angles from the dynamic trial. Each rank saves the calculated joint angles and iterates

through the array of subject measurements. In this system, rank 0 does not handle the gather-

ing or saving of the data from each rank, and instead tracks computation time and when all

ranks have finished calculations.

Fig 3. Diagram of parallelization for desktop. (1) Data is loaded by the root processor. (2) The root processor divides

the data by the number of processes available and writes temporary files to memory. (3) The processes receive the file

location containing their data and calculate the joint angles. (4) The root process gathers the data and each spawned

process exits.

https://doi.org/10.1371/journal.pone.0189984.g003

Fig 4. Abstraction diagram of a parallelized dynamic trial calculation on the HPC. In this example, processors 0-3

are located on node 1, and 4-6 are located on node 2. (1) The static trial, subject measurements, and the dynamic trial

are stored on the IO system which are loaded by rank 0. (2) Rank 0 then distributes the frames evenly among the

available ranks using the MPI.scatter method, and uses the MPI.bcast method to send the calculated static offsets and

loaded subject measurements. (3) Rank 0 collects the joint angle results with the MPI.gather method.

https://doi.org/10.1371/journal.pone.0189984.g004
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2.3 Data

For analyzing the computational performance of a parallel system on large motion capture

data, a file containing 59,993 frames was recorded at 100 Hz in Vicon Nexus (v1.8, Vicon

Motion Systems Ltd, Oxford, UK) using the 35 marker set. This trial is used purely as a method

for checking parallelization efficiency and space complexity, and not used for the subject mea-

surement analysis.

To analyze the effect of subject measurement on joint kinematics, the sample data distrib-

uted on Vicon Nexus systems was used for its wide availability and unbiased marker position-

ing. This dataset includes, among others, a static trial with 275 frames, a range of motion

(ROM) trial with 2,076 frames, and complete subject measurements stored in a.VSK file, all

three of which are used in this research. The trials contain two additional markers on each

arm, UPA and FRM; however, these markers are not used in the calculations. The ROM file

was selected for analysis, as it allows for a thorough understanding of the influence of subject

measurements throughout different motions that may be calculated by the CGM. For example,

hip flexion that occurs during a sitting motion would not appear during a typical gait cycle.

While most of the data was complete, the squat and bending motion of the ROM had occluded

markers which were gap-filled within the Vicon Nexus software. The ROM file data was cate-

gorized into the individual movements for analysis. The data displayed in the Results includes

a squat motion, front leg raise, and a side leg raise.

Saving the results is done with the numpy compressed format NPZ. The advantage of the

NPZ format over C3D format is the fast data IO and extremely simple programming methods.

Keywords are used to determine which of the joint angles are to be saved in the file to reduce

unnecessary time and space in the saving process. In the case of this research, the joint angles

for only the lower body are saved in the NPZ format(S1 File). Table 1 shows the space required

to save various numbers of frames.

Fig 5. Abstraction diagram of distributed computation of multiple files on the HPC. (1) The dynamic trial, static

trial, and subject measurements are stored on the IO Luster system. (2) The rank 0 core loads the data from the luster

system. (3) Rank 0 calculates all variations of subject measurements and distributes them over the available ranks using

the MPI.scatter method. (4) Rank 0 uses MPI.bcast method to distribute the dynamic trial, static trial, and subject

measurements to all ranks. (5) Each rank saves the resulting data directly to the luster system.

https://doi.org/10.1371/journal.pone.0189984.g005
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2.4 Subject measurements

There are 6 subject measurements related to distance that affect the joint angle calculations of

the lower body: ASIS to trochanter distance (AT), inter ASIS distance (IAD), leg length (LL),

knee width (KW), ankle width (AW), and sole delta. While LL, KW, and AW are required

inputs for the CGM, the AT and IAD can either be input manually or calculated automatically

from marker positions, and sole delta can be set to 0. As the former three are required in all sit-

uations, the current analysis is focused on these parameters. To demonstrate the HPC perfor-

mance of numerous dynamic trials, various permutations of these 5 measurements are

calculated. Permutations with repetitions are calculated by the n number of possible subject

measurement values to the power of r number of measurements, denoted by nr. Sampling of

the values was done in three steps.

• Intervals of 0.5 from -5 to 5 are generated for LL, KW, and AW, resulting in 213 combinations.

• A large range from +/- 0 to 80 for LL, KW, and AW with increments doubling for 93

combinations.

• An additional 93 combinations involving AT and IAD were used for the computational per-

formance experiment, but not used for data analysis.

• Excluding duplicates from each range, such as all measurements being 0.

The total number of these combinations results in 10,685 unique dynamic trials being cal-

culated. Both the analysis and computational times for calculating these files are detailed in the

Results section.

2.5 Hardware and software

Experiments were done on two platforms using Python 2.7. First, the python multiprocessing

module was implemented on a laptop running Windows 7 64-bit with a quad core Intel i7-

4700MQ processor at 2.4 GHZ, and 16 GB of RAM. This laptop was also used for the timing

experiments to compare against Vicon Nexus 1.8. For the HPC experiment a Cray XC30

supercomputer was used (Referred to as Darter). Each node consists of two 2.6GHz Intel

8-core XEON E5-2600 CPUs and 32GB of RAM, with hyper-threading disabled.

3 Results

3.1 Kinematic validation

The dynamic ROM trial joint kinematic outputs from pyCGM and Vicon’s CGM implentation

were compared (Table 2). The results show that both the upper and lower body joint angle esti-

mations from pyCGM agree with the Vicon CGM outputs within 10-5 degrees.

Table 1. Space requirement for saving lower body joint angles and axis to a .npz file.

Frames .npz Angles and Axis .npz Angles .c3d Without UPA/FRM .c3d With UPA/FRM

100 81,884 13,672 61,632 82,080

1000 827,094 137,901 565,632 751,680

10000 8,397,657 1,410,613 5,605,632

50000 42,016,679 7,070,983 Nexus Failed Saving

Values are in bytes. The Angles and Axis column represents the file size when both angles and the frames used to calculate the angles are saved. The Angles column is

when only the angles are saved. In both cases, joint angle data is for right and left, hip, knee, ankle, and foot progression angles. The sample data from Vicon Nexus

includes the UPA and FRM markers, however, the trial used for longer calculations does not.

https://doi.org/10.1371/journal.pone.0189984.t001
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3.2 Computational performance

The first experiment comparing the computational performance of the pyCGM against

Vicon’s CGM implementation in Nexus v1.8 is on a consumer-based four-core laptop. As

Nexus calculates both kinetics and kinematics, it is not possible to compare exact computa-

tional speed differences against pyCGM. However, the results give a frame of reference for

practical computation times on any multi-core consumer computer when kinetic calculations

are not required. Fig 6 shows that with a four-core computer, the parallelized version of the

CGM implemented in python can provide significant improvements to the calculation times

specific for kinematics. As a stand-alone compiled program, comparison against Nexus’s com-

putation time demonstrates the speed benefit of parallelization.

Scalability on the HPC of the multiple core approach to the CGM can be seen in Fig 7.

While the dynamic trial is parallelized, the file IO and static calibration are not, and as such,

these remain nearly constant, as shown in Fig 4. Furthermore, the efficiency in scaling the

CGM can be seen in Table 3, as the actual increase in performance closely tracks the ideal. By

utilizing 16 nodes, this implementation can calculate over 27,000 frames per second.

To calculate multiple variations of a dynamic trial, an experiment with both 800 and 1,600

cores was conducted using the method explained in Fig 5. Similar to the previous experiment,

the increase in computing nodes scaled the computation time to a near ideal rate with the aver-

age core calculation time for 10,685 variations of the dynamic ROM trial (2,076 frames) with

800 cores at 179.6739 seconds, and 1,600 cores at 89.7404 seconds. The latter time demonstrates

Table 2. Joint angle differences between Vicon CGM and pyCGM for the ROM file.

Lower X Y Z Maximum

R Pelvis 2.66359E-06 3.31919E-06 4.27735E-06 0.000004

L Hip 6.41988E-06 -1.37459E-05 2.6727E-05 0.000027

R Hip 5.38463E-06 -1.08932E-05 5.17191E-05 0.000052

L Knee 1.1362E-05 3.41015E-05 1.14514E-05 0.000034

R Knee 1.07576E-05 4.18676E-05 1.25827E-05 0.000042

L Ankle -1.55859E-05 8.80732E-06 1.40949E-05 0.000014

R Ankle -2.91199E-06 2.5783E-05 1.54074E-05 0.000026

L Foot Progress 5.03701E-05 4.05533E-05 8.8887E-06 0.000050

R Foot Progress 2.77097E-05 1.27706E-05 9.09723E-06 0.000028

Maximum 0.000050 0.000042 0.000052

Upper X Y Z

L Shoulder 4.26187E-06 5.26738E-06 1.16389E-05 0.000012

R Shoulder 4.27861E-06 5.75079E-06 6.06542E-06 0.000006

L Elbow 7.35977E-06 6.552E-12 6.551E-12 0.000007

R Elbow 8.83274E-06 7.974E-12 7.603E-12 0.000009

L Wrist 3.99468E-06 3.60593E-06 9.05932E-06 0.000009

R Wrist 2.37015E-06 3.46521E-06 1.08998E-05 0.000011

R Spine 2.88501E-06 3.3882E-06 3.33372E-06 0.000003

R Thorax 4.75358E-06 1.69255E-06 4.253E-06 0.000005

R Neck 8.83274E-06 7.974E-12 7.603E-12 0.000009

R Head 3.3013E-05 1.40494E-05 2.51925E-05 0.000033

Maximum 0.000033 0.000014 0.000025

Values are calculated over the entire ROM file. Single joints such as the pelvis, spine, thorax, neck, and head output from pyCGM are compared against the “right side”

corresponding angle as the Vicon CGM uses the same value for both sides.

https://doi.org/10.1371/journal.pone.0189984.t002
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an overall computation speed of 247,180 frames per second. Fig 8 shows the calculation times

on the initial core and the averaged times for calculations occurring across all cores.

3.3 Influence of subject measurements

Three key aspects of the relationship between subject measurement error and joint angle error

were analyzed. First, the maximum joint angle error of a +/- 2.5% and +/- 5% error in leg

length (LL), +/- 5% and +/- 10% in knee width (KW), and +/- 10% and +/- 20% in ankle width

(AW) measurements during various motions from the ROM trial was found. The subject mea-

surement percentage error corresponds to the errors found from inter-laboratory testing in

[23]. Second, the joint angles of the original data, along with +/- 5% error in LL and KW are

shown for a squat motion in the knee joint. Finally, the subject measurement variations are

ranked by the largest error created for each combination, providing insights to the importance

of each subject measurement and the predictability of this error.

As the CGM is based on a hierarchy of relative joints, the subject measurements influence

the joint angles in this hierarchy. As such, the modification of LL affects all joints, while the

modification of AW will only have a direct effect on the ankle frame, with an indirect effect of

the knee kinematics. For both squat and ankle rotation motions extracted from the ROM file,

Table 4 shows the wide range of joint angle error caused by changing each subject measurement

independently. The data suggest that the rotation (z axis) in each joint is the most prone to

error in a majority of cases. However, Knee abduction (y axis) is also greatly affected by subject

Fig 6. Computation time comparisons between Vicon’s CGM implementation (Nexus) and parallel programming of pyCGM (Python) on a consumer laptop for

a trial containing 59,993 frames. Note: The laptop has 4 physical cores hyper-threading, but displays 8 processors to the multiprocessing module.

https://doi.org/10.1371/journal.pone.0189984.g006

High performance computing of the conventional gait model

PLOS ONE | https://doi.org/10.1371/journal.pone.0189984 January 2, 2018 11 / 24

https://doi.org/10.1371/journal.pone.0189984.g006
https://doi.org/10.1371/journal.pone.0189984


measurement errors. Ankle non-sagittal angles (y and z axes) show large error, but are not

often considered in clinical analysis using the CGM. Importantly, during a squat motion the

flexion (x) axis was not the largest source of error. Additionally, the range of error between the

minimum and maximum throughout the motion suggests that the error is not a fixed offset.

Fig 7. Computation time of a dynamic trial across multiple cores and nodes. While the dynamic trial scales close to ideal across multiple cores and nodes, the

single core calculations and IO operations remain nearly constant, with small variations over each experiment. S1 Table provides a more detailed view of these

results.

https://doi.org/10.1371/journal.pone.0189984.g007

Table 3. Computational performance of kinematic calculations for a dynamic trial on the HPC.

Cores Ideal Actual Frames/Second

2 188.4 188.4 318.5

4 62.8 66.8 897.9

16 12.6 14.8 4,063.2

32 6.1 7.9 7,608.1

64 3.0 4.5 13,435.0

128 1.5 3.0 19,734.4

256 0.7 2.2 27,011.8

Each node on the HPC consists of 16 cpu cores. One node was used for the calculations until 16 cores, after which

the number of nodes increase. Although 2 cores are used to begin with, one core is reserved for managing data and

recording times. This explains the jump in performance from 2 to 4 cores. As can be seen, the actual performance

closely tracks the ideal performance of a parallelized model until 64 cores, after which the ideal metric outperforms

the actual by approximately 2 to 1. By 256 cores, over 27,000 frames can be calculated per second.

https://doi.org/10.1371/journal.pone.0189984.t003
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The irregular effect of subject measurements on joint angles is due in part to both the calcu-

lation method (S1 Fig) and the hierarchal configuration. During motion such as a squat, the

knee flexion axis is relatively unchanged, as this primary axis is defined by the lateral knee

marker. Additionally, a change in the leg length measurement changes the hip joint center,

which in turn changes the orientation of the knee rotation axis (z). Hence both the leg length

(Fig 9) and knee width (Fig 10) measurements affect the knee joint angle in a different manner

over the course of a motion.

Finally, by analyzing the 9,965 combinations of LL, KW, and AW, the most affected joint

and axis can be found. Through the hierarchal system, the largest angle error of all combina-

tions occurrs most often in the ankle joint (Table 5). The frame in which each joint incurs the

largest error across all measurements is largely consistent within the individual joint, but varies

across joints.

The large difference in the most common joint axis angles between right and left sides

shows that the initial frame orientation and definition greatly influences the resulting errors

from subject measurements(Table 6).

3.4 CGM modifications

The code style of pyCGM was developed to be straight forward to understand and modify.

Beyond the utility of being cross platform without modification there are no pointers or

Fig 8. Computation time of multiple variations of the ROM trial. The sections prefixed with ‘Root’ refer to operations that occur

once at the beginning of the experiment on the initial core. The ‘Node’ prefix refers to calculations that occur on each core, with the

average values shown in the figure. The numeric results with minimum and maximum times are shown in S2 Table.

https://doi.org/10.1371/journal.pone.0189984.g008
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objects used in the calculation. Subject measurements are stored in a dictionary and are easily

referred to throughout the code.

Improvement of the original CGM hip joint center location estimations [20] were imple-

mented based on the work of Harrington et al. [21]. Fig 11 shows the minimal amount of

code.

It is also possible to determine the knee joint center locations using the method proposed

by Stief [22]. In the code, the presence of a medial knee marker (R/L KNM) determines if the

Stief method is implemented. The midpoint between medial and lateral markers is used as the

joint center with the vector defined as the midpoint to the medial marker. Fig 12 shows the

implementation in the pyCGM system. As the originally described method in [22] did not give

exact details, the implementation here is approximate. However, modification of the method is

simple.

Table 4. Joint angle error from variations in subject measurements.

LL KW AW

±2.5% ±5% ±5% ±10% ±10% ±20%

Squat

(3605*3875)

Hip Flexion(X) 0.38 0.77 0.26 0.53

Abduction(Y) 0.23 0.46 0.36 0.73

Rotation(Z) 1.59 3.16 0.26 0.53

Knee Flexion(X) 0.52 1.04 0.20 0.40 0.23 0.46

Abduction(Y) 1.45 2.91 0.69 1.38 0.50 1.00

Rotation(Z) 0.68 1.37 0.95 1.95 0.04 0.09

Ankle Flexion(X) 0.22 0.44 0.18 0.37 0.30 0.59

Abduction(Y) 0.25 0.50 0.23 0.47 0.35 0.70

Rotation(Z) 0.66 1.33 0.75 1.52 0.10 0.22

Front Kick

(2925*2975)

Hip Flexion(X) 0.36 0.72 0.12 0.24

Abduction(Y) 0.24 0.48 0.37 0.74

Rotation(Z) 1.37 2.75 0.08 0.17

Knee Flexion(X) 0.24 0.49 0.12 0.25 0.19 0.38

Abduction(Y) 1.09 2.18 0.69 1.38 0.47 0.93

Rotation(Z) 0.64 1.29 0.68 1.40 0.03 0.05

Ankle Flexion(X) 0.23 0.46 0.11 0.22 0.33 0.66

Abduction(Y) 0.30 0.60 0.28 0.57 0.34 0.70

Rotation(Z) 0.71 1.44 0.54 1.12 0.21 0.42

Leg Swing

(2200-2500)

Hip Flexion(X) 0.34 0.69 0.20 0.40

Abduction(Y) 0.28 0.56 0.36 0.72

Rotation(Z) 1.74 3.47 0.09 0.17

Knee Flexion(X) 0.33 0.67 0.05 0.10 0.22 0.43

Abduction(Y) 0.95 1.90 0.68 1.37 0.44 0.89

Rotation(Z) 0.80 1.60 0.61 1.24 0.02 0.03

Ankle Flexion(X) 0.40 0.81 0.40 0.83 0.50 1.01

Abduction(Y) 0.53 1.09 0.62 1.28 0.37 0.76

Rotation(Z) 0.70 1.41 0.69 1.40 0.25 0.52

The original values for Leg Length (LL), Knee Width (KW), and Ankle Width (AW) are 940 mm, 105 mm, and 70 mm, respectively. As such a 5% change in LL is 47

mm, while the corresponding change for KW is 5.25 mm. The maximum values are combined from both the left and right joint angles and the positive and negative

directions of the offset. The Cells left blank are due to adjustments in ankle width not affecting the Hip axis. Cells with Bold text are errors over 2 degrees.

https://doi.org/10.1371/journal.pone.0189984.t004
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4 Discussion

4.1 Summary

This paper presents experimental data for high performance computing of the CGM used for

calculating joint kinematics. It demonstrates three methods; specifically, the use of HPC for a

Fig 9. Joint angles of the knee during squat while changing the leg length. Graph of the right and left knee joint angles during a squat motion over 270 frames

(3,605–3,875) of the ROM trial. Leg length was changed by +/-5%. The original angle is represented by the grey line and the leg length modifications are shown by the

black line.

https://doi.org/10.1371/journal.pone.0189984.g009

Fig 10. Joint angles of the knee during squat while changing the knee width. Graph of the right and left knee joint angles during a squat motion over 270 frames

(3,605–3,875) of the ROM trial. Knee width was changed by +/-5%, where the original angle is represented by the grey line, and the knee width modifications in the

black line.

https://doi.org/10.1371/journal.pone.0189984.g010
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single large file of motion capture data by distributing frames to be calculated on separate

cores and across nodes, and the distribution of frames across cores on a consumer grade desk-

top, was investigated. Second, large calculations were performed on a single dataset to derive

valuable information about the model, such as the case of subject measurement errors, through

the distribution of data across cores.

Table 5. Total number of subject measurement errors.

Total Joint Joint Count Number of Frames Max Frame # Max Frame Count

Total 9965 66 1919 2599

Hip 3736 20 1919 5464

Knee 1474 90 3773 5130

Ankle 4755 55 2672 2732

Across all frames and measurements, the Joint Count lists the number of times a particular joint contained the

highest angle error, the Number of Frames counts the total number of unique frames which contained the highest

angle error, the Max Frame # specifies which frame number contained the most frequent angle error, and the Max

Frame Count is the number of times the corresponding frame appeared.

https://doi.org/10.1371/journal.pone.0189984.t005

Table 6. Most frequent axis containing the largest angle error across all subject measurement variations.

Axis Hip Knee Ankle

Right X 27 1 7025

Y 0 8333 1747

Z 9200 28 1133

Left X 0 0 60

Y 675 265 0

Z 63 1338 0

The total number of times that each axis was recorded containing the largest joint angle error across all subject

measurement variations. A breakdown of these values can be seen in S2 File.

https://doi.org/10.1371/journal.pone.0189984.t006

Fig 11. Implementation of Harrington method. The use of a keyword setting Harrington to True activates the if

statement to use the Harrington Hip Regression Method.

https://doi.org/10.1371/journal.pone.0189984.g011
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While many alternatives and modified versions of the CGM exist, this paper focuses on

Vicon’s CGM implementation via the plug-in-gait modeler distributed in Vicon Nexus soft-

ware [10] due to the large number of studies and laboratories that utilize it. As this implemen-

tation is based on direct kinematics and uses a single static calibration file, the computation

time can easily be reduced through parallelization, an aspect that has been largely left out of

discussions on joint kinematics models.

The choice to implement the CGM in Python was made primarily due to the portability

between operating systems and the wide acceptance of Python for scripting purposes in the

scientific community [38]. The interpreted language and easily understood syntax continues

to promote the open source aspect of the work.

As much of the data reported in the literature is focused on the lower body (due to a focus

on gait), this paper focused on the lower body. While the upper body has been developed in

pyCGM and is included in the computational time, the lack of data relating to marker place-

ment and skin deformation of the upper body makes it difficult to compare the significance of

subject measurement errors.

Fig 12. Implementation using knee medial marker. If a Medial marker is detected, the code will use it to determine the knee joint center and axis.

https://doi.org/10.1371/journal.pone.0189984.g012
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4.2 Kinematic validation

There was a strong agreement between pyCGM and Vicon CGM joint kinematic outputs,

confirming a correct implementation of the CGM. Small differences observed may be due to

numerical implementation differences or rounding differences. Importantly, in the Vicon

CGM, the method used to compute the knee and ankle joint center is unclear; however, here,

an exact formulation based on the Rodrigues rotation formula [37] is presented. Moreover,

the original work of Kadaba [12] specifies the use of the arcsin function which would result

in erroneous joint angles during motions greater than 90 degrees. In the pyCGM code, the arc-

tan function is used to solve this problem. It is likely that a similar correction is coded into the

Vicon CGM; however, the “black box” nature of the software makes exploration of its underly-

ing code impossible. The flexibility of python and straightforward code of pyCGM allows

researchers to easily view, modify, and expand the CGM.

4.3 Computation performance

The non-optimized Direct Kinematic (DK) method allows for a frame-by-frame calculation

for joint kinematics and, as such, provides an opportunity for easy HPC implementation to

assist in the kinematic processing. Similarly, the portability and modularity provided by

pyCGM allows researchers to quickly modify the parameters of the model and distribute work-

loads of either frame-by-frame or trial-to-trial calculations to an HPC. These calculation times

are dramatically improved by moving from a classical desktop setup to an HPC, as detailed in

the results section.

As a stand-alone compiled program, comparison against Nexus also demonstrates the real

speed benefit of parallelization as the interpreted python code is significantly faster than the

compiled code of Nexus. At the same time, under utilizing the parallelized methods by reduc-

ing the number of cores used has an adverse effect on computation time. While the HPC is

orders of magnitude faster than Nexus when using multiple nodes, the use of only 1 core

shows significantly slower processing times. This is attributed to the lower clock speed of pro-

cessors containing large numbers of cores.

However, challenges exist for the type of large databases of motion capture data that can

fully take advantage of HPC. The first is the need to improve the ability to track people in an

efficient way. While devices such as the Microsoft Kinect may allow for cheaper 3D recon-

structions, a more relevant advancement would be the replacement of reflective markers and

infrared cameras with a regular RGB camera with tracking markers, such as QR tags, that

can be easily implemented on-site in a variety of cases while taking advantage of the research

already done on joint landmark kinematic calculations. In the laboratory, more robust gap-fill-

ing and auto-labeling technology using the current motion capture systems would also greatly

improve the efficiency and bring the use of HPC to a more common audience.

4.4 Subject measurement error

The primary, or axis of most importance during an analysis, such as knee flexion during a

squat motion, is central to understanding the importance of subject measurements. As seen in

the experimental data, during a squat motion the flexion axis in both left and right knee axis

were almost never the source of the largest error. As such, while subject measurements have an

effect on joint angles, hip and knee flexion are the least affected and may still provide the most

valid results. The percentages of error displayed in Table 4 are based on the data found in [23]

in which the maximum deviation from 7 laboratories in leg length measurements was 25 mm,

knee diameter of 5 mm, and ankle diameter of 10 mm.
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While accurate subject measurements are required for the CGM, the importance of these

measurements should be considered within the context of other possible sources of angle

error. In [39], 10 mm of marker placement error resulted in 6.2 degrees of error in knee rota-

tion and 7.6 degrees in ankle rotation. Comparatively, the 10% change in knee width shown

in Table 4 translates to 10.5 mm. This results in a 2.0 degree error in knee rotation and a 3.8

degree error in ankle flexion. While the kinematic model and subject motion from [39] slightly

vary from those used in this research, this comparison should give researchers a basis for deter-

mining both which aspects of subject preparation are most vital and which aspects of the CGM

new models should overcome. In a more general sense, the results suggest that subject mea-

surements can have a significant impact on joint angles. For example, a 50 mm error (5%) in

the measurement of leg length, results in over 3 degrees of hip rotation error). In practice, such

a large error in leg length may not be likely for experienced users of the CGM (c.f [23] where

25 mm was observed across laboratories), suggesting that more attention should be given to

marker placement. Subject measurement errors within the range observed by [23] result in

clinically negligible angle errors (less than 2 degrees) [40].

4.5 CGM modifications

Past work has shown that rather than completely new models, modifications to existing mod-

els provide familiarity and improved accuracy. In [22], the knee joint center estimation was

improved by using medial markers. This method was easily integrated into the pyCGM code

by adding 18 lines of code directly in the knee joint calculation function with no removal

or other modifications necessary as the code switches to this method when medial knee

markers are detected. Although this method requires additional markers, the overall marker

set remains the same. Without additional markers, the hip joint center estimation can be

improved with the Harrington method [41]. This method has been implemented through 9

lines of code in the hip axis calculation, 5 lines of code in the static calibration, and 1 line of

code in the execution file which acts as the argument to switch between hip joint center meth-

ods. Likewise, [42] shows an improved knee joint center through the adjustment of the thigh

offset. Given the open-source nature of pyCGM, interested users could implement this change

in the future.

4.6 Future directions

The numerous studies for validating the results during gait, the wide usage, and the deep

understanding of the model [43] remain important standards for the CGM. In a large field in

which multiple methods for calculating joint kinematics are possible, the use of standards for

validated models is of great importance.

Since the creation of the original CGM, new methods for computing joint kinematics have

been introduced, with the most relevant works modifying the CGM to be used with kinematic

fitting and optimizations. C-motion Visual 3D offers a version of the CGM that uses optimiza-

tion methods through inverse kinematics [44]. Likewise, methods such as the optimized lower-

limb gait analysis (OLGA) use inverse kinematics by global optimization [3]. However, these

methods often have implications for computational complexity, as in the case of OLGA, in

which more than 50 frames of data are required to be considered for good convergence [4],

making parallelization a more complex task and the overall computation time much larger.

Furthermore, the use of inverse kinematics over direct kinematics is not a guarantee for more

accurate results, as research has found that the anatomical model used in the study has a greater

effect on kinematics than the different computational methods [5]. Similarly, 6 DOF models

such as CAST have also been introduced [6]. However, there is not a strong argument for the
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use of this model, as similar issues with the CGM exist in CAST [7]. Likewise, the CGM is not

without critics and drawbacks, however; as models aim to improve the accuracy of joint angle

calculations over the CGM, the effect of subject measurements in errors must be understood.

Beyond the work presented here, there is a need for new computational models to take into

account spatial and time complexity, as these are directly related to the impact and implemen-

tation possibilities throughout the biomedical industry and other fields. Real-time algorithms

for single subject analysis have been developed, which creates implications for clinician-patient

interaction [45]. When considering least squares optimization and regression-based methods

in the dynamic trial calculation, it is not possible to implement real-time calculations, some-

thing that may be useful in a clinical setting for doctor-patient interaction. At the same time,

these methods may benefit from HPC when parallelization or distribution is possible. Addi-

tionally, the number of markers being recorded has a significant impact on the storage

required for these large datasets, hindering data sharing and distribution. However, further

research into the actual computational time increase required by optimization methods would

help define these limitations.

Applications for computation of large databases of motion capture data extend from bio-

mechanics and robotics to other, less obviously related fields, such as architecture. In architec-

ture, understanding human movement and movement abilities is important for design and

necessary in order to move from prescriptive to performative design criteria [46]. In general,

any field relying on interactions with humans and movement will at some point need to

address the computational efficiency of large scale calculations for analysis.

Finally, further work involving subject measurements in the CGM can shed light on how

significant other measurements beyond leg length, knee width, and ankle width are. This may

also lead to the ability for subject measurements to be derived directly from marker locations

during the static calibration, which would remove the need for storing patient specific data

while maintaining a reasonable margin of error.

Supporting information

S1 Fig. Joint center calculation of the knee. For the knee joint center, the calculation is from

the thigh marker (a), hip joint center (b), and knee marker (c). The intent is to find the plane

in which all markers lay, with half the knee width (kw) being used in the calculation.

(TIF)

S2 Fig. Sample code of pyCGM. The python code provides comparison between the mathe-

matics and code that is easy to read and understand. The function receives three marker posi-

tions and half of the knee width measurement. The return value is the cartesian location of the

calculated joint center. Ease of understanding the code is an important aspect of pyCGM, and

as such, the steps are divided clearly so that users can both understand and modify the code to

suit their needs.

(TIF)

S3 Fig. Flexion beyond 90 degrees using arcsin and arctan. Motion capture data of a sitting

motion in which the Knee bends to 90 degrees. While this function was intended for use in

gaits that would not commonly have a 90 degree flexion, the widespread use of the CGM

includes researchers using it for purposes beyond typical gait.

(TIF)

S1 Equation. Equation of the knee joint calculation using Rodrigues rotation formula.

(PDF)
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S1 Table. Results of single dynamic trial scaled on HPC. The Sum column is the sum of the

times required for each step in the calculation process. The Total column is the recorded start

to finish time, with the difference shown in the last column. This difference includes commu-

nication time between cores and nodes, as can be seen from the increased difference when the

calculation moved from 1 node to 2 nodes.

(PDF)

S2 Table. Computational performance of kinematic calculations for multiple variations of

a dynamic trial on the HPC. The average, maximum, and minimum times for each core to

complete the calculations are shown. Additionally, the longest time for any core to complete

all calculations is shown. Loading data was all done on the initial core. Saving the results,

dynamic trial calculation, and static trial calculation times are from every core. The sum of

these calculations and the total time recorded from the first node differ mostly due to data

transfer between nodes.

(PDF)

S1 File. Output from the HPC.

(ZIP)

S2 File. Breakdown of subject measurement errors.

(XLSX)
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