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Abstract

Tomato late blight caused by Phytophthora infestans (Mont.) de Bary, also known as the
Irish famine pathogen, is one of the most destructive plant diseases. Wild relatives of tomato
possess useful resistance genes against this disease, and could therefore be used in breed-
ing to improve cultivated varieties. In the genome of a wild relative of tomato, Solanum hab-
rochaites accession LA1777, we identified a new quantitative trait locus for resistance
against blight caused by an aggressive Egyptian isolate of P. infestans. Using double-digest
restriction site—associated DNA sequencing (ddRAD-Seq) technology, we determined
6,514 genome-wide SNP genotypes of an F, population derived from an interspecific cross.
Subsequent association analysis of genotypes and phenotypes of the mapping population
revealed that a 6.8 Mb genome region on chromosome 6 was a candidate locus for disease
resistance. Whole-genome resequencing analysis revealed that 298 genes in this region
potentially had functional differences between the parental lines. Among of them, two genes
with missense mutations, Solyc06g071810.1 and Solyc069g083640.3, were considered to
be potential candidates for disease resistance. SNP and SSR markers linking to this region
can be used in marker-assisted selection in future breeding programs for late blight disease,
including introgression of new genetic loci from wild species. In addition, the approach
developed in this study provides a model for identification of other genes for attractive agro-
nomical traits.

Introduction

Plants suffer from many biotic and abiotic stresses [1], which reduce quantity and quality of
crop production worldwide. Late blight disease is caused by the hemibiotrophic oomycete Phy-
tophthora infestans (Mont.) de Bary, one of the most destructive plant pathogens. Phytophthora
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infestans is well known as the causative agent of the Great Famine in Ireland between 1845 and
1852, which devastated potato production (Solanum tuberosum) [2]. After potato, tomato (S.
lycopersicum L.) is the second most agriculturally important crop in the Solanaceae family. The
annual global productivity of tomato has increased dramatically, to 170 million tons in 2014
[3]. However, tomato can also be damaged by the late blight disease, particularly in cool tem-
peratures, high relative humidity (RH), and rainy or foggy conditions [4], resulting in 100%
economic losses in open fields and greenhouses.

Tomato has been used in molecular genetic and genomic studies as a model for fruiting
plants [5] because of its compact genome (~950 Mb) and the simple diploid genome composi-
tion of family Solanaceae. The genome sequence of tomato [6] has enabled discovery of
genome-wide single-nucleotide polymorphisms (SNPs) and development of advanced molec-
ular markers [7-10]. Although the genetic diversity of the cultivated tomato is limited [11], its
wild relatives S. pennellii, S. habrochaites, S. peruvianum, and S. pimpinellifolium have many
useful traits potentially applicable to improvement of the agricultural varieties. Therefore,
introduction of wild tomato species into tomato breeding programs could facilitate develop-
ment of new tomato lines [12-15]. Indeed, five race-specific resistance (R) genes that confer
various levels of resistances against P. infestans isolates Ph-1, Ph-2, Ph-3, Ph-4, and Ph-5 have
been identified [16-22] and applied to molecular breeding by marker-assisted selection (MAS)
[20]. However, a serious problem in breeding by interspecific crossing is linkage drag, in
which undesirable traits linked to target traits in the wild relatives are introgressed in elite cul-
tivars [23, 24].

In the genomics era, advanced molecular markers and genotyping technologies have helped
to solve this problem [25, 26]. Simple sequence repeat (SSR) markers are useful for genomics
and breeding in tomato [27-29]; however, analysis of large numbers of genome-wide SSR
markers across multiple samples, such as breeding materials, is time-consuming and laborious.
However, next-generation sequencing (NGS) technologies, including high-throughput
sequencing and sophisticated bioinformatics techniques, can overcome these limitations.
Restriction site—associated DNA sequencing (RAD-Seq) [30-32] and an alternative technique,
double-digest RAD-Seq (ddRAD-Seq) [33], can skim through the genome with low cost and
high throughput. These methods can be successfully implemented in gene mapping, including
quantitative trait locus (QTL) analysis and genome-wide association studies (GWAS), of a vast
array of crops [32, 34-38]. On the other hand, whole-genome resequencing (WGRS) enables
prediction of the effects of sequence variants on gene function throughout the genome [39-
43]. Therefore, a combination of RAD-Seq and WGRS analysis represents a powerful strategy
for rapidly identifying candidate genes responsible for traits of interests.

Development of new tomato lines with resistance to late blight disease would be a straight-
forward, effective, and environmentally safe approach to managing late blight disease. There-
fore, in this study, we aimed to identify map positions of genetic loci derived from a wild
tomato relative, S. habrochaites that control resistance to late blight disease caused by P. infes-
tans. We applied a ddRAD-Seq pipeline that we developed in a previous study [33] to genetic
mapping of the resistance loci, and then we used a WGRS strategy to predict candidate genes
for late blight disease resistance.

Materials and methods
Plant materials

A cultivated tomato (S. lycopersicum), Castlerock, and its wild relative, S. habrochaites
(LA1777), were used in this study. Castlerock was chosen because it is susceptible to late blight
disease, and LA1777 was selected because it is resistant to the Egyptian P. infestans population,
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as shown in a previous study by our group [15]. Seeds of Castlerock and LA1777 were pro-
vided by the Horticulture Research Institute, Agricultural Research Center (ARC), Egypt, and
the Tomato Genetic Research Center (TGRC), Davis, CA, USA, respectively. An F, population
(n = 344) was generated from an interspecific cross between Castlerock and LA1777.

Isolation and purification of P. infestans isolate

Isolation of the P. infestans population was conducted by placing host infected tissues under
organic potato slices in converted Petri dishes containing water agar and incubating at 18°C
for 7-10 days. Sporangia were picked from the abundant sporulation on the top of the slices
and transferred directly onto the recommended media. Rye sucrose agar (RSA) medium [44]
(60 g of rye grains, 20 g of sucrose, and 20 g of agar per liter) was used for isolation, growth,
and maintenance of P. infestans isolates. Pure culture of P. infestans was conducted on rye
slants at 18°C, and the cultures were preserved as a stock for further studies. P. infestans isolate
EG_12 was selected from the stock of the Plant Pathology Research Institute, ARC, which was
overcome five tomato genotypes containing R genes (Ph-1, Ph-2, and Ph-3) as well as Super
Strain B, a susceptible tomato cultivar control based on virulence test [15].

Inoculum preparation and late blight assessment

Seeds of F, progeny and the parental lines Castlerock and LA1777, as well as the susceptible
control (cv. Castlerock), were sown in 209 cell seedling trays with peat moss—vermiculite mix-
ture (1:1 volume) in a greenhouse (25 + 2°C, 16/8 h day/night). Plants were watered and fertil-
ized regularly with N:P:K 19:19:19, and all traditional agricultural transactions were applied to
maintain the plants under appropriate and healthy conditions. Eight weeks after sowing, all
trays were moved from the greenhouse to growth room at the Plant Pathology Research Insti-
tute, ARC, for artificial inoculation with P. infestans EG_12 and late blight assessment.

Inoculum preparation of isolate EG_12 was performed as described [15]. Prior to artificial
inoculation, the suspension was chilled at 4°C for 2-4 h [45] to allow cleavage of sporangia
and release of zoospores.

After inoculum preparation, the conditions in the growth room were adjusted to 20+2°C
and 100% RH for 48 h in darkness, followed by 20°C, up to 90% RH [46], and 10/14 h day/
night for 10 days. All tested plants were hand-sprayed with an atomizer to cover all parts of the
foliage and kept in a growth room under the conditions described above. The plants were
wrapped with a plastic sheet to keep RH above 90%. F, plants were evaluated individually for
late blight disease at 10 days post inoculation (dpi) by visually scoring disease severity accord-
ing to a numerical rating (0-6) as described [47] with some modifications: 0, immune; 1,
highly resistant; 2, resistant; 3, moderately resistant; 4, moderately susceptible; 5, susceptible; 6,
highly (91-100%) susceptible. All inoculated plants were scored when the susceptible control
exhibited 100% disease severity (complete death).

DNA extraction and sequencing analysis

Total genomic DNA was extracted from young leaves of the two parents and the F, progeny
using the DNeasy Plant Mini Kit (Qiagen Inc., Hilden, Germany). Genotypes were analyzed
using ddRAD-Seq technology with the restriction enzymes PstI and Mspl (S1 Table). The
ddRAD-Seq libraries were constructed and sequenced on a HiSeq 2000 platform (Illumina,
San Diego, CA, USA) in paired-end 93 bp mode as described [33].

The two parents were further subjected to WGRS. Paired-end sequencing libraries with an
insert size of 600 bp were prepared as described [48]. The nucleotide sequences were
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determined using massively parallel sequencing by synthesis on an Illumina HiSeq2000 (Illu-
mina) in paired-end 93 bp mode.

Computational data processing and association analysis

Primary data processing of ddRAD-Seq and WGS sequence reads was performed as described
in our previous studies [33, 49] with some modifications. Low-quality sequences were
removed and adapters were trimmed using PRINSEQ (version 0.20.4) [50] and fastx_clipper
in the FASTX-Toolkit (version 0.0.13) (http://hannonlab.cshl.edu/fastx_toolkit). The filtered
reads were mapped onto tomato genome SL3.0 [6], used as a reference sequence, with Bowtie
2 (version 2.1.0; parameters:—minins 100—no-mixed) [51]. The resultant sequence align-
ment/map format (SAM) files were converted to binary sequence alignment/map format
(BAM) files and subjected to SNP calling using the mpileup option of SAMtools (version
0.1.19; parameters: default) [52] to yield a variant call format (VCF) file including SNP infor-
mation. Moreover, to obtain high-confidence SNP markers, VCEF files were filtered with
VCFtools (version 0.1.14) [53]. The parameters for VCFtools were as follows:—maf 0.05—
max-alleles 2—min-alleles 2—minDP 10—minQ 10—non-ref-ac 2—max-non-ref-ac 2—max-
missing 0.75 for WGRS data; and—remove-indels—minDP 5—minQ 20—max-missing 1—
min-alleles 2—max-alleles 2 for ddRAD-Seq data. Annotations of SNP effects on gene func-
tions were predicted using SnpEff (version 4.2) [54]. The association analysis between pheno-
type and genotype data was performed using the generalized linear model (GLM) of trait
analysis by association, evolution, and linkage (TASSEL) version 5.2.33 [55].

SSR marker analysis

A total of 13 expressed sequence tag (EST)-derived SSR markers (TES markers) and ten
genome-derived SSR markers (TGS markers) (S2 Table) were selected from the candidate
genome regions on chromosome 6 for late blight resistance, as described in the Kazusa Marker
Database (http://marker.kazusa.or.jp) [29]. These markers were used for polymorphic
analysis.

Data availability

Nucleotide sequence data for the ddRAD-Seq and WGRS analyses are available in the DDB]
Sequence Read Archive under accession numbers DRA005972 and DRA005973.

Results
Phenotypic assessment of disease response for the F, population

To identify QTLs associated with late blight resistance, an F, mapping population of 383
plants, as well as the susceptible and resistant parents, were infected with an Egyptian isolate of
P. infestans EG_12, and disease severity was evaluated on a numerical scale (0-6). All tested
materials were individually scored 10 days after artificial inoculation, when the susceptible
control plants reached the highest score of disease severity. The evaluated population was
divided into seven categories based on the scale. The F, population exhibited broad variations
in reaction to the pathogen, ranging from complete resistant (0) to highly susceptible (6). In
addition, varying degrees of disease severity were detected in all tested plants. Among the F,
population, a disease severity score of 4 was most prevalent (79 plants, 22.97%), followed by
score of 6 (76 plants, 22.09%). On the other hand, a score of 1 (highly resistant) was least preva-
lent (26 plants, 7.56%) (Fig 1). Also, the whole-plant assay under environmentally controlled
conditions confirmed that the parent S. habrochaites accession LA1777 was resistant, whereas
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Fig 1. Disease severity rating 0—6 of F, mapping population (n = 344) of the cross cv. Castlerock (S.
lycopersicum) x S. habrochaites accession LA1777 to aggressive Egyptian isolate of P. infestans.

https://doi.org/10.1371/journal.pone.0189951.g001

the cultivated tomato cv. Castlerock was highly susceptible, with severe late blight symptoms
(completely blighted, 100%) (Fig 2). Therefore, the tomato wild accession LA1777 should be
considered a genetic resource for identification of QTLs associated with late blight resistance.

Association analysis with SNPs based on ddRAD-Seq

In the ddRAD-Seq analysis of the parental lines and a subset of the F, population (n = 150),
amean of 616,763 reads was obtained for each sample. The total numbers of high-quality
paired reads of the parental lines, cv. Castlerock and S. habrochaites accession LA1777, were
1,010,157 and 367,193, respectively (S3 Table). The read numbers obtained in this study is
enough for the following linkage analysis [33]. The alignment rate to the reference tomato
genome build SL3.0 was approximately 90.0% in the F, population, whereas those of the two
parents were 93.4% (Castlerock) and 88.99% (LA1777). From the alignment data, 11,348 SNP
candidates were obtained, of which 6,514 were selected as a high-quality data set (S4 Table)
based on criteria described in Materials and Methods. The mean number of SNPs per

R

NEATA
‘FAVL AR
% 5 'f\“

Fig 2. Screening the parental lines for resistance to P. infestans isolate EG_12 using whole-plant
assay under controlled conditions. (A) Highly susceptible parent cv. Castlerock, (B) highly resistant parent
S. habrochaites accession LA1777.

https://doi.org/10.1371/journal.pone.0189951.g002
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Fig 3. Representation of high-confidence single nucleotide polymorphism (SNP) markers along
chromosome 6 of tomato mapped on SL3.0 version of the tomato reference genome. Candidate
genomic region tightly related to plant disease resistance was predicted on ch06 based on SnpEff annotation,
(A) the double-digest restriction site—associated DNA sequencing (ddRAD-Seq), and (B) the whole-genome
shotgun resequencing (WGRS) technologies. The remaining chromosomes ch00 —ch12 are shown in S1 Fig.

https://doi.org/10.1371/journal.pone.0189951.g003

chromosome (excluding 17 SNPs on sequences unassigned to the tomato chromosomes) was
543, with a variant rate of one SNP every 123,921 bases, ranging from 354 SNPs on chromo-
some 9 (1 SNP/205,950 bp) to 780 on chromosome 2 (1 SNP/71,766 bp). The SNPs comprised
3,406 downstream gene variants following 3,374 intron variants and 2,371 upstream gene vari-
ants. The physical positions of the 6,514 SNPs were distributed over all 12 chromosomes (Fig 3
and S1 Fig), but the distribution patterns were highly biased: most of the SNPs were located at
both ends of each chromosome, which are gene-rich euchromatic regions; an exception to this
pattern is chromosome 2, which has repetitive rDNA sequences at the top of the chromosome.

To detect genetic loci for resistance to P. infestans isolate EG_12, GWAS were performed
with 6,514 high-confidence SNPs from the ddRAD-Seq and phenotypic data. Based on GLM
with false discovery rate (FDR) of 0.1 [56], 124 SNPs on a 6.8 Mb region of chromosome 6
(42,859,404 bp to 49,665,578 bp), including 665 predicted genes, were significantly associated
with phenotypic variation. Among those, the SNP at 48,363,490 bp on chromosome 6 exhib-
ited the highest association with late blight disease resistance (Fig 4).
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Fig 4. Manhattan plots for genome-wide association studies of generalized linear model (GLM)
analysis of late blight disease resistance using TASSEL software. The SNP markers were generated
using NGS technology, double-digest restriction site—associated DNA sequencing (ddRAD-Seq).

https://doi.org/10.1371/journal.pone.0189951.g004

PLOS ONE | https://doi.org/10.1371/journal.pone.0189951 December 18, 2017

6/15


https://doi.org/10.1371/journal.pone.0189951.g003
https://doi.org/10.1371/journal.pone.0189951.g004
https://doi.org/10.1371/journal.pone.0189951

@° PLOS | ONE

NGS-based rapid identification of resistance genes to tomato late blight

Validation of the associated loci by SSR marker analysis

To validate the results of the association studies, we subjected the remaining F, lines (n = 194)
not analyzed with the ddRAD-Seq to genotyping analysis with 23 SSR markers that were physi-
cally and genetically close to the candidate region (S2 Table). Out of the 23 SSRs, 5 markers
(TES0422, TES0014, TES1344, TES0945, and TES0213) exhibited polymorphism between the
parental lines, Castlerock and LA1777 (Table 1). Therefore, we analyzed the genotypes of the
additional 194 lines, as well as the 150 lines used for ddRAD-Seq, using the five selected SSR
markers. As expected, the phenotypes of F2 lines with homozygous alleles from LA1777 or
Castlerock differed significantly (resistant in the case of LA1777 alleles, and susceptible in the
case of Castlerock alleles), even though severe segregation distortion that is often reported in
intercrossing populations [29] and references therein was observed in this locus. This addi-
tional SSR analysis confirmed the results of the GWAS using ddRAD-Seq technology.

Whole-genome shotgun resequencing

To identify sequence variations in the candidate genetic locus, we performed WGRS analysis
on the parents. Totals of 174.9 and 189.9 million high-quality reads (17-18x genome coverage)
for Castlerock and LA1777, respectively, were obtained and mapped onto the reference
genome sequence, with alignment rates of 96.9% for Castlerock and 70.7% for LA1777 (S5
Table).

Across the genome including “chromosome 07, genome sequences not assigned to any
chromosomes, we identified a total of 4,180,666 high-quality sequence variations (one
sequence variation every 198 bp), including 4,022,951 SNPs and 157,715 indels. The ratio of
transitions/transversions (T's/Tv) was calculated to be 1.08. The SNPs were positioned on all
tomato chromosomes without large gaps (Fig 3 and S1 Fig), as observed for the genome posi-
tions of SNPs detected by ddRAD-Seq. Among the 4,180,666 sites, 14,755 (0.27%) sequence
variations in 2,557 genes were predicted by the SnpEff software to possess high-impact (e.g.,
nonsense or frame-shift mutations) on gene functions, whereas 57,390 (1.038%) polymor-
phisms in 15,934 genes were predicted to have moderate impacts (e.g., missense mutations)
(S6 Table).

On the other hand, in the 6.8 Mb candidate locus on chromosome 6, we identified 8,367
polymorphic sites (7,684 SNPs and 683 indels) at 1 variation/814 bases with a Ts/Tv ratio of
1.36. Among the 8,367 sites, 168 (0.87%) sequence variations in 24 genes were predicted to
have high impacts, and 516 (2.67%) polymorphisms in 274 genes were predicted to have mod-
erate impacts. In the candidate regions, the ratio of high-impact variations versus moderate-
impact variations was 3-fold higher than in the genome overall, whereas variation density was
lower. Among them, two genes located in the interval between the significant SNPs were con-
sidered as potential candidates for blight disease resistance genes. One was Solyc06g071810.1
encoding the leucine-rich repeat (LRR) receptor-like serine/threonine-protein kinase FEI 1
having a missense mutation at the 39™ position (Asp in Castlerock, Glu in LA1777), while the
other was Solyc06g083640.3 for a LRR family protein with a missense mutation at the 111™
position (Gln in Castlerock and Lys in LA1777).

Discussion

In this study, we identified a resistance locus for late blight disease on chromosome 6 of
tomato. This locus is at a different genome position than previously reported resistance loci
[22, 57, 58], and should therefore be considered novel. The result of GWAS was validated by
the SSR analysis of the additional F2 lines (Table 1). In general, to confirm the accuracy of the
genetic analysis of GWAS and QTL analysis, the results are validated by genotyping with DNA
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Table 1. Genotyping of F, mapping population with five EST-SSR markers.

SSRmarker |Chromosome |Position (bp)' |Scale® |Allele Amplified samples | Total tested samples
LA1777 |Castlerock | Hete.
TES0422 SL3.0ch06 44975890 0 17 0 13 317 344
1 12 0 11
2 20 0 18
3 14 0 33
4 26 2 47
5 7 1 22
6 20 8 46
Mean® 3.0431° | 5.5455% 3.7895°
TES0014 SL3.0ch06 45297826 0 23 0 12 343 344
1 15 0 11
2 27 1 17
3 19 0 33
4 31 0 48
5 7 1 23
6 22 10 43
Mean® 2.8958° | 5.5833% 3.7914°
TES1344 SL3.0ch06 45438555 0 23 0 12 340 344
1 14 1 11
2 27 1 17
3 18 1 32
4 30 0 46
5 7 1 23
6 24 9 43
Mean® 2.9441° | 5.0000? 3.7935°
TES0945 SL3.0ch06 47342901 0 25 1 7 328 344
1 15 0 11
2 26 1 16
3 17 2 32
4 34 0 41
5 7 0 22
6 23 8 40
Mean® 2.9048° | 4.6667° 3.8639°
TES0213 SL3.0ch06 49713763 0 24 2 9 343 344
1 17 0 9
2 23 1 21
3 20 1 31
4 35 0 44
5 10 2 19
6 23 8 44
Mean® 2.9671° | 4.5000° 3.8362°

' The position based on the tomato reference genome SL3.0 version

2 The disease severity rating (DSR) to assessment the phenotype of late blight disease on tomato plants

8 Means followed by the same letter are not significantly different at P < 0.05 (LSD test).
The superscripts of "a", "b", and "c" are alphabetical codes indicating significant differences when the letters are different.

https://doi.org/10.1371/journal.pone.0189951.t001
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markers in the candidate regions. Three types of plant materials are potentially used for the
validation: 1) an additional biparental population derived from the same crossing in the
genetic analysis (as in this study); 2) near-isogenic lines (NILs) having target loci of the donor
(e.g., a wild relative) with genetic background of the recurrent line (e.g., a cultivated line); and
3) a group of genetically divergent lines like natural populations or core collections maintain-
ing genetic diversity of genetic pools. Among them, NILs would be the most useful materials
to investigate the effects of the candidate locus on the phenotypes, and to identify the genes
controlling the phenotypes by a map-based cloning strategy. However, it would take a long
time and labors to develop NILs because of recurrent backcrossings with marker-assisted
selection. In Tomato Genetic Resource Center, University of California, Davis, series of NILs
covering the entire genome of LA1777 in the background of S. lycopersicum E6203 have been
registered [59]; however, NILs for chromosome 6 is not available at the time of writing unfor-
tunately. On the other hand, although a group of genetically divergent lines could be useful for
the validation, no resistance lines against P. infestans EG_12 have identified except for S. hab-
rochaites LA1777 [15]. This meant that this approach might be not suitable for the case of this
study.

It should be possible to breed new varieties with high disease resistance by combining the
new locus with previously reported genes [19, 20]. Such a ‘gene pyramid’ strategy resulting in
durable resistance could contribute to successful management of new populations of P. infes-
tans, which are resistant not only to well-known R genes, but also to certified fungicides, e.g.,
metalaxyl [60, 61]. Because we have characterized many P. infestans isolates [15, 62], as well as
tomato wild relatives highly resistant to these isolates [15], further novel resistance loci could
be identified from these materials using an approach similar to the one employed in this study.

The genotyping analysis was completed in a short time by taking advantage of two NGS
technologies, ddRAD-Seq and WGRS. In the former type of analysis, the number of detectable
SNPs depends on genetic diversity (i.e., the so-called genetic distance) of the materials [32, 63,
64]. In this study, because the parental lines were genetically divergent, the number of obtained
SNPs was 6,514. This result is consistent with a previous report in which 8,784 SNPs were
obtained from an interspecific cross between different species [65]. In intercrossing, or cross-
ing between closely related species, even though the number of SNPs obtained by ddRAD-Seq
might be small [66], WGRS has the potential to overcome this issue [43]. Therefore, lab work
is no longer a limiting factor in the discovery of new genetic loci.

ddRAD-Seq analysis and WGRS are powerful tools for gene mapping. Previously, it was
common to employ SSR and SNP markers for such analysis [28, 29, 67]. However, because
these methods are time-consuming and laborious, it used to be difficult to analyze multiple
populations at once. Furthermore, even if genetic loci could be narrowed down to small geno-
mic regions, subsequent sequencing of the target regions was necessary for identification of
candidate genes of interest. By contrast, ddRAD-Seq analysis can be performed in parallel
across multiple mapping populations. In addition, WGRS is the most effective and easiest
method for identifying sequence variations in candidate regions. In this study, the alignment
rate of the sequence reads to reference sequence was lower in LA1777 than in Castlerock, likely
because LA1777 is a wild species belonging to the Eriopersicon subsection, which is distantly
associated with cultivated lines such as Castlerock and Heinz 1706 [10].

The distribution patterns of SNPs over the genome was highly biased, with higher density
at the distal ends of chromosomes and lower density in pericentromeric regions. This observa-
tion was consistent with some previous studies [6, 29, 66] but discordant with another [10].
On the other hand, the density of SNPs identified by the WGRS in this study (512.8 SNPs per
100 kb) was higher than that in a previous study using only cultivated lines (11.9-98.9 SNPs
per 100 kb) [33], confirming that wild tomato relatives are genetically distant from cultivated
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tomato. Thus, it is possible for the WGRS technology to dissect target quantitative traits at
nucleotide scale.

Furthermore, WGRS also makes it possible to predict the effects of sequence variations on
gene function, which facilitates the identification of candidate genes. In this study, we identi-
fied three candidate R genes encoding a nucleotide-binding site leucine-rich repeat
(NBS-LRR) protein, a mitogen-activated protein kinase kinase kinase (MAPKKK), and a
receptor-like protein kinase (RLK); these gene families are involved in disease resistance and
signaling pathways linked to plant innate immunity not only in tomato, but also in other plant
species [68-71]. Indeed, outside the candidate region, we identified moderate-impact SNPs in
genes encoding serine/threonine-protein kinases. These genes play important roles in disease
resistance and biological defense systems, inducing reactive oxygen species (ROS) bursts and
stimulating MAP kinases, as demonstrated in Arabidopsis [72]. Thus, these genes might confer
high disease resistance on LA1777. Furthermore, LA1777 possesses other R genes to many
types of biotic stresses [73, 74], because it has not undergone the domestication process, which
decreases the level of resistances [75]. The combination of ddRAD-Seq and WGRS could facili-
tate identification of genes of interest in LA1777. In addition to the genotyping methods, com-
parative genomics and transcriptomics in tomato and its relatives are useful methods in the
post—genome sequencing era [6, 39, 41, 42].

The resolution of genetic mapping depends on the frequency of chromosome recombina-
tion in the population, which unfortunately remains uncontrollable. Therefore, even though
ddRAD-Seq and WGRS are available, identification of target genes requires fine-mapping.
Accordingly, we performed additional DNA marker analysis with SSRs and/or SNPs in the tar-
get regions. In the future, due to decreasing sequencing costs for NGS analysis, it will become
feasible to perform WGRS across entire mapping populations, not only the parental lines,
potentially making fine-mapping with SSR markers and SNPs unnecessary. Disruption of gene
functions using genome-editing technologies is also an effective approach for elucidating the
functions of genes responsible for target traits.

In conclusion, using the ddRAD-Seq and WGRS NGS technologies, we identified a new resis-
tance locus for late blight disease caused by P. infestans. DNA markers linked to the locus could
be used in MAS in future breeding programs aimed at increasing resistance to this disease. In
addition, this approach provides a model for identifying not only additional R genes from tomato
relatives and P. infestans isolates, which our group identified in a previous study [15, 62], but also
other genes responsible for desirable agronomical traits. Furthermore, our results confirmed that,
as previously reported [15, 58], S. habrochaites accession LA1777 represents a useful genetic
resource for smart tomato breeding programs, genetics, and genomics studies.
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