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Abstract

Large-scale kinetic models of metabolism are becoming increasingly comprehensive and

accurate. A key challenge is to understand the biochemical basis of the dynamic properties

of these models. Linear analysis methods are well-established as useful tools for character-

izing the dynamic response of metabolic networks. Central to linear analysis methods are

two key matrices: the Jacobian matrix (J) and the modal matrix (M-1) arising from its eigen-

decomposition. The modal matrix M-1 contains dynamically independent motions of the

kinetic model near a reference state, and it is sparse in practice for metabolic networks.

However, connecting the structure of M-1 to the kinetic properties of the underlying reactions

is non-trivial. In this study, we analyze the relationship between J, M-1, and the kinetic prop-

erties of the underlying network for kinetic models of metabolism. Specifically, we describe

the origin of mode sparsity structure based on features of the network stoichiometric matrix

S and the reaction kinetic gradient matrix G. First, we show that due to the scaling of kinetic

parameters in real networks, diagonal dominance occurs in a substantial fraction of the rows

of J, resulting in simple modal structures with clear biological interpretations. Then, we show

that more complicated modes originate from topologically-connected reactions that have

similar reaction elasticities in G. These elasticities represent dynamic equilibrium balances

within reactions and are key determinants of modal structure. The work presented should

prove useful towards obtaining an understanding of the dynamics of kinetic models of

metabolism, which are rooted in the network structure and the kinetic properties of

reactions.

Introduction

In recent years, kinetic models of metabolism have become increasingly detailed, comprehen-

sive, and consistent with the underlying biochemistry and genetics [1–6]. These models can

address a number of questions that are difficult to analyze directly with constraint-based or

statistical models [7–9]. For example, kinetic models have shown utility in the study of: 1)
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regulatory mechanisms controlling the cellular metabolic network [10, 11], 2) complex

dynamic behavior such as bistability [12], 3) intracellular signal transduction [13], and 4) the

effect of enzyme mutations on a network scale [14, 15]. Furthermore, predictive kinetic models

are desirable in metabolic engineering to improve production, substrate utilization, and prod-

uct quality [16, 17].

A grand challenge moving forward is to analyze the dynamic properties of these models to

obtain a deeper understanding of the structure and function of the metabolic network. A num-

ber of studies have made theoretical and practical headway in this regard by analyzing the lin-

ear properties of the dynamic system around a steady state. These linear analysis methods have

helped to provide insight into metabolic flux control [18, 19], elucidate the temporal hierarchy

of dynamic events [20], and describe the fundamental dynamic structure of the network [21].

At the core of these linear analysis methods is the modal matrix (M-1) resulting from the

Jacobian matrix (J) of the mass balance equation. The modal matrix contains dynamically

decoupled motions of the metabolic network, called modes. For real metabolic networks, the

modal matrix has a sparse structure [20], the interpretation of which can yield biological

insight into dynamics occurring on particular time scales. However, while M-1 is a numeri-

cally-calculated matrix, J can be represented symbolically in terms of derivatives of the reaction

rate laws (dv/dx) in the network. Thus, obtaining an understanding of the structure of M-1 in

terms of the structure of J would allow us to connect the dynamics of the network to the kinetic

properties of single reactions, providing insight into the origin of the network dynamic struc-

ture. Linear analysis is well-known in classical chemical reaction kinetics literature and has

been applied to metabolic networks specifically in the form of metabolic control analysis

(MCA) [22], which focuses on a scaled gradient (dv/dx) matrix G. However, less work has

been performed on modal (M-1) analysis of metabolic networks, and specifically very little has

been discussed about why the modes of metabolic networks have particular sparsity structures.

In this study, we present results on the biochemical origin of the modal sparsity structure of

kinetic models of metabolism, using the metabolic network of the human red blood cell (RBC)

[23]. This model consists of ten enzyme mechanisms represented by mass action kinetics

inserted in a background of 133 approximated rate law reactions [3, 24], parameterized with

measured metabolite concentrations and enzyme kinetic constants. It is essential that this anal-

ysis be performed on a real metabolic network rather than toy models, because the metabolic

network topology as well as order of magnitude differences in reaction fluxes, metabolite con-

centrations, and reaction rate constants are essential features in determining the dynamics of

the network [23].

Using both numerical and theoretical arguments, we demonstrate how the dynamic struc-

ture of the modal matrix M-1 forms due to specific properties of the Jacobian (J) matrix. Using

Gershgorin circle theorem, we first show that simple dynamic structures often emerge due to

the kinetic parameter scaling in metabolic networks. Then, we use the matrix power iteration

algorithm to show how modes with more complicated sparsity structures arise from topologi-

cally connected elements of J that have similar magnitude. Furthermore, we describe how such

complicated mode structures arise due to similar dynamic equilibrium ratios of connected

reactions.

We focus on demonstrating general principles through a set of case studies on the concen-

tration Jacobian matrix and the mode structures associated with metabolite groups. These

principles also apply to the flux Jacobian matrix and the relate flux modal structures, which are

characterized in terms of the flux variables and describe the dynamic properties of the reaction

groups [25].

Mode structure in kinetic models of metabolism
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Linear analysis on dynamic structures of the metabolic network

We first briefly introduce the basic established theory for linear analysis of metabolic networks.

In a biochemical reaction network, the dynamic mass balances for all m concentrations x are

given in the form of a matrix equation:

dx=dt ¼ S � vðx; kÞ ð1Þ

where S is the m × n stoichiometric matrix, x is the m × 1 vector of metabolite concentrations,

and v is the n × 1 vector of reaction fluxes. The formulation of v depends on the reaction rate

law used and the mass action rate law is expressed as a function of the concentrations x and

kinetic parameters k.

Linearizing around a particular steady state x0 (i.e.,S � v(x0, k) = 0) yields,

dx0=dt ¼ J � x0 ð2Þ

where x’ = x—x0 are the concentration deviation variables from the steady state and J = S �G is

the concentration Jacobian matrix [20]. G (= dv/dx) is the gradient matrix obtained from line-

arization of the reaction rates [24]. It is the same matrix as the non-normalized elasticity

matrix from metabolic control analysis [19][26].

An eigen-decomposition of the Jacobian matrix yields a different representation of the

same linearized system, with dynamically independent motions of metabolites grouped into

modes within the modal matrix [20].

J ¼ M � Λ �M� 1 ð3Þ

where M-1 is the modal matrix and Λ is the diagonal matrix of eigenvalues. During eigen-

decomposition, we can append the left null space vectors of the Jacobian matrix to the modal

matrix and assign those vectors zero eigenvalues. This operation makes both modal matrices

full rank since a rank deficient matrix is not invertible. The modes are defined as m = M-1 � x.

Substituting Eq 3 into Eq 2, and based on the mode definitions, we have,

dm=dt ¼ Λm ð4Þ

As defined in Eq 4, the eigenvalues and modes give information on the dynamically inde-

pendent motions of metabolite groups [20].

The rows of the modal matrix, which correspond to modes, are left eigenvectors of J (uJ =

λu). Each mode is associated with an eigenvalue and represents the dynamic motion in a char-

acteristic time scale defined by the eigenvalue. These characteristic time scales describe the

approximate time it takes for the mode to relax (return near its original reference state) when

the system is perturbed from steady state (see S1 Text). Our focus in this work is to examine

the sparsity structure of the modes and determine how this structure is connected to properties

of the Jacobian matrix.

Results

Half-reaction equilibria resulting from linearization of bilinear mass action

rate laws are key dynamic features of G

To aid in later discussions on mode sparsity structure, we first introduce the key concept of

half-reaction equilibria, which appear in G due to linearization of mass action reactions. For

mass action reactions, the dv/dx derivatives comprising the gradient matrix G (= dv/dx) have a

specific mathematical form and biochemical interpretation (Fig 1). The form of the mass

action rate law for an example bilinear reaction between metabolite A and enzyme form E

Mode structure in kinetic models of metabolism
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Fig 1. PGI enzyme module and its associated matrices. (A) A schematic diagram of individual reaction steps associated with PGI enzyme

module and its stoichiometric matrix. The PGI enzyme module consists of three reaction steps: binding of G6P (PGI1), conversion of G6P to F6P

(PGI2) and release of F6P (PGI3). The enzyme form PGI is in italic. We use an “&” notation to denote that the enzyme form is bound with metabolite

(s). (B) Graphical representation of the concept of half reaction. Here we demonstrate the half reaction associated with the binding/release process

of G6P, which is held constant. To determine the equilibrium state of this half reaction, we are comparing the sensitivities associated with PGI

(G6Pk+
PGI1) and PGI&G6P (-k-

PGI1). This comparison is equivalent to comparing G6P concentration and 1/Keq,PGI1. (C) The gradient matrix of the

PGI enzyme module. The gradient matrix (= dv/dx) is obtained from linearization of the reaction rates and represents reaction sensitivities to

metabolite concentrations. (D) The cause of diagonal dominance demonstrated through the symbolic concentration Jacobian matrix of the PGI

enzyme module. Using row 5 as a case study, we observe that, in the case of mass action rate law, diagonal dominance is determined by the

distance from half-reaction equilibrium for individual half-reactions. When comparing the terms associated with PGI1 reaction between diagonal and

off-diagonal positions, we are comparing the sensitivity of G6P (PGIk+
PGI1) and sensitivity of PGI (G6Pk+

PGI1) with that of PGI&G6P (-k-
PGI1). This

comparison is equivalent to comparing the concentrations of PGI and G6P with Kd,PGI1(Kd,PGI1 = k-
PGI1/k+

PGI1), thus determining the distance from

Mode structure in kinetic models of metabolism
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where A + E$ EA is v = k+[A][E]—k-[EA], and the three resulting dv/dx terms in G for the

reaction are k+[A], k+[E], -k-. From these three terms, we can see that certain reactant/product

terms are eliminated when calculating the reaction sensitivities (derivatives in the form of dv/

dx) in G. This mathematical operation can be interpreted as splitting the original reaction into

half reactions in a biochemical context. In the case of bilinear kinetics of enzymatic binding/

release reactions, the half reaction describes the binding/release process for one reactant,

which is held constant.

For a full reaction, the distance from equilibrium is defined as Γ/Keq, where Γ is the mass

action ratio and Keq is the equilibrium constant. Thus, for the example bilinear reaction men-

tioned above, its distance from equilibrium can be expressed as k-[EA]/ k+[A][E]. Similarly,

the distance from equilibrium for the half reaction associated with binding/release of A can be

expressed as the ratio between the reaction sensitivities of E (k+[A]) and EA (k-). This ratio can

be simplified into [A]/Kd,A, where Kd,A equals k-/k+ and represents the dissociation constant

for binding/release of A. In cases where there is only one reactant on both sides of the reaction,

the half-reaction equilibrium is equivalent to the equilibrium of the reaction itself (since the

resulting dynamic ratio is k+/k-).

As a specific example, we present a case study on the glucose 6-phosphate isomerase (PGI)
enzyme module (Fig 1A) from a whole-cell kinetic model of RBC metabolism [23]. An enzyme

module describes the individual reaction steps of an enzyme-catalyzed biochemical reaction,

and each step is represented by a mass action rate law. Using PGI1 reaction as an example, the

half reaction of interest is the binding/release of glucose 6-phosphate (G6P) (Fig 1B red). The

comparison of the sensitivities of PGI (G6Pk+
PGI1) with PGI&G6P (-k-

PGI1) (& denotes PGI
bound with metabolite G6P) in magnitude is equivalent to the comparison of G6P concentra-

tion with 1/Keq,PGI1. This comparison effectively results in determining the distance from equi-

librium for G6P binding/release half reaction. It is worth noting that the full equilibrium ratio

would include the enzyme forms that have been removed by differentiation and therefore do

not influence the above comparison; thus, the distinct definition of a half-reaction equilibrium

ratio is helpful.

As we will show later, the sparsity of a mode is dependent on the distance from equilibrium

of connected half reactions defined by these sensitivities in G. Half reactions that are far from

equilibrium result in simple mode structures while those near equilibrium together form com-

plex modes.

Diagonal dominance and the Gershgorin circle theorem applied to the

Jacobian matrix

Now that basic definitions have been established, we can begin to examine the sparsity struc-

ture of the dynamic modes of kinetic models of metabolism. The modes are defined by

mi ¼< uijx > ð5Þ

where ui is the left eigenvector and x is the steady state concentration vector. The bracket nota-

tions refer to the inner product of two vectors. The relative magnitudes of the elements of ui

determine the effective sparsity of a mode when low contributing elements are truncated.

However, since the modes are calculated through a numerical algorithm, it is usually not

equilibrium for PGI and G6P binding/release half-reactions. The numerical values for each entry in row 5 is below the symbolic forms. Additionally,

we can see clearly that column dominance cannot happen in the concentration Jacobian matrix due to the structure of mass action rate law. In the

current case, we can see that the absolute sum of off-diagonal elements in a column is always at least as large as the absolute diagonal element,

meaning that diagonal dominance does not occur across columns.

https://doi.org/10.1371/journal.pone.0189880.g001
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straightforward to link a mode composition to particular elements of the Jacobian matrix,

unless the Jacobian matrix has certain structural properties. One such property is diagonal

dominance of the rows or columns of the Jacobian, which occurs when the magnitude of a

diagonal element is greater than the sum of the magnitudes of off-diagonal elements in the

same row (in the case of row dominance)

jJiij >
P

k6¼ijJikj ð6Þ

or column (column dominance), see Fig 2A. We focus on row dominance in this work, as col-

umn dominance does not occur in the concentration Jacobian matrix due to the structure of

the mass action rate law, as demonstrated in Fig 1D.

The degree of diagonal dominance of a row number i can be quantitatively described by a

metric we term the diagonal fraction, defined as the ratio between the sum of the absolute val-

ues of off-diagonal elements and the absolute value of the diagonal element:

fi ¼
P

k6¼ijJikj=jJiij ð7Þ

Diagonal dominance of a row of the Jacobian matrix gives information about its corre-

sponding eigenvalue. This relationship is made clear using Gershgorin’s circle theorem [27],

which constrains an eigenvalue to be within a certain radius, based on the sum of the off-diag-

onal elements in a particular row/column, of the diagonal element. The theorem is particularly

useful in confining eigenvalues within Gershgorin circles when strong diagonal dominance (a

small fi value) occurs, as the eigenvalue will be close to the diagonal element of the dominant

row.

Diagonal dominance in the Jacobian matrix underlies simple mode

structures

To investigate the occurrence and impact of diagonal dominance in a real metabolic network,

we use the RBC kinetic model mentioned earlier to draw the Gershgorin circles and the eigen-

values from J (Fig 2B along x-axis). As highlighted in Fig 2B, for the selected set of Gershgorin

circles, there are two cases where the circle resulting from the strongly diagonally dominant

row is very constrained and a unique eigenvalue falls inside the circle. In those cases, the eigen-

value is very closely approximated by the diagonal element.

In addition to providing information about the eigenvalues, diagonal dominance in J also

causes a simple sparsity structure within modes corresponding to these eigenvalues. When a

row has strong diagonal dominance (f< 0.1), the diagonal metabolite usually is the only signif-

icant non-zero element in the mode (Table A in S1 Text). For example, the enzyme form

GAPDH_T (glyceraldehyde 3-phosphate dehydrogenase at tense state) has a very small diago-

nal fraction value, and is the only element in the mode at its corresponding time scale. The

underlying reaction that causes its dominance is the transition step from enzyme form

GAPDH at relaxed state to tense state GAPDH$ GAPDH_T, where the sensitivity of

GAPDH_T (-k-
GAPDH_transition_step) contributes the most to its diagonal element in J. When a

mode contains only the diagonally dominant metabolite, the dynamic motion of the mode

drives that metabolite back to its reference state on a timescale determined by the eigenvalue.

For example, under ATP hydrolysis perturbation, the dynamics of GAPDH_T match closely

with the dynamics of the mode in which GAPDH_T is dominant (Fig 2C). When diagonal

dominance becomes weaker (f> 0.1), the diagonally dominant metabolite shares modes with

other metabolites, as demonstrated in the case of enzyme form glucose 6-phosphate dehydro-

genase bound with 6-phospho-D-glucono-1,5-lactone (G6PDH&6PGL) in Table A in S1 Text.

In those cases, the ratio between those metabolites in the mode is similar to that in the

Mode structure in kinetic models of metabolism

PLOS ONE | https://doi.org/10.1371/journal.pone.0189880 December 21, 2017 6 / 21

https://doi.org/10.1371/journal.pone.0189880


diagonally dominant row of the Jacobian matrix. Overall, in the RBC metabolic model used in

this work, the structure of 38 out of 244 (15.6%) concentration modes can be explained by

diagonally dominant metabolites. Other statistics about diagonal dominance in rows of con-

centration Jacobian matrix can be found in Table B in S1 Text and S1 Fig.

As another effect of diagonal dominance, there exists an important relationship between

diagonal dominance in J and system dynamic stability, which is characterized by the sign of

eigenvalues of J in that any positive eigenvalues result in the steady state being unstable.

Fig 2. Diagonal dominance in the Jacobian matrix explains simple mode structures and corresponding eigenvalues with the help of

Gershgorin circle theorem. (A) Example Jacobian matrix of the RBC metabolic network [23] with different degrees of diagonal dominance. The

Jacobian matrix of the metabolic network has a sparse structure, and the diagonal elements of the matrix are always negative due to the structure of

the rate laws used. The matrix was extracted from the full concentration Jacobian matrix for illustrative purposes. (B) The entire set of eigenvalues of

the Jacobian matrix is shown in the larger plot, with x-axis denoting the inverse of absolute eigenvalues at the log10 scale. In the inset, selected

Gershgorin circles of the Jacobian matrix with circle centers ranging from -27 to -5 are shown for illustrative purposes. Eigenvalues greater than -27

are drawn together with the selected circles. The Gershgorin circles from rows with strong diagonal dominance have centers at -26.2 and -5.26 as

shown, and the eigenvalues inside are -26.3 and -5.33. All eigenvalues are negative as the system is dynamically stable. The imaginary components

of the eigenvalues are small and therefore are neglected. (C) The dynamic response of GAPDH_T, XMP, 5MDRU1P, compared to the respective

modes dominated by these metabolites/enzymes, under an ATP hydrolysis perturbation. The dynamics of the mode dominated by a single

metabolite coincide with the dynamics of that metabolite. These modes occur at fast, intermediate and slow timescales, showing that diagonal

dominance can occur at any time as long as the structural properties of the Jacobian matrix allow.

https://doi.org/10.1371/journal.pone.0189880.g002
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Negative diagonal elements in J strongly support system stability, and this effect is further

magnified by diagonal dominance (see S1 Text and S2 Fig).

Dependence of diagonal dominance on the parameters of the metabolic

network

Having established that diagonal dominance is an important property of kinetic models of

metabolism for real networks, we now describe the origin of diagonal dominance in terms of

the kinetic and physiological parameters of the system. To understand how diagonal domi-

nance in J is manifested through reaction properties, we can examine the association of ele-

ments between J and G. We can see that for each diagonally dominant metabolite (diagonal

fraction < 1), its diagonal element in J can be matched with a specific reaction sensitivity ele-

ment for that metabolite similar in absolute value in G. Such an element is the largest in abso-

lute value for the flux-concentration derivatives (dv/dx) associated with that metabolite.

Therefore, a single term in G dominates the resulting diagonal term in J (S3 Fig). Furthermore,

single reaction sensitivities in the form of dv/dx in G can determine the dynamic behavior of

the system in terms of the resulting eigenvalues when diagonal dominance occurs. This corre-

spondence can also be extended to metabolites with non-diagonal dominance (S3 Fig), indi-

cating the interpretable connection between J and G.

As a case study, we examine the cause of diagonal dominance in J of the PGI enzyme mod-

ule. We see that, in the enzyme module, diagonal dominance in J is determined by a particular

half-reaction equilibrium ratio, as defined above. We demonstrate this by examining the

enzyme form PGI&G6P in the 5th row of J (Fig 1D). The diagonal term of J for PGI&G6P

shows that the enzyme form is associated with two reactions, PGI1 and PGI2. Specifically, reac-

tion PGI1 can be split into two half reactions, related to G6P binding/release and PGI binding/

release processes. The comparison of the diagonal term (-k-
PGI1) with the off-diagonal terms

(G6Pk+
PGI1 and PGIk+

PGI1) related to PGI1 reaction is effectively examining the associated

half-reaction equilibrium ratios, which are G6P/Kd,PGI1 and PGI/Kd,PGI1(Kd,PGI1 = k-
PGI1/

k+
PGI1). The term G6Pk+

PGI1 is smaller than -k-
PGI1 on the diagonal position in magnitude

while PGIk+
PGI1 term is negligible compared to -k-

PGI1, due to the small concentration of the

PGI enzyme form. For reaction PGI2, the term k+
PGI2 at the diagonal position is much greater

than k-
PGI2, with the consumption of PGI&G6P favored. As a result, the diagonal term of J for

PGI&G6P is greater than the sum of off-diagonal terms in the same row, resulting in diagonal

dominance.

To summarize, diagonal dominance can be understood based on the distance from half-

reaction equilibrium, by comparing metabolite concentrations to the reaction equilibrium

constant. In the case of a single reactant on each side of the reaction, the equilibrium constant

alone affects the degree of diagonal dominance. This type of analysis can also be applied to

other enzyme forms in J.

Power iteration connects mode structure to the structure of the Jacobian

matrix

Diagonal dominance explains the structure of most of the highly sparse modes, but cannot

address mode structures that are complicated by more than one or two significant elements.

We now show how more complicated mode structures form mathematically from specific ele-

ments of the Jacobian matrix. We demonstrate that examining the modes of the Jacobian

matrix from the perspective of the matrix power iteration algorithm is illustrative in describing

how complicated mode structures arise.

Mode structure in kinetic models of metabolism
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Matrix power iteration is an algorithm to calculate the leading eigenvalue and eigenvector

of a matrix (or left eigenvectors in the case of the modes) [28]. In the power iteration algo-

rithm, the Jacobian matrix is left multiplied by a random vector (ui), the resulting vector is

normalized, and this process is repeated until the vector converges (Fig 3A). If the eigenvalue

with the largest magnitude is well separated from the other eigenvalues, the final vector will

converge to the corresponding leading eigenvector. The Euclidean norm of uJ in the last itera-

tion will be the associated leading eigenvalue λ, where uJ = λu. During the iteration process,

the elements of the Jacobian matrix that contribute to the modes will “stretch” the vector

through multiplication in the direction of the leading eigenvector. The advantage of using this

algorithm is that when run for a restricted number of iterations, the power iteration algorithm

gives a simple approximation of the modes that enables the identification of mode-determin-

ing elements of the Jacobian matrix. Given the fact that the Jacobian matrix is sparse, the

power iteration algorithm can help us understand eigenvector structure by inspecting how the

Jacobian elements stretch the vector to ultimately result in the eigenvector.

To illustrate the process of vectors converging to the leading eigenvector through power

iteration, we perform power iteration algorithms on 1000 random starting vectors using the

full Jacobian matrix (292 × 292). We then perform principal component analysis (PCA) on all

the iteration vectors (Fig 3C). The random starting vectors quickly converge in the dimension

of the first principal component (71.2% contribution), representing the eigenvector, and stabi-

lize in the dimension of the rest of components (second principal component shown only,

contributing a very minor percentage) after around 10 to 20 iterations.

As a technical detail of the implementation, a limitation of the power iteration algorithm is

that it only calculates the leading eigenvalue and eigenvector. To calculate the next largest

eigenvalue and the associated eigenvector, we must modify J to eliminate the impact of the pre-

vious eigenvector and eigenvalue at each step. Such elimination can be accomplished with the

Hotelling deflation method [29], which returns a modified J, with the leading eigenvector and

eigenvalue removed, that can be used for a new round of eigenvector and eigenvalue calcula-

tions using power iteration (see Materials and Methods).

A case study on using power iteration to understand complicated mode

structure

We now use the power iteration method to demonstrate how the eigenvectors with more com-

plicated structures form in a set of specific numerical examples on the RBC metabolic network.

In this section, we show that that the topological connection of elements of similar orders of

magnitude in J is critical in determining the sparsity structure of the eigenvectors. This similar

order of magnitude tends to lie around the eigenvalue (Fig 3B).

As a case study, we extract a submatrix of J (4 × 4) corresponding to the positions of non-

zero elements (see Materials and Methods for cutoff) of a particular eigenvector, which is asso-

ciated with G6PDH enzyme forms of the RBC metabolic network. When J is pre-multiplied by

a pseudo-random starting row vector, we see that the ending vector matches closely with the

actual eigenvector (Fig 3B and S4A Fig). It is clear upon inspection that the largest values in

the submatrix are also the largest values in the mode. The four key J elements (also largest in

the submatrix) determining eigenvector formation are located in the 2nd and 4th rows (Fig 3B

black circles). These rows both have similar structures to the eigenvector, where the ratio

between the 2nd and 4th elements in the row is the same as that in the eigenvector. This shows

that the matrix structure is reflected in the eigenvector structure.

To explore how the 2nd and 4th rows both contribute to eigenvector formation, we can per-

turb the starting vector such that it interacts with these rows specifically, such as (0, -1, 0, 0)

Mode structure in kinetic models of metabolism
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Fig 3. The power iteration algorithm demonstrates how complicated dynamic structures arise from topologically connected elements of

similar magnitude within the Jacobian matrix. (A) Power iteration can be used to calculate the dominant left eigenvector of the Jacobian matrix.

The left eigenvectors are the modes of the metabolic network. The algorithm left multiplies the Jacobian matrix by a random vector (ui), normalizes

the resulting vector and repeats the process until the vector converges to the eigenvector. (B) Topologically connected Jacobian elements of similar

magnitude determine complicated eigenvector structure. In this case study, we extracted a submatrix of J that corresponds to the nonzero elements

of a certain eigenvector, which contains G6PDH enzyme forms. The four Jacobian elements (also the largest) that are key in determining this

eigenvector structure are located in the 2nd and 4th rows, circled in black. Specifically, the structure of 2nd or 4th rows matches closely with that of the

eigenvector, with similar ratios at the 2nd and 4th positions. Multiplying the Jacobian matrix by any non-orthogonal starting vector (u1), for example

the one shown, results in a vector (u2) that has a structure more similar to the eigenvector. The contribution of those rows individually to eigenvector

formation are further shown in Fig 4 and S4 Fig. For clear demonstration purposes, the comparison of relative colors only works for individual

box (surrounded by black stroke) itself, but not across different boxes. (C) Principal component analysis on all power iteration vectors starting with

1000 different random vectors. We randomly picked 1000 starting vectors and multiplied them with the full Jacobian matrix (292 × 292). The starting

vector is multiplied through several iterations (10 ~ 20) until it converges to the eigenvector (the dot product of the ending vector and the eigenvector

is no greater than 1.0001 and no less than 0.9999). We then performed principal component analysis on all iteration vectors (including the starting

vectors) and plotted each vector in terms of the contribution from the first two principal components. The first principal component corresponds to

Mode structure in kinetic models of metabolism
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and (0, 0, 0, 1), to examine each row’s effect individually. As a result, starting from either vector

leads to a structure similar to the original eigenvector (S4B and S4C Fig). Thus, it seems that

both rows have similar contributions to the structure of the eigenvector in this case, although

their magnitude is different. Together, the four elements in those two rows (Fig 3B black cir-

cles) form a topologically connected structure and interact with each other symmetrically to

determine the eigenvector structure. The other large element at position (4, 3) is not involved

with this symmetric interaction and thus has a smaller contribution to eigenvector formation.

Next, to demonstrate the interplay of the submatrix elements, we show how modifying the

four key elements of the sub-matrix changes the eigenvector. First, to examine the impact of

the largest diagonal element in the submatrix at position (2, 2), we modify the diagonal ele-

ment at position (4, 4) to have the same value as the element at (2, 2) (Fig 4B). The resulting

vector has a different ratio between its elements compared to the original J eigenvector, with a

larger value in the 4th element, reflecting the larger value in the (4, 4) position of the submatrix.

We then further change the off-diagonal element of J at (2, 4) to be the same as the element at

(4, 2) to create a more symmetric structure (Fig 4C). The resulting vector now has the same

value on both the 2nd and 4th positions, showing that the off-diagonal elements modify the

weightings on the eigenvector, and a fully symmetric Jacobian structure will result in an

equally weighted eigenvector structure. These perturbations show that how the relative values

of the dominant elements in a submatrix are clearly reflected in the corresponding mode

structure.

The power iteration algorithm is a useful tool to analytically understand the structure of

complicated eigenvectors of a real system. We have demonstrated that the modes form from a

network of topologically connected values of similar magnitude in the Jacobian matrix, and

the relative ratio between these values influences the structure of the eigenvector. These trends,

where an eigenvector can be linked to particular topologically-connected elements of J of simi-

lar magnitude, are generally applicable beyond this case study (S5 Fig). The Jacobian modifica-

tions demonstrate that the eigenvector of the matrix can be altered in a predictable manner by

changing either diagonal or off-diagonal Jacobian elements along the same order of

magnitude.

Complicated mode structure arises from connected reactions with

similar dynamic sensitivities in G

Power iteration helps to show numerically how complicated modes arise due to particular

structures in J. For metabolic networks constructed with mass action rate laws, these numeri-

cal values have clear biological interpretations. Next, we describe the origin of complicated

mode structure in terms of specific metabolite and reaction properties of the system. The goal

of this section is to obtain a biochemical interpretation of the numerical results obtained in the

previous section.

We use the same case study presented in the previous section, regarding the mode and sub-

matrix of J for G6PDH enzyme forms. The mode contains four G6PDH enzyme forms (red cir-

cles in Fig 5A), with G6PDH&6PGL and G6PDH&NADPH&6PGL being the most dominant

elements. The mode structure is largely determined by the sensitivities of reaction 6 in G (k+
6,

NADPHk-
6) (Fig 5C). This reaction releases NAPDH and its elements in G dominate the

the leading eigenvector of the Jacobian matrix while the rest of components (less than 1% contribution each, only component 2 shown here)

together explain the variation of the vector from the eigenvector. Ideally, the contribution of the rest of components will be 0 when the ending vector

becomes the eigenvector. However, due to large order of magnitude differences between elements in J and the cutoff we set when comparing the

ending vector with the eigenvector, we ended up with variations from the eigenvector (nonzero contribution of component 2 in the inset plot).

https://doi.org/10.1371/journal.pone.0189880.g003
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topologically connected J elements at positions (2,2), (2,4), (4,2) and (4,4) (Fig 5D). The two

most dominant mode elements mentioned above are associated with reaction 6. Their corre-

sponding J elements contain k+
6 and NADPHk-

6, which are close numerically, meaning that

NADPH concentration is similar to the equilibrium constant of the half reaction for NAPDH

binding/release, where the term ‘half reaction’ is used as defined above. The ratio between

NADPHk-
6 and k+

6 (NADPH/Kd,6, where Kd,6 = Keq,6) defines a half-reaction equilibrium

ratio that is the key in determining the eigenvector structure. If NADPH concentration is

higher, reaction 6 will become more sensitive to the concentration of the released form

G6PDH&6PGL, compared to that of bound form G6PDH&NADPH&6PGL. This change will

cause enzyme form G6PDH&6PGL to become more dominant in the mode, due to its greater

diagonal dominance in J. Additionally, reaction 7 has the same order of magnitude sensitivity

in the forward direction (k+
7) as reaction 6, but has a much smaller sensitivity when interacting

with G6PDH&NADP&G6P in the reverse direction, thus resulting in a much smaller contribu-

tion to this enzyme form in the mode. Finally, the unbound G6PDH enzyme form, although

topologically connected to other enzyme forms through reaction 4, is not prominently fea-

tured in the mode, since its sensitivities in G are at a smaller order of magnitude.

Overall, only a few reaction sensitivities in G contribute to the mode structure in this case

study, thus allowing us to determine the specific reactions that control the dynamics of the

mode. For significant elements in the complicated mode structure, the associated half-reaction

equilibrium constant is close to the metabolite concentration, thus creating dynamic interplay

between multiple elements in the reactions. On the other hand, in the case of simple mode

structure governed by diagonal dominance, the half-reaction equilibrium ratio associated with

the diagonal metabolite is usually far from equilibrium. The analysis approach presented

exploits the fact that dynamic features in J are an integration of the features in S and G, thus

allowing us to understand modal structure in terms of both reaction sensitivities in G and net-

work topology in S.

Power iteration converges to eigenvector subspaces when eigenvalues

are similar in magnitude

As an important technical aside, we note that the power iteration procedure works well when

the eigenvalue is much larger in magnitude than the others; however, special behaviors arise

when eigenvalues do not separate well. Specifically, when we reach modes where eigenvalues

are close in magnitude, the power iteration algorithm converges to different ending vectors

depending on the starting vectors. In this case, the starting vector is influenced by multiple

eigenvectors comprising a subspace of dynamics active around this time scale, making the

Fig 4. Analysis of complicated mode structure through power iteration with modified Jacobian matrix. We divide the vector

multiplication with the Jacobian matrix into multiple steps. First of all, each row of the Jacobian matrix is multiplied by every element of the

starting vector (Panel B solid black circles). We then sum up each column of the second matrix to obtain the resulting vector (Panel B dash

black circles), which is normalized to give the ending vector. (A) The original Jacobian matrix and its leading left eigenvector. The matrix

and the eigenvector are the same as in Fig 3 and will be used for comparison with later panels. (B) Starting vector multiplied with the

modified Jacobian matrix. We modified the Jacobian element at position (4, 4) to be the same value as the element at position (2, 2). The

ending vector has a smaller ratio between the 2nd and 4th elements than that of the original eigenvector, as would be expected with a larger

absolute value at position (4, 4). The eigenvector of this modified matrix is shown in the upper right of the panel. (C) Starting vector

multiplied with a different modified Jacobian matrix. We further changed the modified Jacobian matrix in panel A to create a more

symmetric structure, where the element at position (2, 4) is same as the element at position (4, 2). The ending vector has the same

absolute values at the 2nd and 4th positions, showing that a fully symmetric Jacobian structure will create an equally weighted structure in

eigenvector. The eigenvector of this modified matrix is shown in upper right. Overall, we demonstrate that changing the Jacobian element

at either diagonal or off-diagonal position can alter the eigenvector of the matrix in a predictable manner, based on the topological pattern

of the key elements determining the eigenvector structure. For clear demonstration purposes, the comparison of relative colors only works

for individual box (surrounded by black stroke) itself, but not across different boxes.

https://doi.org/10.1371/journal.pone.0189880.g004
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Fig 5. The origin of complicated mode structure associated with G6PDH enzyme forms demonstrated through the associated matrices.

The mode structure contains four enzyme forms (denoted as E1, E2, E3 and E4, full annotation at the bottom), with G6PDH&NADPH&6PGL and

G6PDH&6PGL being the most dominant elements. We extracted the submatrices associated with those four enzyme forms and their related

reactions. We show that three key reactions and their associated reaction sensitivities in G determine the mode structure. (A) The reaction steps for

the biochemical reaction catalyzed by G6PDH enzyme. The four dominant enzyme forms in the mode are labeled with red circles. The reactions with

their notations (R1 to R7) are labeled with blue rectangular boxes. The three key reactions determining the mode structure are circle with black

rectangular boxes. (B) The stoichiometric matrix S for the four enzyme forms in the mode and their associated reactions. The S matrix describes the

network topology of the enzyme forms and determines how they interact in the Jacobian matrix. (C) The symbolic and numerical gradient matrix G for

the four enzyme forms in the mode and their associated reactions. The key reaction sensitivities determining the two largest elements in the mode are

associated with reaction 6 and its corresponding enzyme forms. The key terms are k+
6 and NADPHk-

6, which are similar in magnitude, due to the fact

that NADPH concentration is similar to the equilibrium constant of the half reaction for NAPDH binding/release. (D) The symbolic and numerical
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ending vector difficult to predict. The ending vectors overlap significantly with an “eigenvector

subspace” (Fig 6A), as these vectors are influenced by multiple eigenvectors simultaneously.

Also, the approximated eigenvalues overlap significantly with the actual eigenvalue cluster (Fig

6B), showing that the approximated eigenvalues settle in the range of the set of similarly lead-

ing eigenvalues. Overall, this analysis demonstrates how multiple eigenvectors influence

dynamic response for time scales that are associated with multiple eigenvalues at similar

magnitude.

Discussion

In this study, we developed an understanding of how the sparsity structures of the dynamic

modes of kinetic models of metabolism are linked to specific properties of mass action reaction

rate laws. 1) We showed that the diagonal dominance in rows of the Jacobian matrix is a

Jacobian matrix J for the four enzyme forms in the mode. We found that the elements of reaction 6 in G dominate the topologically connected

Jacobian elements that determine the mode structure. These elements are located at positions (2,2), (2,4), (4,2) and (4,4). Reaction 6 is connected to

reaction 4 and 7, whose reaction sensitivities are much smaller in magnitude compared to that of reaction 6, resulting in very small coefficient for their

associated elements in the mode (G6PDH and G6PDH&NADP&G6P).

https://doi.org/10.1371/journal.pone.0189880.g005

Fig 6. Eigenvalue and eigenvector approximations calculated from power iteration in cases where eigenvalues do not separate well. We

selected a cluster of close eigenvalues (with a time scale around 0.016 milliseconds), reduced J using Hotelling’s deflation method until this time scale

was reached (see Materials and Methods), and calculated approximated eigenvalues and eigenvectors using power iteration with different starting

vectors. (A) Eigenvector approximations calculated during power iteration from different starting vectors, compared to the actual eigenvectors with

eigenvalues in the selected range. We calculated the approximated 100 eigenvectors from 100 different random vectors with 100 iterations each and

obtained vectors that are linearly independent with each other (see Materials and Methods). The left part of the matrix shown is the eigenvector

approximations while the right part of the matrix shown is the actual eigenvectors, separately by the black bold vertical line. We found that the

subspace formed by eigenvector approximations overlaps significantly with the actual eigenvector subspace. (B) The selected eigenvalue cluster is

compared to the eigenvalue approximations calculated from power iteration. The selected eigenvalues and eigenvalue approximations are shown in

the inset plot. We obtained the eigenvalue approximations from the same set of power iterations performed in panel A. The cluster of eigenvalue

approximations overlaps significantly with the cluster of actual eigenvalues, showing that the eigenvalue approximations settle in the range of the set

of similarly dominant eigenvalues.

https://doi.org/10.1371/journal.pone.0189880.g006
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common occurrence due to the order-of-magnitude scaling of kinetic constants, metabolite

concentrations, and reaction fluxes. This diagonal dominance results in simple mode struc-

tures where single metabolites relax back to their references states driven by particular eigen-

values. 2) For more complicated mode structures, we used the power iteration algorithm to

show that these complicated mode structures form from topologically connected values of sim-

ilar orders of magnitude in the Jacobian matrix. 3) We showed that a key feature underlying

mode structure is the reaction sensitivities in the gradient matrix G, which can be interpreted

as the distance from equilibrium of half reactions defined by linearization of bilinear mass

action equations.

Diagonal dominance of the Jacobian matrix as described by Gershgorin circle theorem

gives information about certain eigenvalues. This property results in simple mode structures,

which can occur on time scales that span different orders of magnitude. A simple structure

dominated by a single element indicates that the concentration variable relaxes to its reference

state after its characteristic timescale and does not interact with others on this timescale. Thus,

if rows of the Jacobian are diagonally dominated, there are fewer dynamic connections in the

resulting modes, since these modes will have few nonzero elements. As these non-zero ele-

ments will correspond to the diagonally dominant metabolites, the dynamics on those time-

scales are ’local’ or heavily influenced by local equilibria. The degree of diagonal dominance

that we observe in a real metabolic Jacobian matrix indicates that these local dynamics are

prevalent, and thus metabolism has a relatively disconnected dynamic structure on many time-

scales. This modular structure should simplify the challenge of predicting the dynamic behav-

ior of the entire system. We note that the core theorem used in this analysis, Gershgorin circle

theorem, is well-known in classical engineering applications, and also has previously been

applied to the Jacobian matrix of metabolic networks to analyze system stability [30][31].

We have shown that topologically connected elements of the Jacobian matrix at similar

magnitude underlie complex mode structures. Here we used the power iteration algorithm to

demonstrate how eigenvectors arise from certain elements of the Jacobian matrix. The power

iteration algorithm gives a sparse approximation of the modes that enables the identification

of mode-determining elements of the Jacobian matrix. This contrasts to the more standard

eigenvector calculation algorithms such as QR decomposition. While other algorithms also

yield the eigenvalues and eigenvectors, often in a numerically more efficient manner, our goal

was to understand how the elements of the Jacobian determine the eigenvectors. For this pur-

pose, we found that the power iteration algorithm is well-suited to suits our needs. Using

power iteration, it is possible to observe how particular elements of the Jacobian matrix influ-

ence a random vector and ‘move’ it in the direction of the eigenvector. This process is how we

connect the structure of the Jacobian matrix to the structure of its modes, i.e. the left eigenvec-

tors of the Jacobian matrix. Examining key Jacobian elements that determine eigenvector

structure shows that they originate from a few reaction sensitivities of topologically connected

reactions. These reaction sensitivities are at different orders of magnitude, resulting in well-

separated dynamics for the metabolites/enzyme forms involved. In a physiologically relevant

perturbation, these fast dynamics are not likely to be excited, leaving the slow ones to be main

interest of study.

It would be remiss in any work on the linearized dynamics of metabolic networks to fail to

mention the relation of the work to the foundational body of theory in Metabolic Control

Analysis (MCA) [22]. The gradient matrix G (dv/dx) that we use to calculate the Jacobian

matrix J is the same matrix that appears in MCA as the unscaled elasticity matrix [26]. How-

ever, the majority of MCA relationships involve the use of scaled matrices, the properties of

which we have not yet examined in the context of the dynamic modes of the system. Addition-

ally, frequent questions arising in MCA include the control and parameter sensitivity of the
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system fluxes. As they are rooted in the same matrices and dynamic properties of the reactions,

it is likely that the modal structure of the system is intricately connected to the local control

properties of the system.

When examining the origin of mode structure, we have introduced a concept of a half reac-

tion, which involves only a subset of the substrates and products of a particular reaction that

dynamically respond on a particular timescale. We showed that the distance from equilibrium

of topologically-connected half reactions is a determinant of the complexity of the mode struc-

ture. The half reaction definition arises from linearization of the mass balance equation, where

certain reactant/product term has been removed due to differentiation. In a bilinear enzymatic

reaction, the reaction sensitivities associated with the substrates/products are often at different

orders of magnitude, resulting in half of the reaction responds at a particular time scale while

the other half relaxes. This phenomenon is a key feature for the bilinear kinetics occurring in

metabolic networks.

Materials and methods

Software

All work was done in Mathematica 10. We used a package called the MASS Toolbox (https://

github.com/opencobra/MASS-Toolbox) for model simulation and analysis. The models are

available in SBML and Mathematica formats and can be found in Supporting Materials.

Model simulation and perturbation

The model used in this study is a whole-cell kinetic model of red blood cell (RBC) metabolism

consisting of 133 mass action reactions with 10 enzyme modules incorporated [23]. An

enzyme module describes the detailed reaction steps of an enzyme-catalyzed reaction, includ-

ing substrate binding, catalytic conversion, product release and regulatory actions. The 10

enzyme modules are mainly located in glycolysis and the pentose phosphate pathway.

We used measured steady state metabolite concentrations as the starting state of the system

before the perturbation. The perturbation used in this study was to simulate ATP hydrolysis in

RBC. At time 0, the ATP concentration was decreased by 0.1 mmol/L while ADP and Pi con-

centrations were increased by 0.1 mmol/L. We then simulated the subsequent concentration

and flux changes through numerical integration of the ODE equations. We gave the system

enough time (106 hours) to regain the steady state concentrations. The dynamic response of a

specific metabolite or a combination of metabolites over time was visualized using the plotting

functions in MASS Toolbox.

Mode structure interpretation and dominant mode selection

To simplify the mode structure for interpretation, we neglected metabolites whose absolute

coefficient values are less than 5% of the maximum absolute coefficient. We found that gener-

ally metabolites with small coefficients do not substantially contribute to the dynamic response

of the mode, and 5% serves as a useful cutoff value for purposes of analysis.

When selecting modes that can be explained by diagonal dominance alone, we applied the

following criteria to both concentration modes and flux modes. When examining a particular

mode, we first neglected elements whose absolute coefficient values are less than 5% of the

maximum absolute coefficient. If there is only one element left in the mode and it is diagonally

dominant, the mode is explained by diagonal dominance. For modes with multiple elements,

we selected the mode where its largest coefficient is at least twice as large as the next one and

corresponds to the most diagonally dominant element in the mode.
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Power iteration and Hotelling’s deflation

Since the modes are left eigenvectors of the Jacobian matrix, we left multiplied the Jacobian

matrix by the vector during power iteration. We started with a random vector, obtained a new

vector after matrix multiplication and normalized against the Euclidean norm. We kept run-

ning this iteration until the length of the ending vector converges. The algorithm is demon-

strated as follows,

uiþ1 ¼ ui � J=kui � Jk ð8Þ

where i is the number of iterations, ui is the starting vector and ui+1 is the ending vector in

each iteration.

Since power iteration only calculates the leading eigenvalue and eigenvector of the Jacobian

matrix, we used Hotelling’s deflation to remove the impact of the leading eigenvector and cal-

culated the next leading eigenvector [29]. The algorithm thus results

Jtþ1 ¼ Jt � utut
TJtutut

T ð9Þ

where Jt+1 is the Jacobian matrix after the leading eigenvector ut of the previous Jacobian

matrix Jt is removed.

In cases where the eigenvalues are clustered together, different starting vectors will result in

different eigenvectors at the end of iteration. To compare the approximated eigenvectors from

power iteration with the actual eigenvectors, we picked the eigenvalue cluster with time scale

around 0.016 milliseconds and reduced J using Hotelling’s deflation method until this time

scale was reached. We started with 100 random vectors and multiplied them by J through 100

iterations, which we found to be large enough for the vector to converge in practical cases. To

obtain the set of linearly independent vectors out of the 104 vectors, we started with one of the

vectors, added another vector (from the 104 vectors), and calculated the rank of the matrix

formed by the current vector space. We kept adding the vector one at a time for all the ones we

calculated. If the matrix rank increases, the added vector is linearly independent with the ear-

lier vectors and will be kept in the final vector set. Otherwise, it will not be included. We also

calculated the norms of all vectors during iterations as eigenvalue approximations for compari-

son with the eigenvalue cluster.

Supporting information

S1 Text. Properties of modes and Jacobian matrix in a metabolic network.

(PDF)

S1 Model Files. The files contain RBC kinetic model and enzyme modules used for the

study.

(GZ)

S1 Fig. Statistics on degree of diagonal dominance in rows of concentration Jacobian

matrix. The distribution of fraction of total J rows in terms of diagonal fraction on a log10

scale.

(TIF)

S2 Fig. Largest positive eigenvalues resulted from replacing diagonal elements of the Jaco-

bian matrix with zero values. We replaced each diagonal element of the Jacobian matrix with

zero value one at a time and calculated the eigenvalues of the modified matrix. We observed

that the largest positive eigenvalues are on the same order of magnitude as the absolute values
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of the diagonal elements replaced.

(TIF)

S3 Fig. The association of Jacobian diagonal elements with elements in the gradient matrix

(G). Metabolites with diagonal dominance are marked red while metabolites with no diagonal

dominance are marked blue. The diagonal element of J is largely determined by a single value

within G, suggesting that diagonal dominance can be tied to a single reaction sensitivity (dv/

dx) in each case.

(TIF)

S4 Fig. Analysis of complicated mode structure through power iteration with different

starting vectors. We divide the vector multiplication with the Jacobian matrix into multiple

steps. First of all, each row of the Jacobian matrix is multiplied by every element of the starting

vector (Panel A yellow circles). We then sum up each column of the second matrix to obtain

the resulting vector (Panel A black circles), which is normalized to give the ending vector. (A)

Starting vector with nonzero entries at the 2nd and 4th positions multiplied with the Jacobian

matrix. The ending vector is very similar to the original eigenvector. This is the same example

as in Fig 3B. (B) Starting vector with nonzero entry at the 2nd position multiplied with the Jaco-

bian matrix. We picked this vector to demonstrate its interaction with the 2nd row specifically.

The ending vector is very similar to the actual eigenvector, showing that the 2nd row is one of

the determining factors for the eigenvector. (C) Starting vector with nonzero entry at the 4th

position multiplied with the Jacobian matrix. Similar to the previous example, we picked this

vector to demonstrate its interaction with the 4th row. The ending vector is very similar to the

actual eigenvector, showing that the 4th row also contributes to eigenvector formation. Overall,

the examples above demonstrate that both the 2nd and 4th rows contribute to the structure of

the eigenvector similarly. The Jacobian matrix presented here corresponds to G6PDH enzyme

forms and is a submatrix of J from the RBC metabolic network. The large values in the Jaco-

bian submatrix come from the large rate constants of G6PDH enzymatic reactions. For clear

demonstration purposes, the comparison of relative colors only works for individual

box (surrounded by black stroke) itself, but not across different boxes.

(TIF)

S5 Fig. Additional case studies for complicated modes and their associated submatrices of

J. We identified more cases in which complicated mode structures are determined from topo-

logically connected elements of Jacobian matrix at similar magnitude. Elements that are key in

determining the eigenvector structure are circled in black. (A) Mode structure for PYK enzyme

forms and its related submatrix of J. The 5th, 6th, 7th, 8th are significant elements of the eigen-

vector. The Jacobian elements determining such eigenvector structure are found at the diago-

nal positions (5, 5), (6, 6), (7, 7), (8, 8). (B) Mode structure for ADK and PYK enzyme forms

and its related submatrix of J. The 2nd and 6th elements are significant in the eigenvector. Key

Jacobian elements affecting the eigenvector structure are located at positions (2, 2), (2, 6), (6,

2), (6, 6). For clear demonstration purposes, the comparison of relative colors only works for

individual box (surrounded by black stroke) itself, but not across different boxes.

(TIF)
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