
RESEARCH ARTICLE

Beyond greenness: Detecting temporal

changes in photosynthetic capacity with

hyperspectral reflectance data

Mallory L. Barnes1*, David D. Breshears1,2, Darin J. Law1, Willem J. D. van Leeuwen1,3,

Russell K. Monson2, Alec C. Fojtik4, Greg A. Barron-Gafford3, David J. P. Moore1

1 School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States of

America, 2 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United

States of America, 3 School of Geography and Development, University of Arizona, Tucson, Arizona, United

States of America, 4 Department of Geology, Wheaton College, Wheaton, Illinois, United States of America

* mallorybarnes@email.arizona.edu

Abstract

Earth’s future carbon balance and regional carbon exchange dynamics are inextricably

linked to plant photosynthesis. Spectral vegetation indices are widely used as proxies for

vegetation greenness and to estimate state variables such as vegetation cover and leaf

area index. However, the capacity of green leaves to take up carbon can change throughout

the season. We quantify photosynthetic capacity as the maximum rate of RuBP carboxyla-

tion (Vcmax) and regeneration (Jmax). Vcmax and Jmax vary within-season due to interactions

between ontogenetic processes and meteorological variables. Remote sensing-based esti-

mation of Vcmax and Jmax using leaf reflectance spectra is promising, but temporal variation

in relationships between these key determinants of photosynthetic capacity, leaf reflectance

spectra, and the models that link these variables has not been evaluated. To address this

issue, we studied hybrid poplar (Populus spp.) during a 7-week mid-summer period to quan-

tify seasonally-dynamic relationships between Vcmax, Jmax, and leaf spectra. We compared

in situ estimates of Vcmax and Jmax from gas exchange measurements to estimates of Vcmax

and Jmax derived from partial least squares regression (PLSR) and fresh-leaf reflectance

spectroscopy. PLSR models were robust despite dynamic temporal variation in Vcmax and

Jmax throughout the study period. Within-population variation in plant stress modestly

reduced PLSR model predictive capacity. Hyperspectral vegetation indices were well-corre-

lated to Vcmax and Jmax, including the widely-used Normalized Difference Vegetation Index.

Our results show that hyperspectral estimation of plant physiological traits using PLSR may

be robust to temporal variation. Additionally, hyperspectral vegetation indices may be suffi-

cient to detect temporal changes in photosynthetic capacity in contexts similar to those stud-

ied here. Overall, our results highlight the potential for hyperspectral remote sensing to

estimate determinants of photosynthetic capacity during periods with dynamic temporal vari-

ations related to seasonality and plant stress, thereby improving estimates of plant produc-

tivity and characterization of the associated carbon budget.
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Introduction

Photosynthesis by land plants plays a critical role in regional and global carbon balance [1–3].

Globally, photosynthesis in the terrestrial biosphere, combined with photosynthetic and non-

photosynthetic processes in the oceans, offsets 45% of anthropogenic carbon emissions annu-

ally [4]. Terrestrial carbon uptake by plants varies annually and seasonally based on climate

conditions [5–9], water and nutrient availability [10,11], and plant physiological properties

such as water use efficiency [12] and photosynthetic capacity [13]. The size and future of the

terrestrial carbon sink remains a critical uncertainty in global climate models [14]. To accu-

rately predict terrestrial carbon uptake, improved quantification of spatial and temporal varia-

tion in photosynthesis is necessary.

Spatial and temporal variation in plant photosynthesis can be estimated using remote sens-

ing-derived spectral indices. Spectral estimates of green vegetation, including vegetation indi-

ces such as the Normalized Difference Vegetation Index (NDVI), are widely used to estimate

photosynthesis and vegetation productivity across spatial and temporal scales [15–18]. Esti-

mates of gross primary productivity derived from greenness measures rely on relationships

between vegetation use of light energy and photosynthesis [19–22]. However, the capacity of

green leaves to use absorbed light to convert CO2 into biomass varies dynamically throughout

the season and with plant stress [23–26]. Many terrestrial biosphere models use static values of

determinants of photosynthetic capacity [27]; however, there is some evidence that allowing

photosynthetic capacity to vary temporally could improve representation of carbon dynamics

[28]. The photochemical reflectance index (PRI) is a hyperspectral vegetation index that

detects diurnal changes in xanthophyll cycle activity and responds to seasonal shifts in leaf pig-

ment concentrations [29]. PRI is used to estimate photosynthetic light-use efficiency [30];

however, its relationship to photosynthetic capacity is unclear. Spectral methods that capture

dynamic temporal changes in photosynthetic capacity could yield more accurate estimates of

vegetation productivity and associated carbon uptake.

Photosynthetic capacity represents the potential of vegetation to fix CO2 under optimal

light and water conditions. In this study, we estimate photosynthetic capacity through mea-

surements of the maximum rate of carboxylation of RuBP by the enzyme rubisco (Vcmax) and

the maximum rate of electron transport driving RuBP regeneration (Jmax)[31]. Some terrestrial

biosphere models treat Vcmax and Jmax as fixed parameters [27]. However, these photosynthetic

parameters vary in response to climate conditions [32–35], atmospheric CO2 concentrations

[36], plant stress [37], and seasonally in response to ontogenetic processes [38–40]. This sea-

sonal variation can be important, given that process-based biosphere models that account for

within-season variation in photosynthetic capacity show improved predictions of carbon flux

dynamics [28].

Although hyperspectral remote sensing shows promise for predicting photosynthetic capac-

ity based on leaf optical properties, questions remain regarding temporal variability. Estimates

of photosynthetic capacity from remote sensing methods are desirable because of their poten-

tial to map Vcmax and Jmax across space and constrain terrestrial biosphere model estimates of

plant function. Predictive models of photosynthetic capacity, conditioned based on leaf reflec-

tance metrics, have been developed using partial least squares regression (PLSR) for multiple

tree species across glasshouse temperature regimes [29], in C4 crop species[41], and in C3 spe-

cies at the canopy level [33]. Emergent studies on crop species using high-throughput pheno-

typing approaches further justify a better understanding of hyperspectral characterization of

photosynthetic capacity [41–43]. Still unknown is whether hyperspectral methods of estimat-

ing Vcmax and Jmax are robust to temporal variation in these key determinants of photosyn-

thetic capacity. Hyperspectral leaf reflectance correlates with leaf characteristics likely to cause

Temporal stability of photosynthetic capacity/hyperspectral reflectance relationships
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seasonal variation in photosynthetic capacity such as chlorophyll content [44], nitrogen content

[45], light-use efficiency [46], and water status [47], while spectral vegetation indices capture

some but not all of these factors. However, previous studies have generally used variation in

reflectance and plant function across space rather than time to derive these relationships so it

remains unknown whether hyperspectral methods of estimating Vcmax and Jmax are robust to

temporal variation in these key determinants of photosynthetic capacity. We hypothesize that if

seasonal variation in photosynthetic capacity is caused by a combination of leaf changes detect-

able by reflectance in bands outside of narrowband multispectral bands, then PLSR models that

utilize the full reflectance spectrum will predict seasonal changes in Vcmax and Jmax.

In this study, we evaluated the ability of hyperspectral data to represent and predict within-

season temporal variation in Vcmax and Jmax and examined the influence of water stress on the

robustness of these estimates of photosynthetic capacity. We compared leaf reflectance spectra

from hybrid poplar (Populus spp.) to Vcmax and Jmax estimates throughout a 7-week period in

the middle part of the growing season. We discuss our results in the context of emerging

hyperspectral remote sensing methods and terrestrial biosphere models of global carbon

dynamics.

Methods

Experimental site

Our study was conducted using poplar trees, grown outdoors at the Biosphere 2 Research Cen-

ter near Oracle, AZ, USA (32˚ 34’ 51” N 110˚ 50’ 57” W; 1189 m). Biosphere 2 is leased to the

University of Arizona. Authors RKM, DJPM, and GABG were responsible for the poplar stand

at Biosphere 2. No additional permission was required to carry out this study, which did not

involve endangered or protected species. We studied the relationship between spectral reflec-

tance and photosynthetic capacity in 12 individual Populus deltoides hybrid poplar trees. Trees

were planted in random arrangement with 1 x 1 m spacing in January 2013. Each year during

the dormant season, the trees were coppiced and destructively sampled for biomass. Study

trees were randomly selected before the start of the experiment in May 2016. During the study

period (5/24/2016–7/5/2016), the mean high temperature was 34.4˚C and the mean low tem-

perature was 21.3˚C. We applied 38 liters of water per day per tree during the pre-dawn period

for 2 weeks prior to the start of the experiment (5/1/2016–5/14/2016) using an irrigation sys-

tem to begin the study in well-watered conditions. We also fertilized the trees on 5/14/2016

using tree and shrub food (Arizona’s Best) to ensure the trees were not nutrient-limited at

the start of the induced dry-down. The trees were exposed to ambient climate conditions and

had no irrigation except for supplemental watering from 6/2/2016 through 6/6/2016 and addi-

tional watering on 6/20/2016, which avoided senescence and caused variance in the water sta-

tus of the trees. On sampling dates, we measured predawn leaf water potential (Cpd), leaf gas

exchange, and hyperspectral leaf reflectance for each tree. The full suite of measurements was

conducted on all 12 trees on consecutive sampling dates (6 trees per day), except for 6/30

when we measured all 12 trees in one day.

Predawn leaf water potential and A/Ci curves

Predawn leaf water potential (Cpd) was measured using a pressure chamber (PMS Instru-

ments, Albany, OR, USA). Leaves were collected before sunrise, transported to the lab in a

cooler, and measured within 30 minutes of collection. One leaf per plant was measured per

time point.

Leaf gas exchange was measured with two LI-COR portable photosynthesis systems

(LI-COR Biosciences, Lincoln, NE, USA) equipped with a 6400-02B LED light source. Gas
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exchange measurements were performed on the youngest, most fully-expanded leaf on the

south-facing side of each tree. Leaves were acclimated to the chamber at 25˚C, a chamber-air

CO2 concentration of 400 ppm, and a saturated photosynthetic photon flux density (PPFD) of

1800μmol m-2 s-1 until the photosynthetic rate (A) stabilized. Gas exchange curves were con-

ducted only on leaves with an initial A� 10 μmol CO2 m-2 s-1 to ensure that the leaves were

active enough to yield appropriate estimates for photosynthetic capacity. Each curve consisted

of 13 different intercellular CO2 concentrations (Ci) starting at the ambient CO2 concentration

of 400 ppm and then decreasing to 300, 200, 100, 50 to 0 ppm before increasing to 400, 400,

600, 800, 1200, 1600, 2000 ppm. We used the Predictive Ecosystem Analyzer (PEcAn) photo-

synthesis package to perform quality control of CO2 response data before fitting A/Ci curves

(https://github.com/PecanProject/pecan). In total, 86 CO2 response curves passed quality con-

trol. We fit A/Ci curves using the ‘fitaci’ function in ‘plantecophys’ package in R [48]. The

‘fitaci’ function fits the Farquhar-Berry-Von Caemmerer Model of leaf photosynthesis [31] to

measurements of photosynthesis and intercellular CO2 and estimates Vcmax and Jmax along

with their standard errors.

Hyperspectral measurements

Reflectance was measured on the same leaves as the gas exchange measurements using a high-

spectral resolution ASD FieldSpec1 3 Full-Range (350–2500 nm) spectroradiometer (Analyti-

cal Spectral Devices, Boulder, CO, USA). Reflectance measurements were taken with a leaf-

clip assembly containing an internal calibrated light source and a black background panel face.

The relative leaf reflectance data were standardized prior to measurements of each leaf by mea-

suring a standard white reference reflectance target. ViewSpec Pro1 software was used to con-

vert binary data to ASCII data. The spectral resolution is 3nm at 700 nm, 10nm at 1400 and

2100nm across the full spectrum. The hyperspectral data are sampled at every 1nm. The spec-

troradiometer was turned on for at least 30 minutes before reflectance measurements were

taken. The white panel reference reflectance was captured every 2–5 minutes. All measure-

ments were taken from the leaf adaxial surface, avoiding the midrib. Three reflectance mea-

surements were obtained on three different areas of each leaf lamina, resulting in nine spectra

per leaf. Each measurement required no more than 5 s. Spectral reflectance measurements

were quality-checked by removing negative reflectance values. We then averaged the nine

spectra to determine mean optical properties for each leaf. Measures of leaf optical properties

generally occurred between 10:30am and 11:30am and followed gas exchange measurements

by no more than 2 hours.

Partial least squares regression models

Partial least-squares regression (PLSR) was performed to generate predictive models using the

package ‘PLS’ in R [49]. PLSR is a multivariate regression method commonly used in spectros-

copy because it can account for many related predictor variables and relatively few observa-

tions. PLSR identifies key components that explain variation in a trait variable and generates

a linear model to transform full-spectrum data based on these components. The package

‘PLSROpt’ in R was used for pre-processing the spectral data in the order of standard normal

variate, a second-derivative Savitzky-Golay smoother, auto-scaling, and mean centering

(https://github.com/uwadaira/plsropt). The model with the number of components that mini-

mized the Root Mean Squared Error of Prediction (RMSEP) was selected as the most parsimo-

nious PLSR model. Each PLSR model was generated independently for Vcmax and for Jmax.

The spectrum range for all models was 450–2500 nm. Performance parameters were generated

to assess the predictive ability of each model including the coefficient of determination (R2).

Temporal stability of photosynthetic capacity/hyperspectral reflectance relationships

PLOS ONE | https://doi.org/10.1371/journal.pone.0189539 December 27, 2017 4 / 17

https://github.com/PecanProject/pecan
https://github.com/uwadaira/plsropt
https://doi.org/10.1371/journal.pone.0189539


Three different evaluations of the PLSR model were performed in increasing order of statis-

tical rigor. The first test was a "leave-one-out" cross-validation approach, which trains the

model on all but one observation, and then makes a prediction based on the single remaining

observation [50]. The second test was performed with a 20% holdout dataset; a random 80/

20% split of the data divided it into a training and testing dataset, respectively. New PLSR

models were generated based on calibration of the training dataset and validated based on the

remaining 20%. A 100x cross validation of training/calibration splits was performed to assess

model and data stability across different proportions of testing and training data (S1 Fig). The

third and most rigorous test of model stability was testing the model on the sampling dates

with greatest variation in the population in terms of water stress (Cpd). The two consecutive

sampling dates with the largest individual variation in Cpd, (6/23/2016 and 6/24/2016, n = 12)

were held out. The model was trained on all data except for the holdout dataset and was tested

on the 12 observations with large variation in Cpd. The purpose of this test was to assess model

predictive capacity in a situation with large within-population variation in environmental

stress. For each PLSR model, Selectivity Ratio (SR) scores were calculated to enable compari-

son of the relative significance of each wavelength in its contribution to the final model.

Although the Variable Importance of the Projection (VIP) score is more widely used in the

current scientific literature, SR has been found to be more reliable for model predictions and is

thus presented in this study [51].

Spectral vegetation indices

Spectral vegetation indices for estimating chlorophyll content, water stress, and carotenoid

pigments were tested using the full set of observations (Table 1); these are all published indices

used to estimate plant physiological status. The Normalized Difference Water Index (NDWI)

was tested based on its correlation with plant water content in conifers [47], and PRI was tested

based on known relationships with photosynthetic functioning [52,53] and environmental

stress [54,55]. We also calculated ‘MODIS-like’ NDVI for all spectra. MODIS (Moderate Reso-

lution Imaging Spectroradiometer) NDVI uses the red band (band 1; 620–670 nm) and the

near-infrared (NIR) band (band 2; 841–876 nm). For both the red and NIR, we calculated the

full-width- half-maximum for the subset of wavelengths corresponding to the MODIS band-

widths using the ‘peakshape’ function in the ‘pavo’ package [56]. We then took the mean of all

reflectance values between the endpoints of the width of the spectrum curve. We then applied

the standard NDVI equation (see Table 1) to get a ‘MODIS-like’ NDVI. Pairwise correlations

between Vcmax and Jmax estimated using standard gas exchange techniques and spectral indices

were tested and R2 reported.

Results

Weather conditions, photosynthetic capacity, and pre-dawn water potential (Cpd) varied over

the course of our study (Fig 1). Conditions were generally hot and dry throughout the study

period, with high daytime temperatures and Vapor Pressure Deficit (VPD) and low precipita-

tion (Fig 1A). Mean daytime temperature (06:00 to 18:00 MST) ranged from 20.73˚C to

38.90˚C throughout the study period with a mean of 30.1 ±4.3˚C. Peak VPD (10:00 to 14:00

MST) ranged from 0.60 kPa to 7.2 kPa with a mean of 3.9 ±1.3 kPa. There was little precipita-

tion throughout the study period with most (30.3 mm) of the total rainfall (36.1 mm) occur-

ring between 6-28-2016 and 6-30-2016 (Fig 1A). Vcmax and Jmax both varied throughout the

study period. Vcmax ranged from 43.9 to 130.4 with a mean of 75.7 ±20.8 μmol m−2 s−1. Jmax

ranged from 76.7 to 261.2 with a mean of 150.1 ±37.5 μmol m−2 s−1. Vcmax and Jmax declined

by approximately two-fold throughout the 7-week study period (Fig 1C and 1D). Vcmax and
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Jmax appeared to stabilize following the rain events between 6-28-2016 and 6-30-2016 which

relieved water stress (Fig 1B). Pre-dawn water potential varied seasonally, with the lowest

water potentials (most stressed) generally occurring in the middle of the study period (6–23

and 6–24, Fig 1B). Water potential values ranged from -1.35 to -0.8 MPa with a mean of -0.45

±0.23 MPa. Leaf reflectance varied between individuals and temporally (Fig 2A). We evaluated

our results first in terms of variability in leaf reflectance spectra in the study period, then evalu-

ated estimates of Vcmax and Jmax from three different variations of PLSR models with increas-

ing statistical rigor, and finally assessed relationships between Vcmax and Jmax and published

hyperspectral indices.

We performed three different evaluations of the PLSR models, presented in increasing

order of statistical rigor. First, to assess the relationship between photosynthetic capacity and

leaf spectra, PLSR models based on the complete dataset were developed. This least rigorous

test of temporal stability used the "leave-one-out" cross validation approach to quantify the

relationship between leaf reflectance spectra (450–2500 nm) and Vcmax and Jmax. PLSR models

predicted photosynthetic capacity accurately, with comparable model predictive ability for

Vcmax (R2 = 0.72; Fig 3A) and Jmax (R2 = 0.72; Fig 3B). The root mean squared error (RMSE)

was lower for the Vcmax model (RMSE = 4.2, Fig 3A) than the Jmax model (RMSE = 18.2, Fig

3B). The predictive model for Vcmax only required two components to explain the variance,

while the PLSR model for Jmax required four components.

Second, to assess temporal stability of the model, the data were split into training and test-

ing datasets to generate PLSR models. This second test of PLSR model stability used 80% of

the observations for training and withheld a 20% holdout dataset for testing. The 20% holdout

dataset was randomly selected from the full dataset and the remaining 80% were used to build

PLSR models for Vcmax and Jmax. This procedure was performed 100 times with different

Table 1. Hyperspectral vegetation indices that were compared to estimated Vcmax and Jmax values.

Index Formula Reference R2 Vcmax R2 Jmax

SR1 ρ750/ρ700 Gitelson and Merzlyak 1997 [57] 0.74 0.61

Double Difference (ρ749-ρ720)-(ρ701-ρ672) le Maire et al. 2004 [58] 0.74 0.58

Vogelmann1 ρ740/ρ720 Vogelmann et al. 1993 [59] 0.73 0.58

mSR705 (ρ750-ρ445)/(ρ705-ρ445) Sims and Gamon 2002 [44] 0.73 0.57

SRCarter ρ760/ρ695 Carter et al. 1994 [60] 0.72 0.61

Maccioni (ρ780-ρ710)/(ρ780-ρ680) Maccioni et al. 2001 [61] 0.72 0.55

SR3 ρ750/ρ550 Gitelson and Merzlyak 1997 [57] 0.70 0.63

Gitelson 1/ρ700 Gitelson et al. 1999 [62] 0.62 0.52

NDVI (MODIS-like) (ρ NIRMODIS - ρ RedMODIS)/(ρ NIRMODIS + ρ RedMODIS) see methods 0.60 0.50

Datt4 ρ672/(ρ550*ρ708) Datt (1998) [63] 0.57 0.45

SR4 ρ700/ρ670 McMurtey et al. (1994) 0.57 0.36

SR2 ρ752/ρ690 Gitelson and Merzlyak 1997 [42] 0.56 0.53

NDVI (hyperspectral) (ρ860-ρ690)/(ρ860+ρ690) Stimson et al. 2005 [47] 0.49 0.46

Vogelmann2 (ρ734-ρ747)-(ρ715+ρ726) Vogelmann et al. 1993 [59] 0.17 0.14

mNDVI (ρ800-ρ680)/(ρ800+ρ680–2ρ445) Sims and Gamon 2002 [44] 0.07 0.03ns

NDWI (ρ860-ρ1240)/(ρ860+ρ1240) Gao 1996 [64] 0.06 0.20

SIPI (ρ800-ρ445) Penuelas et al. 1995 [65] 0.06 0.03ns

PRI (ρ531-ρ570)/(ρ531+ρ570) Gamon 1997 [52] 0.02ns 0.00ns

mSRCHL (ρ800-ρ445)/(ρ680-ρ445) Sims and Gamon 2002 [44] 0.00ns 0.00ns

The predictive formula (ρ = spectral reflectance) and reference for each index is shown in addition to the coefficient of determination for Vcmax and Jmax.

Nonsignificant correlations are indicated with an “ns” superscript. Values of R2 above 0.50 are bolded.

https://doi.org/10.1371/journal.pone.0189539.t001
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randomly selected 20% holdout datasets (S1 Fig); the mean R2 for the 80/20 split was 0.64

±0.03 for Vcmax and 0.64 ±0.07 for Jmax (S1 Table). Models with a 20% holdout dataset that

were representative of mean predictive ability are shown in Fig 3C and 3D; predictive ability

was comparable for Vcmax (R2 = 0.67; Fig 3C) and Jmax (R2 = 0.69; Fig 3D). The predictive capa-

bility of the 80% model was similar to the predictive capability of the full cross-validated

model (Fig 3A and 3B). The RMSE was lower for the Vcmax model (RMSE = 12.6; Fig 3C) than

the Jmax model (RMSE = 17.6; Fig 3D).

Third, to assess temporal stability in situations with large within-population variation in

environmental stress, the data was split into a testing and training set based on variability in

Cpd. This third and most rigorous test of PLSR model stability trained the PLSR model on low

environmental stress conditions (Cpd) and tested it on the two consecutive sampling days with

highest individual variation in Cpd, (6/23 and 6/24; Fig 1C). PLSR models for Vcmax and Jmax

Fig 1. Temporal variability in meteorological and physiological conditions throughout the study

period. A) shows mean daytime temperature in ˚C (orange line; 06:00 to 18:00), peak VPD in kPa (purple

line; 10:00 to 14:00), precipitation in mm and supplemental watering throughout the study period with dark

blue bars representing precipitation and light blue representing supplemental watering days. B) Shows the

time series of predawn water potential (MPa) throughout the study period. C) and D) show the time series of

estimated Vcmax (μmol m-2 s-1) and Jmax (μmol m-2 s-1), respectively.

https://doi.org/10.1371/journal.pone.0189539.g001
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in this third test differed in their predictive abilities. The predictive ability was only moderately

reduced for Vcmax (R2 = 0.51; Fig 3E), whereas PLSR model predictive ability was substantially

reduced for Jmax (R2 = 0.24; Fig 3F). The RSME was the same for both models (RMSE = 7.7;

Fig 3E and 3F).

To compare the relative significance of different wavelengths in a given PLSR model, the

selectivity ratio (SR) was used as a method of variable selection. The SR was used to assess rela-

tive contributions of different portions of the spectrum to the overall PLSR model. Both Vcmax

and Jmax models were sensitive to variation in the visible wavelength and near infrared (Fig 2B,

Fig 2. Leaf reflectance spectra and wavelength importance in PLSR models. (A) Pooled reflectance

spectra (λ = 450–2500 nm) for all plants studied throughout the course of the study period (5/24/2016 to 7/05/

2017). The mean reflectance at each wavelength is shown by the red line, the maximum and minimum

reflectance at each wavelength are shown by the blue and green lines, respectively. (B)&(C): selectivity ratio

of each wavelength in the PLSR models tested on variable water potential. (B) Shows the selectivity ratio of

each wavelength in the Vcmax PLSR model, and (C) shows the selectivity ratio of each wavelength in the Jmax

PLSR model. The red lines in B&C are LOESS smoothers for visualization purposes.

https://doi.org/10.1371/journal.pone.0189539.g002
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Fig 2C). Peak SR was at 703 nm for Vcmax and 583 nm for Jmax (Fig 2B and 2C). Contributions

from the short-wave infrared regions were small to both Vcmax and Jmax models, however the

SWIR contributed more to the Jmax models than Vcmax models (Fig 2B and 2C).

To assess relationships between existing hyperspectral indices and photosynthetic capacity,

correlations between Vcmax and Jmax and a suite of hyperspectral vegetation indices were com-

pared (Fig 4). Estimated Vcmax and Jmax from hyperspectral chlorophyll and stress indices were

well-correlated with measured values (Table 1). For Vcmax, four other metrics were all compa-

rable to the full PLSR model (R2 = 0.72) based on the coefficient of determination: Maccioni

(R2 = 0.72), Double Difference (R2 = 0.74), Vogelmann2 (R2 = 0.73), and SR1 (R2 = 0.74) (Fig

4A). The PLSR model for Jmax (R2 = 0.72) outperformed all tested hyperspectral indices, the

best of which was SR3 (R2 = 0.63; Fig 4B). Several indices had very low or non-significant

Fig 3. Temporal stability of PLSR models. All figures show observed vs. predicted values from PLS regression models. A&B: leave-one-out cross-

validation procedure for (a) maximum rates of RuBP carboxylation (Vcmax, μmol m-2 s-1) and (b) RuBP regeneration Jmax (μmol m-2 s-1), n = 86. C&D:

representative 80/20% split of the data for PLSR (C) Vcmax (μmol m-2 s-1) and (D) Jmax (μmol m-2 s-1). Each model was trained on 69 observations and

tested on 17 observations. E & F: models tested on the period with the greatest between-individual variation in pre-dawn water potential (Ψpd) for (E) Vcmax

(μmol m-2 s-1) and (F) Jmax (μmol m-2 s-1). Each model was trained on 74 observations and tested on the 12 observations on 6/23/2016 and 6/24/2016 when

the population varied widely inΨpd. Statistical tests of increase in rigor moving downward.

https://doi.org/10.1371/journal.pone.0189539.g003
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correlations with Vcmax, including PRI, NDWI, mNDVI, and SIPI (Table 1). The mNDVI,

SIPI, PRI, and mSRCHL indices all had non-significant relationships with Jmax (Table 1). The

hyperspectral normalized difference vegetation index (NDVI) had moderate predictive capa-

bility for Vcmax (R2 = 0.49) and Jmax (R2 = 0.46). The MODIS-like NDVI (“mod_NDVI”) per-

formed better than the hyperspectral NDVI for both Vcmax (R2 = 0.60) and Jmax (R2 = 0.50)

(Fig 4, Table 1).

Discussion

Our results show that hypers can predict photosynthetic parameters across time, suggesting

that these hyperspectral remote sensing techniques have great potential to constrain model

estimates of plant function. In this study, relationships between leaf reflectance spectra and

photosynthetic capacity were robust throughout a 7-week period with dynamic change in pho-

tosynthetic capacity. Hyperspectral vegetation indices to estimate chlorophyll content were

correlated with the key determinants of photosynthetic capacity, Vcmax and Jmax. Predictions

of Vcmax and Jmax from PLSR models derived from leaf reflectance spectra were proportion-

ally-sensitive to observed variation in Vcmax and Jmax. These results support our hypothesis

that PLSR models that utilize the full spectrum can predict photosynthetic capacity through

time. These findings highlight the potential of hyperspectral remote sensing methods to

Fig 4. Comparison of predictive abilities of hyperspectral indices and PLSR models. Predictive

capability for (A) maximum rates of RuBP carboxylation (Vcmax, μmol m-2 s-1) and (B) RuBP regeneration Jmax

(μmol m-2 s-1). Pairwise correlations between Vcmax and Jmax estimated using standard gas exchange

techniques and spectral indices were tested and R2 is reported. The R2 reported for the PLSR model is from

the leave-one-out cross-validation approach. Indices with non-significant correlations are represented with

“ns”.

https://doi.org/10.1371/journal.pone.0189539.g004
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accurately predict Vcmax and Jmax despite dynamic temporal variation in photosynthetic capac-

ity related to within-season variation and plant stress.

Leaf-level hyperspectral data have previously been used to estimate photosynthesis [66] and

photosynthetic capacity across temperature regimes in glasshouse experiments [32], and in

diverse agroecosystems [41,42], but our study is the first to assess the impacts of in situ within-

season temporal variation on estimates of photosynthetic capacity derived from leaf reflectance

spectra. As in previous studies, measured and PLSR-modeled leaf traits were significantly corre-

lated [32,42,66,67]. Regression models predicted Vcmax and Jmax during a 7-week period with

dynamic declines in photosynthetic capacity. This is confirmation that the spectral signals

detected by leaf reflectance observations are accurately tracking seasonal metabolic adjustments

made within the photosynthetic machinery of the leaf. When PLSR models were trained on only

80% of the data and tested on the remaining 20%, their mean predictive capability were similar

to that of the full PLSR models. This shows that relationships between leaf reflectance spectra

and Vcmax and Jmax are robust despite large variation in these values. Known hyperspectral vege-

tation indices had varying predictive capabilities. Hyperspectral vegetation indices developed for

estimating chlorophyll content (e.g. SR1, Double Difference, Vogelmann 1) and plant stress

(SRCarter) had the highest correlations with plant photosynthetic capacity (Table 1). The wave-

lengths that explained variance in photosynthetic capacity in the PLSR models (based on selectiv-

ity ratio) were consistent with the wavelengths that comprised the best-performing hyperspectral

indices. The important wavelengths in PLSR models, based on Selectivity Ratio, for predicting

Vcmax and Jmax largely fell in the visible and short wavelength end of the near-infrared (~500 to

850 nm), with minor contributions from wavelengths in the short-wave infrared. Important

wavelengths in the visible region fell largely in the blue region (450–495 nm) and red regions

(620–650 nm) for the Vcmax models, which is consistent with the chlorophyll absorption regions

(i.e. *430–460 nm and 640–670 nm). The highest-performing hyperspectral vegetation indices

generally leveraged diagnostic differences in the red-edge portion (680–750 nm) of the spectrum

to estimate chlorophyll content. The red edge region of reflectance is known to be sensitive to

differences in chlorophyll content, and chlorophyll content is generally positively correlated with

photosynthetic capacity [68]. Overall, both hyperspectral indices and PLSR models had the capa-

bility to predict variation in within-season photosynthetic capacity.

Accurate representation of photosynthesis in terrestrial biosphere models is essential to pre-

dicting future carbon and global change dynamics [69]. Although modeled rates of photosyn-

thesis are sensitive to Vcmax and Jmax [3,70,71], most terrestrial biosphere models use static

values for these parameters [27]. Furthermore, Vcmax and Jmax values are often parameterized

based on limited or poorly represented data sets [27]. Monthly optimization of Vcmax improved

process-based biosphere model (Organizing Carbon and Hydrology in Dynamic Ecosystems;

ORCHIDEE) representation of seasonal carbon dynamics (NEE; Net Ecosystem Exchange) in a

tropical evergreen forest in Brazil, however, seasonal parameter variations could not be extrapo-

lated spatially [28]. Remote sensing observations can improve model representation of photo-

synthesis across spatial and temporal scales [31,55,72]. Our results support the use of remotely

sensed estimation of photosynthetic capacity using hyperspectral observations. Furthermore,

hyperspectral remote sensing could be used to incorporate spatially explicit photosynthetic

capacity/environment relationships in next-generation trait-based models. Our results highlight

the potential of hyperspectral remote sensing to parameterize determinants of photosynthetic

capacity and inform trait-environment relationships in terrestrial biosphere models, thereby

improving model representation of photosynthesis and carbon dynamics.

Although PLSR model predictive capabilities for Vcmax and Jmax were generally similar,

there were differences in PLSR model performance and sensitivity between the two variables.

The mean predictive capability of the 80% PLSR models were comparable for Vcmax and Jmax

Temporal stability of photosynthetic capacity/hyperspectral reflectance relationships
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(Table 1); however, the variance in Jmax was nearly twice that of the variance in Vcmax (Table 1,

S1 Fig). A rigorous test of PLSR model performance in the population with individual varia-

tion in drought stress indicated modest reductions in predictive capability for Vcmax and sub-

stantial reductions in predictive capability for Jmax. This test of temporal stability indicates that

predictive relationships between leaf reflectance spectra and photosynthetic capacity are

reduced when there is within-population variation in environmental stress, particularly for

Jmax. PLSR models for Jmax included more wavelengths in the short-wave infrared that are

associated with leaf water content and internal structure. The performance improvement of

the PLSR model for Jmax compared to simple indices underscores the importance of full spec-

tral information for predicting this parameter (Fig 4B)[42]. Terrestrial biosphere models gen-

erally simulate Jmax as a function of Vcmax rather than as its own parameter [73]. However, our

results suggest that Vcmax and Jmax may be differentially sensitive to within-population varia-

tion in environmental stress.

Quantifying temporal variation in relationships between photosynthetic capacity and leaf

reflectance spectra is timely given the increasing availability of high resolution spectral remote

sensing, such as hyperspectral overflights planned by the National Ecological Observatory

Network (NEON) [74] and NASA’s Hyperspectral Infrared Imager (HyspIRI) mission [75].

NEON hyperspectral overflights, which may only occur once per year over a given region, may

be used to develop predictive relationships between leaf reflectance spectra and photosynthetic

capacity. Our results suggest that such predictive relationships developed from data in a short

portion of the growing season could hold true throughout the growing season. The widely

used NDVI had moderate predictive capacity for Vcmax and Jmax. Notably, our approximation

of MODIS NDVI had higher predictive capacity than hyperspectral NDVI (Table 1). Detecting

temporal changes in photosynthetic capacity using MODIS NDVI could improve model pre-

dictions of photosynthesis given its broad spatial and daily temporal coverage. Another im-

portant consideration in extrapolating the results of this study to aerial and satellite remote

sensing is additional technical challenges posed by these approaches, such as view angle effects,

canopy architecture, and atmospheric effects. More studies are needed to further test temporal

stability of relationships between leaf reflectance spectra and photosynthetic capacity in other

contexts before relationships from a single hyperspectral overflight can be extrapolated

through the growing season. Nonetheless, our results suggest promise for this approach.

In this study, spectral estimation of Vcmax and Jmax in hybrid poplar was robust to temporal

variation of up to 200% in photosynthetic capacity. Applying remote sensing tools to predict

photosynthetic capacity across a wider range of wildlands requires an in situ test of this method

outside of agroecosystem or controlled glasshouse conditions across a time period of variable

abiotic and biotic conditions. Our results show that relationships between photosynthetic

capacity and leaf reflectance spectra developed from limited data can in some cases be extrapo-

lated temporally. These results highlight the potential of hyperspectral remote sensing methods

to detect dynamic temporal variations in Vcmax and Jmax related to seasonality and plant stress,

thereby aiding improved estimates of plant productivity and associated carbon budget. Fur-

thermore, our results suggest that terrestrial biosphere models could use hyperspectral remote

sensing to parameterize Vcmax and Jmax within season to improve predictions of future carbon

dynamics. Reliable and precise methods to estimate Vcmax and Jmax across spatial and temporal

scales will improve understanding of ecosystem carbon uptake and the terrestrial carbon sink.

Supporting information

S1 Fig. Variance of R2 values based on proportion of data used for training the PLSR

model. Each point represents the r-squared between predicted and actual Vcmax/Jmax values
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from PLSR using a random sample corresponding to the designated proportion of training

data (each proportion was sampled 100 times).

(TIF)

S1 Table. Mean, median, and standard deviation of R2 values based on proportion of data

used for training the PLSR model. The mean, median, and standard deviation in R2 of 100

PLSR models per training proportion are represented.

(DOCX)
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