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Abstract

Charcoal-stripped serum (CSS) is a well-accepted method to model effects of sex hor-

mones in cell cultures. We have recently shown that human endothelial cells (ECs) fail to

growth and to undergo in vitro angiogenesis when cultured in CSS. However, the mecha-

nism(s) underlying the CSS-induced impairment of in vitro EC properties are still unknown.

In addition, whether there is any sexual dimorphism in the CSS-induced EC phenotype

remains to be determined. Here, by independently studying human male and female ECs,

we found that CSS inhibited both male and female EC growth and in vitro angiogenesis, with

a more pronounced effect on male EC sprouting. Reconstitution of CSS with 17-β estradiol,

dihydrotestosterone, or the lipophilic thyroid hormone did not restore EC functions in both

sexes. On the contrary, supplementation with palmitic acid or the acetyl-CoA precursor ace-

tate significantly rescued the CSS-induced inhibition of growth and sprouting in both male

and female ECs. We can conclude that the loss of metabolic precursors (e.g., fatty acids)

rather than of hormones is involved in the impairment of in vitro proliferative and angiogenic

properties of male and female ECs cultured with CSS.

Introduction

Significant differences exist between men and women in epidemiology, clinical manifestation,

patho-physiology, and outcomes of atherosclerosis and cardiovascular diseases (CVDs) [1, 2].

In particular, CVDs are less prevalent in women than men until midlife. Sex hormones–espe-

cially estrogens—are believed to be responsible for the vaso-protective phenotype in the young

female population. However, despite these well-established data, knowledge on cellular mecha-

nisms underlying sex differences need to be significantly improved, in order to explore new

sex-specific pathways and to identify innovative sex/gender-selective pharmacological targets

[3].
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Since the earliest event in the onset and development of atherosclerosis and CVDs is endo-

thelial dysfunction, many in vitro studies have been focused on endothelial cells (ECs) and on

the expression of the endothelial Nitric Oxide Synthase (eNOS). However, sex of cells is not

consistently reported in these studies, even when the effects of sex hormones have been ana-

lyzed. Nevertheless, an intrinsic dimorphism in some EC properties has been described when

male and female ECs are independently studied [4–6]. In particular, we have recently demon-

strated a higher eNOS expression and activity in human female ECs compared to male ECs

[6].

To assess in vitro hormone biological activities, an add-back approach is typically adopted.

In these experiments, sex hormones are added to cells cultured in nominally hormone-free

media, i.e. phenol-red free media supplemented with charcoal-stripped serum (CSS). In our

previous paper [7], we have shown that both cell growth and in vitro angiogenesis are impaired

in human umbilical vein ECs (HUVECs) cultured in CSS-supplemented medium. Moreover,

we have also observed [7] that the inhibitory effects of CSS are not prevented when physiologi-

cal concentrations of sex hormones [8, 9] are restored. However, mechanisms underlying the

CSS-induced impairment of in vitro EC properties are still unknown. In addition, whether any

sexual dimorphism exists in the CSS-induced phenotype in ECs derived from male or female

donors remains to be determined.

In this study, we first assessed whether estrogen or dihydrotestosterone might have a sex-

dependent effect on male and female ECs cultured with CSS. We further tested the effect of

the thyroid hormone, also depleted in the CSS-containing medium. Despite biological activi-

ties of sex and thyroid hormones have been described in ECs, our results showed that hormone

replacement did not significantly revert the CSS-induced phenotype in ECs of both sexes.

Therefore, we investigated other essential metabolites lost in CSS potentially able to rescue

proliferative and angiogenic properties of male and female ECs cultured with this serum. In

addition, we studied whether the dimorphic expression of eNOS was differentially affected by

CSS in male and female ECs.

Materials and methods

Ethical approval

The procedure was carried out in accordance to local university guidelines and with the princi-

ples outlined in the Declaration of Helsinki. All experimental protocols were approved by the

Ethics Board at the University of Milano (study 106/2011). Cords were collected by the nurses

and clinicians of the Ospedale Macedonio Melloni, 20129 Milano, Italy, and anonymized sam-

ples were processed at the Dept of Medical Biotechnology and Translational Medicine, Univer-

sity of Milan, 20129 Milano, Italy. All pregnant women gave their written informed consent to

study participation.

Cell cultures

Human umbilical vein ECs (HUVECs) were isolated from freshly derived umbilical cords

by collagenase digestion as described by Jaffe et al. [10]. Cells were routinely grown in 199

medium supplemented with 20% fetal bovine serum (FBS), 25 μg/ml endothelial cell growth

supplement (ECGS), and 50 μg/ml heparin, and used at passages 1–3. Notably, we used

HUVECs pooled from two or more donors to minimize the variability associated with cells

derived from a single male or female newborn donor. Charcoal stripping of FBS was per-

formed following standard protocols previously shown to give a complete estrogen deprivation

[11, 12]. Briefly, dextran-coated charcoal (obtained by overnight incubation of 2.5% w/v char-

coal with 0.025% w/v dextran T-70 in phosphate-buffered saline) was re-suspended in FBS and
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stirred overnight at 4˚C. After centrifugation, the stripped FBS was sterilized by filtration

through a 0.22 μm filter. Notably, charcoal stripping was applied to the same lot of serum pres-

ent in the standard medium (Opticlone, cat #ECS0183L). Experiments were performed in

male or female HUVECs cultured for 48 h in Standard Medium or in Charcoal-Stripped

Serum (CSS)-containing medium. In both media, sera were added at a 10% final concentra-

tion. When 17-β estradiol (E2), dihydrotestosterone (DTH), thyroid hormone (3,3’,5-Triiodo-

L-thyronine, T3), or palmitic acid were tested, a corresponding concentration of vehicle was

added to control samples.

Cell metabolism assay

Total cellular ATP was measured with the CellTiter-Glo1 Luminescent assay (Promega) fol-

lowing the manufacturer’s instructions. Experiments were performed on HUVECs plated at a

density of 2x104 cells/well in 0.1% gelatin-coated 96-well microplates. Luminescence was mea-

sured by using a multi-plate spectrophotometer (Victor™, PerkinElmer). White plates were

used to enhance luminescent signal and to reduce background.

Evaluation of cell number and viability

Cell number and viability were measured by the MTT assay and by the trypan blue exclusion

test. HUVECs were plated at a density of 2x104 cells/well and 5x104 cells/cm2 in 0.1% gelatin-

coated 96-well microplates or 35-mm Petri dishes, for MTT and trypan blue assay, respec-

tively. The next day, media were replaced with Standard medium or CSS-containing medium,

and cells were incubated for 48 h. MTT (10 μl of a stock solution 5 mg/ml) was added to each

well for the last 4 h of incubation, and formazan crystals were dissolved in DMSO before the

measurement of optical density (570 nm) by a multi-plate spectrophotometer (Victor™, Perki-

nElmer). Trypan blue exclusion test was performed on detached HUVECs following standard

protocols [13]. Viability was around 85–90% and was unaffected by the presence of CSS and of

other treatments, confirming our previous results [7].

Three-dimensional (3-D) spheroid sprouting assay

HUVEC spheroids of a defined size and cell number were embedded into collagen gels in the

presence of 25 ng/ml VEGF as previously described [14, 15]. Spheroid-containing gels were

incubated at 37˚C in 5% CO2, and 24 h later images were acquired with a phase-contrast

microscope (10x objective magnification, Olympus U-CMAD3) equipped with an Olympus

digital camera. In-gel angiogenesis was quantified by measuring the number, the cumulative,

and the average length of all of the capillary-like sprouts originating from individual spheroids

using the National Institute of Health (NIH) Image J program. At least, 10 randomly selected

spheroids per experimental group were measured in each experiment.

Immunoblotting

Western blots were carried out according to standard methods on total cell lysates prepared in

Laemmli sample buffer supplemented with 1 mM ortho-vanadate. Equal amounts of proteins

(10 μg/lane) were separated by 10% SDS-PAGE. Primary antibodies used were mouse mono-

clonals anti-eNOS (BD Transduction Laboratories, cat #610296) and anti-β-actin (Sigma

Chemicals, cat #A2228). HRP-conjugated secondary antibodies were from Dako. Immunore-

active bands were visualized by chemiluminescence (LiteAblot Turbo, EuroClone). Densito-

metric analyses of immunoblots were performed using the NIH Image J software package.
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Reagents

All tissue culture reagents were from Euroclone SpA except ECGS and heparin (Sigma

Aldrich). Charcoal, dextran T-70, MTT, trypan blue, methylcellulose (cat #M0512), E2, T3,

DHT, sodium acetate, palmitic acid, and free fatty acid-bovine serum albumin (FFA-BSA)

were from Sigma Aldrich; rat tail collagen I from Serva; recombinant human VEGF-165 from

Peprotech. Palmitic acid was used as a conjugate to FFA-BSA. Briefly, a 75 mM stock solution

of palmitic acid dissolved in ethanol was diluted 1:10 with a 10% FFA-BSA solution, and incu-

bated overnight at 37˚C before every experiment.

Statistical procedures

Unless otherwise indicated, data are the mean ± s.e.m of at least 3 independent experiments.

Statistical significance was determined by unpaired Student’s t-test or two-way ANOVA, as

appropriate, using the GraphPad Prism version 5.00 software.

Results

CSS reduces cell number in human F- and M-ECs

We have previously shown a decrease in MTT reducing activity and cell number in ECs cul-

tured in 199 medium supplemented with CSS [7]. Here, we further investigate whether CSS

differentially affects female and male HUVECs (abbreviated as F-ECs and M-ECs, respec-

tively). We observed that F- and M-EC metabolic activity and cell number were equally

reduced when cells cultured in 199 medium supplemented with 10% CSS (CSS-Medium,

CSS-M) were compared to cells grown in Standard Medium (199 medium supplemented with

10% normal FBS, SM) (Fig 1A and 1B). Also the total cellular ATP levels were significantly

decreased in F- and M-ECs cultured in CSS-M (Fig 1C). However, when ATP values were nor-

malized to the corresponding protein levels, any differences between F- and M-ECs cultured

in SM or CSS-M were abolished (Fig 1D).

The inhibitory effects of CSS are independent of the presence of sex and

thyroid hormones

To highlight any possible difference in the endocrine response of F- and M-ECs to exoge-

nously added hormones, we reconstituted the CSS-medium with 17-β estradiol (E2, 1 nM). E2

did not prevent the loss in metabolic activity and cell number in both F- and M-ECs (Fig 2A

and 2B). We also tested the ability of dihydrotestosterone (DHT) and of the thyroid hormone

(3,3’,5-Triiodo-L-thyronine, T3), both depleted in CSS, to rescue EC properties. But, again, the

addition of neither DHT (10 nM) nor T3 (10 nM) significantly prevented the CSS-induced

impairment in ECs of both sexes (Fig 2C, 2D, 2E and 2F for DHT and T3, respectively). None-

theless, DHT showed a tendency, not statistically significant, toward a small recovery in cell

number (14±6.5% in F-ECs and 21±5.0% in M-ECs). Finally, when we changed CSS-medium

to Standard medium, we observed a full recovery of the cellular metabolic activity in both F-

and M-ECs (Fig 2G), indicating that the CSS-induced inhibition was totally reversible.

CSS drastically impairs in vitro angiogenesis

We have previously shown that, besides cell growth, CSS-medium significantly inhibited the

ability of ECs to sprout from spheroids embedded in a 3-D collagen gel to study in vitro angio-

genesis [7]. In this assay, spheroids maintained their ability to sprout when cultured in Stan-

dard medium (Fig 3A, left panels) whereas the outgrowth of capillary-like structures was
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significantly reduced in spheroids incubated in CSS-medium (Fig 3A, right panels). Quantifi-

cation of the number of sprouts and of their cumulative and average length showed that: i) the

basal capillary outgrowth was super imposable between F- and M-EC spheroids incubated in

Standard medium; ii) all the processes were severely inhibited in the presence of CSS-medium

in ECs of both sexes (Fig 3B, 3C and 3D). However, we observed that the CSS-medium was

more effective in impairing in vitro angiogenesis in M- compared to F-ECs for all the parame-

ters tested.

Effect of CSS on eNOS expression in F- and M-ECs

Estrogens are important regulators of eNOS expression and activity through both genomic

and non-genomic mechanisms [16]. Therefore, we compared by immunoblotting the expres-

sion of eNOS in lysates from F- and M-ECs cultured in SM or in CSS-M. We confirmed that

the expression of the enzyme was about 2-fold higher in SM-cultured F-ECs in comparison to

M-ECs (Fig 4A). When ECs were grown in CSS-M, we observed a decrease in eNOS expres-

sion only in F-ECs. This decrease was not however statistically significant (Fig 4A and 4B,

p = 0.194 and 0.162, respectively) and was not reverted by E2 (10 nM) (Fig 4B). Nevertheless,

the female eNOS expression remained higher (by about 1.47-fold) in F-ECs cultured in CSS-M

in comparison to M-ECs (Fig 4A) although it was no longer statistically significant (p = 0.084).

Fig 1. CSS reduces cell number in human F- and M-ECs. MTT absorbance (A), cell number (B), and ATP luminescence (C) were

measured after 48h of incubation in Standard Medium (SM, solid bars) or CSS-medium (CSS-M, open bars). Mean values were compared

by Student’s t test. In (A), *p<0.05, n = 14–11 for F- and M-ECs, respectively; in (B), ***p<0.001, n = 3; in (C), *p<0.05, **p<0.01, n = 11–

10 for F- and M-ECs, respectively. In (D), ATP luminescence was normalized to the corresponding protein levels. F- and M-ECs are

orange and blue, respectively.

https://doi.org/10.1371/journal.pone.0189528.g001
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Fig 2. The inhibitory effects of CSS are independent of the presence of sex and thyroid hormones. ECs

were incubated in Standard Medium (SM, solid bars), CSS-medium (CSS-M, open bars), CSS-M + E2 (1 nM,

spotted bars), CSS-M + DHT (10 nM, diagonal bars), or CSS-M + T3 (10 nM, squared bars). MTT absorbance

(A, C, E) or cell number (B, D, F) were measured after 48h of incubation. Cell number was expressed as percent

of control, i.e. cells cultured in SM, set at 100%. In (A), (C), and (E), *p<0.05, **p<0.01 (CSS-M vs SM), ns

(CSS-M vs CSS-M + E2, DHT or T3), n = 3, t test. In (B), (D), and (F), *p<0.05, **p<0.01, ***p<0.001 (CSS-M

vs SM), ns (CSS-M vs CSS-M + E2, DHT or T3), n = 3, t test. (G) CSS-M was replaced with CSS-M (open bars)

or SM (diagonal bars), and MTT was measured after further 48h of incubation. Solid bars: SM replaced with SM.

***p<0.001 vs SM, ˚˚˚p<0.001 vs CSS-M, n = 3, t test. F- and M-ECs are orange and blue, respectively.

https://doi.org/10.1371/journal.pone.0189528.g002
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Fig 3. CSS drastically impairs in vitro angiogenesis. (A) Representative images of spheroids from F-ECs

(upper panels) or M-ECs (lower panels) embedded in collagen gels in the presence of SM (left panels) or CSS-M

(right panels). Photographs were taken 24 h later. Quantification of the cumulative length (B), the average length

(C), and the number of sprouts (D) emerging from F- or M-EC spheroids incubated in the presence of SM (solid

bars) or CSS-M (open bars). *p<0.05, **p<0.01, ***p<0.001 vs SM; §p<0.05vs F-ECs cultured in CSS-M, n = 7,

t test. F- and M-ECs are orange and blue, respectively.

https://doi.org/10.1371/journal.pone.0189528.g003
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Fatty acid supplementation partially rescues the inhibitory effects of CSS

in F- and M-ECs

In addition to hormones and peptides, charcoal stripping deprives serum of fatty acids (FAs)

[17, 18]. Recently, Schoors et al. [19] have shown that FAs are essential precursors for EC

metabolism, and that fatty acid oxidation (FAO) is required for EC proliferation. We therefore

investigated whether the loss of FAs might be responsible for the CSS-induced cell growth

inhibition. To this purpose, we set up reconstitution experiments by adding the FA palmitic

acid or sodium acetate–that is metabolized to acetyl-CoA, thus substituting for the depleted

FAO-derived acetyl-CoA–to F- and M-ECs cultured in CSS-medium. Palmitic acid was cho-

sen since it is the most common saturated FA in human plasma. In addition, its metabolic fate

in ECs has been characterized [19]. We found that the presence of palmitic acid (250 μM, a

concentration near to the lower reference limit measured in men and women plasma) [20] or

acetate (20 mM) [19] was able to partially (by 80% and 74% with palmitic acid, and by 75%

and 74% with acetate, in F- andM-ECs, respectively) but significantly prevent the loss in cell

number induced by CSS-medium in both F- and M-ECs (Fig 5A and 5B, respectively).

Palmitic acid (250 μM) or acetate (20 mM) were also capable of restoring the sprouting abil-

ity of spheroids from F- and M-ECs cultured in CSS-medium (Fig 6A, showing representative

images of F-EC spheroids, and Fig 6B–6E for quantification). Both the cumulative (by 57%

and 44% with palmitic acid, and by 68% and 35% with acetate, in F- and M-ECs, respectively)

and the average (by 100% and 87% with palmitic acid, and by 100% and 68% with acetate, in

F- and M-ECs, respectively) length of sprouts were significantly increased by the addition of

Fig 4. Effect of CSS on eNOS expression in F- and M-ECs. (A) Total eNOS protein was evaluated by immunoblotting in F- and M-EC

lysates prepared after 48 h of incubation in SM (solid bars) or in CSS-M (open bars). β-actin was used as a loading control. A representative

blot and the densitometric analysis of eNOS protein expression normalized to β-actin are shown. **p<0.01 vs SM-cultured M-ECs, t test,

n = 13–12 for F- and M-ECs, respectively. (B) F-EC lysates were prepared after 48 h of incubation in SM (solid bar), CSS-M (open bar), or

CSS-M + E2 (10 nM, spotted bar). β-actin was used as a loading control. A representative blot and the densitometric analysis of eNOS

protein expression normalized to β-actin are shown. n = 4.

https://doi.org/10.1371/journal.pone.0189528.g004
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palmitic acid or acetate (Fig 6B, 6C, 6D and 6E, for F- and for M-ECs, respectively). We

observed that the addition of acetate reversed the CSS-induced inhibition less efficiently in M-

than in F-ECs (35% vs 68% of the control for the cumulative sprouting, and 68% vs 100% for

the average length, in M-ECs and F-ECs, respectively).

Lack of endocrine response in F- and M-ECs cultured in FA-

reconstituted CSS-medium

Overall, our data indicate that the EC impairment in CSS-medium was primarily due to the

absence of essential metabolic components (e.g., FAs). Nevertheless, when we added palmitic

acid or acetate to the CSS-medium, we did not observed a full rescue (Figs 5 and 6). We thus

tested whether E2 or DHT supplementation might further restore the proliferative capability

of ECs cultured in these partially reconstituted media. We did not however observe any

additional recovery when either E2 (1 nM) or DHT (10 nM) were added to CSS-medium

Fig 5. Palmitic acid and acetate rescue the CSS-induced inhibition of cell number. Cell number was

measured in F-ECs (A, orange bars) and M-ECs (B, blue bars) after 48h of incubation in SM (solid bars),

CSS-M + vehicle (ethanol/BSA, cross-hitched bars), CSS-M + palmitic acid (250 μM, vertical bars), CSS-M

(open bars), or CSS-M + acetate (20 mM, horizontal bars). In (A) and (B), **p<0.01 (CSS-M vs SM), *p<0.05

(CSS-M vs CSS-M + palmitic or CSS-M + acetate), n = 3–4 for F- and M-ECs, respectively, t test.

https://doi.org/10.1371/journal.pone.0189528.g005

Fatty acids rescue the CSS-induced impairment of EC properties
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Fig 6. Palmitic acid and acetate rescue the CSS-induced inhibition of in vitro angiogenesis. (A) Representative images of

spheroids from F-ECs incubated for 24 h in SM, CSS-M, CSS-M + palmitic acid, or CSS-M + acetate. The cumulative (B, D) and the

average (C, E) length of sprouts emerging from F-ECs (B, C) and M-ECs (D, E) were measured after 24h of incubation. Treatments and

bars are as in Fig 5: SM, solid bars; CSS + vehicle (ethanol/BSA, cross-hitched bars), CSS + palmitic acid (250 μM, vertical bars); CSS-M,

open bars; CSS-M + acetate (20 mM, horizontal bars). Data are expressed as percent of control, i.e. the cumulative and the average

length of sprouts from cells cultured in SM, set at 100%. In (B) and (D), ***p<0.001 (CSS-M + vehicle vs SM), *p<0.05, **p<0.01 (CSS-M

+ vehicle vs CSS-M + palmitic acid), n = 3; ˚˚˚p<0.001 (CSS-M vs SM), ˚p<0.05 (CSS-M vs CSS-M + acetate), n = 4, t test. In (C) and (E),

**p<0.01 (CSS-M + vehicle vs SM), *p<0.05, ***p<0.001 (CSS-M + vehicle vs CSS-M + palmitic acid), n = 3; ˚p<0.05, ˚˚˚p<0.001

(CSS-M vs SM), ˚˚p<0.01, ˚˚˚p<0.001 (CSS-M vs CSS-M + acetate), n = 4, t test. F- and M-ECs are orange and blue, respectively.

https://doi.org/10.1371/journal.pone.0189528.g006
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supplemented with palmitic acid (250 μM) (Fig 7A and 7B for F- and M-ECs, respectively) or

acetate (not shown).

We finally tested whether the addition of E2 was able to re-establish in vitro angiogenic

properties of F- and M-ECs incubated in the CSS-medium. We observed that E2 supplementa-

tion (10 nM) was per se ineffective in preventing the lack of sprouting in ECs of both sexes (Fig

7C). Moreover, no further recovery was measured when E2 was concurrently added to the

CSS-medium supplemented with palmitic acid (250 μM) (Fig 7C).

Discussion

Epidemiological and pharmacological studies have shown that estrogens exert a protective

effect on vascular endothelium, resulting in a different prevalence and severity of CVDs in

female and male population [1, 2]. In humans, both male and female ECs express sex hormone

receptors [4, 21] but in vitro effects of E2 and DHT have been mainly described in ECs not seg-

regated for sex. To evaluate sex hormone activities in vitro, nominally hormone-free media-

where fetal bovine serum is substituted with CSS in phenol red-free media—are commonly

used. Here, we show that CSS causes impairments of EC growth and in vitro angiogenesis in

both male and female ECs. Strikingly, the addition of physiological concentrations of E2 or

DHT [8, 9] did not restore CSS-induced deficits in ECs from both sexes. Recently, it has been

shown that differences in residual estrogen concentrations in CSS (due to different stripping

Fig 7. Lack of endocrine response in F- and M-ECs cultured in FA-reconstituted CSS-medium. E2 (1 nM) or DHT (10 nM) were

added to CSS-M in the absence (open bars) or in the presence (solid bars) of palmitic acid (250 μM), and cell number was measured after

48 of incubation in F-ECs (A, orange bars) and M-ECs (B, blue bars). In (A), ***p<0.001; in (B), **p<0.01, n = 3, Two-way ANOVA. The

presence of E2 or DHT did not significantly affect the results. (C) E2 (10 nM) was added to CSS-M in the absence (open bars) or in the

presence (solid bars) of palmitic acid (250 μM), and the cumulative length of sprouts emerging from F- and M-ECs was measured after 24

h of incubation. ***p<0.001, n = 3, Two-way ANOVA. The presence of E2 did not significantly affect the results. F- and M-ECs are orange

and blue, respectively.

https://doi.org/10.1371/journal.pone.0189528.g007
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procedures) profoundly modify proliferative and signaling phenotypes in response to exoge-

nously added hormones and/or antagonists in human breast cancer cells [12]. In our experi-

ments, however, the failure in endocrine responses was not restricted to sex hormones. CSS

lacks other hormones relevant for EC function, including thyroid hormone [11, 18]. Despite

physiological concentrations of T3 [22] are able to induce in vitro and in vivo angiogenesis [23,

24], our results indicate that thyroid hormone was unable to restore both female and male EC

growth when added to CSS-medium. Biological effects of nanomolar concentrations of E2,

DHT and T3 on EC migration and/or proliferation have been described even in CSS-medium.

However, in some of these studies, hormone starvation was maintained for few hours [25–27]

and media different from 199 were used [21, 27–29]. Moreover, ECs from non-human species

(e.g., bovine aortic ECs) [30] or immortalized ECs (e.g., the EC.304 cell line, now identify as a

human bladder cancer cell line) [23, 31] have been used. The use of shorter CSS incubation

time and/or of cells with different nutrient requirements may give reason for the discrepancy

between some published results and our findings, showing no endocrine responses in ECs of

both sexes. Therefore, we hypothesize that some other components rather than hormones

essential for the maintenance of EC properties are lost in the CSS.

A potentially rather important failure in CSS may be represented by lipids that are

removed from serum by charcoal stripping [11, 17, 18, 32]. In our experiments, reconstitu-

tion of CSS-medium with the FA palmitic acid or the FAO precursor acetate prevented the

decrease in EC number and sprouting. Thus, FAs are crucial components of serum lost in

CSS and required for the maintenance of EC growth and in vitro morphogenetic properties.

As a matter of fact, it has been demonstrated that the pharmacological or genetic block of

FAO cause growth and sprouting inhibition in ECs as the result of an inadequate synthesis of

nucleotides critically required for DNA replication [19]. The addition of FAs or acetate, by

restoring mitochondrial FAO, provides carbons for the tricarboxylic acid (TCA)-cycle-

derived amino acids (for instance, aspartate, the precursor for the de novo nucleotide synthe-

sis), and rescues EC proliferation and in vitro angiogenesis [19]. Importantly, alterations in

the FAs/FAO activity are not accompanied by changes in the cellular ATP production since

the mitochondrial oxidative pathway is very poorly utilized by glycolytic ECs [19]. In accor-

dance with these results, we observed comparable steady-state ATP levels in ECs cultured in

normal serum or CSS. FA supplementation did not however fully rescue CSS-induced inhib-

itory effects on EC functions. These results suggest that the loss of other lipidic serum com-

ponents endowed with biological activity toward ECs, such as active sphingolipids [32, 33],

might contribute to the CSS-induced inhibitory effects. Lack of metabolites was however

totally overcome by the addition of standard medium that fully restored EC metabolic

activity.

The more marked decrease in sprouting observed in CSS-cultured male EC spheroids sug-

gest a higher dependence of male ECs on FAs/FAO and proliferation for the execution of the

in vitro angiogenic process in comparison to female ECs. This result is in accordance with our

recent data showing that male ECs strictly rely on proliferation for in vitro sprouting at vari-

ance with female ECs that rather depend on migration [6]. Interestingly, male EC sprouting

was less efficiently counteracted by the addition of acetate in comparison to female ECs. These

results suggest that still unknown differences might exist in metabolic pathways between

female and male ECs. As a matter of fact, diverse serum metabolite profiles have been shown

in men and women, and sex-specific differences commonly influence whole metabolic path-

ways rather than randomly affect distinct metabolites [34]. Remarkably, FAs, sphingolipids,

carnitine and acetyl-carnitine are among the metabolites that display sex-differential concen-

tration patterns [34]. Experiments are ongoing in our laboratory to elucidate potential meta-

bolic differences between male and female ECs.

Fatty acids rescue the CSS-induced impairment of EC properties

PLOS ONE | https://doi.org/10.1371/journal.pone.0189528 December 12, 2017 12 / 16

https://doi.org/10.1371/journal.pone.0189528


We have recently shown an inborn dimorphism in the expression of eNOS in human ECs

[6]. This sex-specific difference is maintained in in vitro cultures, suggesting that it could be

the result of genetic/epigenetic mechanisms [6]. Here, we observed that, when ECs are cul-

tured in CSS, female ECs show a not significant decrease (about 20%) in eNOS expression

whereas male eNOS levels remain unchanged. Nevertheless, female eNOS expression

remains higher (by about 1.5-fold) when compared to male counterparts. Further experi-

ments will be performed to establish whether the female decrease in CSS, although not

significant, might reveal an estrogen-dependent component that contribute to the higher

constitutive female eNOS expression. Some differences might actually exist between male

and female ECs in the control of the constitutive transcription of the human eNOS gene

and/or in the regulation of the half-life of the eNOS mRNA, usually greater than 24–48 h in

the endothelium [35].

Collectively, our experiments indicate that human primary macro-vascular ECs cultured

in CSS-medium experienced metabolite deprivation, and this withdrawal greatly affected

their endocrine response phenotype. Mechanisms underlying the loss of hormone biological

activities in CSS-cultured ECs are however still unknown. It should be taken in account that

FAs, beside their metabolic activities, also contribute to lipid membrane composition and

homeostasis, thus controlling membrane physicochemical properties and fluidity. It has

been shown [36] that a deficiency in FA synthesis and availability alters the dynamic remod-

eling of membrane lipid domains by impairing the retention of cholesterol and disrupting

the organization of specialized area of membranes where the compartmentalization of cellu-

lar processes takes place to regulate receptor trafficking and to allow the assembly of signal-

ing molecules. Even if steroid and thyroid hormones have been classically described to exert

biological effects via nuclear receptors, non-genomic mechanisms of activation through

membrane receptors responsible for EC motility, proliferation, and angiogenesis have also

been demonstrated [20, 23, 31, 37–40]. It is therefore possible to hypothesize that the fine

tuning of FA composition of cellular membranes is lost in the absence of lipids, i.e. in CSS,

and the hormone–induced non-genomic signaling heavily compromised. Noteworthy,

HUVECs membranes contain a great proportion of palmitic acid that is incorporated into

the cells more rapidly than any other unsaturated FAs [41]. Interestingly, it has also been

shown that exogenous added and endogenous synthetized palmitic acid are partitioned to

different lipid pools, and only the latter is able to rescue membrane organization and func-

tional phenotype [36]. Therefore, it is possible to suppose that the exogenous addition of

FAs, i.e. palmitic acid, is not sufficient to re-establish membrane orders and microdomain

organization in CSS-cultured ECs, thus preventing receptor-mediated hormone activities in

both CSS-M and CSS-M supplemented with palmitic acid. At variance, the addition of FAs

or acetate is able to restore the metabolic requirement of ECs, thus leading to the observed

rescues in growth and sprouting.

In conclusion, we have identified the lack of FAs as responsible, at least in part, for the pro-

found CSS-induced alterations in EC behavior and endocrine responsiveness. Our results

highlight that the study of EC hormonal responses in media supplemented with CSS may be

affected by the concurrent loss of essential metabolites. These observations can make a contri-

bution to a more general discussion on the interfering potential of serum and media composi-

tion with experimental results and conclusions [12, 42]. For that reason, it is important to have

knowledge that part of the phenotype observed in human primary cell cultures or cell lines cul-

tured in CSS may result not only from hormone deprivation but also from the depletion of

essential metabolites. These findings should be always considered for a proper interpretation

of the experimental outcomes.
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