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Abstract

The objective of this research was to develop a methodology for optimizing multilayer-per-

ceptron-type neural networks by evaluating the effects of three neural architecture parame-

ters, namely, number of hidden layers (HL), neurons per hidden layer (NHL), and activation

function type (AF), on the sum of squares error (SSE). The data for the study were obtained

from quality parameters (physicochemical and microbiological) of milk samples. Architec-

tures or combinations were organized in groups (G1, G2, and G3) generated upon inter-

spersing one, two, and three layers. Within each group, the networks had three neurons in

the input layer, six neurons in the output layer, three to twenty-seven NHL, and three AF

(tan-sig, log-sig, and linear) types. The number of architectures was determined using three

factorial-type experimental designs, which reached 63, 2 187, and 50 049 combinations for

G1, G2 and G3, respectively. Using MATLAB 2015a, a logical sequence was designed and

implemented for constructing, training, and evaluating multilayer-perceptron-type neural

networks using parallel computing techniques. The results show that HL and NHL have a

statistically relevant effect on SSE, and from two hidden layers, AF also has a significant

effect; thus, both AF and NHL can be evaluated to determine the optimal combination per

group. Moreover, in the three study groups, it is observed that there is an inverse relation-

ship between the number of processors and the total optimization time.

Introduction

In applied research, it is common to encounter situations in which it is necessary to estimate

the behavior of a variable as a function of one or many predictor variables. Traditionally, the

solution is provided by statistical regression models for prediction problems, discriminant

analysis, or logistic regression models [1, 2]. A group of techniques known as artificial intelli-

gence offers other options, including artificial neural networks, genetic algorithms, and fuzzy

logic, among others, which are suitable for solving complex problems [3–6].
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Artificial neural networks (ANNs), which are non-linear models inspired by the neural

architecture of the brain, were developed in an attempt to model the learning capacity of bio-

logical neural systems [7]. A typical ANN architecture known as multilayer perceptron (MLP)

contains a series of layers, composed of neurons and their connections. An artificial neuron

has the ability to calculate the weighted sum of its inputs and then applies an activation func-

tion to obtain a signal that will be transmitted to the next neuron.

The development of MLP networks has two main problems: architecture optimization and

training. The definition of architecture is a very relevant point because a lack of connections

can make the network incapable of solving the problem of insufficient adjustable parameters,

whereas an excess of connections may cause an over-fitting of the training data [8]. Conse-

quently, training MLP networks for large datasets is very time consuming [9].

Determination of the optimal architecture is a constant goal in research papers [10–12],

which attempt to minimize an objective function, mean squared error or prediction residual

sum of squares errors and avoid the oversize of the network; the method used in these research

works is trial and error. However, the trial and error method limits the capacity of analyzable

architectures and reduces the likelihood of finding an optimal architecture, particularly if we

have a large number of possible architectures. Different approaches have been proposed to

optimize the architecture of an MLP network, for example, back-propagation [13], genetic

algorithms [14], ant colony [15], bee swarm [16], and Tabu search [17], among others.

Similarly, different approaches have been proposed to manage the expensive training

phase, for example, the use of multicore CPU [18–20], cloud computing [21] and hybrid algo-

rithms [8, 15], among others.

In this paper, we focus on the problem of constructing an optimal multilayer perceptron

network architecture. Given the popularity and easy access to equipment with large multi-core

multiprocessing or GPU capabilities, which enable the parallel calculation of multiple opera-

tions, a comprehensive approach to finding the optimal architecture of a multilayer perceptron

network is proposed. Four versions of the proposed approach, i.e., sequential, multi-core,

GPU and a hybrid algorithm, are introduced.

The objectives of this research are as follows: (a) propose a methodology for optimizing

multilayer-perceptron-type neural networks, (b) evaluate the effects of the different structural

parameters on the sum of squares error, and (c) evaluate the performance of the optimization

process using parallel computing techniques.

Materials and methods

Materials

As a biological material, 252 milk samples from Holstein cows (40 cc/sample) were collected.

Sampling was conducted between July and August 2014. The milk samples were not collected

exclusively for this work; they were provided by employees of Nestlé S. A. from 12 centers

located in the countryside of Cajamarca, Peru. Fig 1 shows the map of the Cajamarca region,

where the twelve points of milk collection are indicated, and Table 1 shows the geographic

coordinates of each of the twelve points.

Nestlé is an internationally recognized company that is very committed to the welfare of

animals, as indicated by their strict guidelines for animal care [22].

Computing system

A computer called Perseo was used for the experiment, which is a shared-memory multipro-

cessor. Perseo is part of the network of computer equipment belonging to the Centro Nayarita
de Innovación y Transferencia de Tecnología A.C, Mexico.
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Fig 1. Cajamarca region map.

https://doi.org/10.1371/journal.pone.0189369.g001

Table 1. Dataset geographic coordinates.

Point Latitude Longitude

R-12 −6˚56028.451@ −78˚46035.976@

R-13 −6˚57037.054@ −78˚42045.183@

R-14 −6˚48059.133@ −78˚3104.870@

R-15 −6˚56030.461@ −78˚39014.912@

R-23 −7˚0012.497@ −78˚18031.890@

R-24 −6˚56046.243@ −78˚12051.233@

R-25 −7˚809.444@ −78˚24033.531@

R-61 −6˚53040.768@ −78˚34012.428@

R-63 −7˚10051.045@ −78˚38044.912@

R-64 −6˚58046.375@ −78˚33031.697@

R-72 −7˚5019.486@ −78˚29033.630@

R-81 −7˚16045.528@ −78˚24033.087@

https://doi.org/10.1371/journal.pone.0189369.t001
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The main characteristics of Perseo are as follows:

• Processor = 24 Intel(R) Xeon(R) CPU ES-2670 v3 @ 2.30 GHz

• CPU cores = 24

• RAM Memory = 32 GB

• Graphic card = NVIDIA Quadro K4200

• Operating System = Ubuntu 14.04

The software used for implementing the logical sequences was MATLAB version 2015a.

Experimental methodology

Obtaining training and validation data. Samples were packed in sampling bottles and

transported to the lab of the Nestle plant, located in the city of Cajamarca, where they were

characterized as shown in Table 2.

The data obtained from each sample were divided into three input values: density (Dn), oxi-

dation-reduction potential (Rd), and potential of hydrogen (pH). Moreover, six output param-

eters were defined: proteins (Pr), lactose (Lc), total solids (Ts), solids-fat (Sf), solids-non-fat

(Snf), and minerals (Mn).

Condensed architecture for multilayer perceptrons. Fig 2 shows the proposed multi-

layer perceptron architecture, which is based on the following works [27–29].

Table 2. Analyses performed on the milk samples.

Parameter Method Source

Input Density Lactodensimeter (AOAC 925.22) [23]

Oxidation-Reduction Potential Reaction time to methylene blue [24]

Potential of Hydrogen (pH) Potentiometer [25]

Output Proteins Infrared spectroscopy (NTP 202.130:1998) [26]

Lactose

Total solids

Solids-fat

Solids-non-fat

Minerals

https://doi.org/10.1371/journal.pone.0189369.t002

Fig 2. Condensed architecture for multilayer perceptron.

https://doi.org/10.1371/journal.pone.0189369.g002
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The structural parameters to evaluate and their ranges were established in accordance with

[30]; see Table 3.

After modifying the number of hidden layers, inter-spacing from one to three hidden lay-

ers, different architectural groups were generated, as shown in Fig 3.

For the bias parameter values and weightings, prior initiation to zero was determined dur-

ing the optimization process.

Experimental designs and generation of combinations per group. Table 4 shows the

experimental designs used in this research work; the architectures were generated per group

and evaluated using factorial designs without repetition.

The position of each element within the groups and the number of combinations (treat-

ments) per experimental design are detailed in Table 5.

Combinations per group according to the proposed designs were generated using the statis-

tical software Statgraphics Centurion XVI.

Perceptrons per group of combinations: Generation and evaluation. To create, train

and simulate MLP-type networks, MATLAB’s Neural Network Toolbox was used, particularly

the function newff, whose syntax is shown in Eq (1).

net ¼ newffðp; t;Gði; jÞÞ ð1Þ

where:

p: is the vector of input values.

t: is the vector of output values.

Gi,j is a combination per group (i: group; j: combination number).

The networks per group were evaluated by determining the sum of squares error (SSE)

using a logical sequence. This sequence was implemented in the mathematical software

MATLAB 2015a; see Fig 4.

Likewise, due to the large number of combinations per group and the high calculation time

cost, the analysis sequence was implemented using profiling, vectorization and parallel com-

puting techniques.

Initially, a sequential version of the proposed algorithm was developed (MLP-SEQ), which

was implemented using profiling and vectorization techniques. However, since the algorithm

has a comprehensive search approach, it is time consuming. Theoretically, the time required

by an algorithm to calculate the solution to a given problem using a single processor could be

linearly decreased by adding more processors. Following this idea, we developed the following

algorithms to attempt to reduce the processing time.

Table 3. Ranges in structural parameters.

Parameters Range

Input neuron layer (IN) 3

Output neuron layer (ON) 6

Number of hidden layers (HL) [1-3]

Neurons per hidden layer (NHL) [3-27]

Activation functions? (AF) [1-3]

? (1) Hyperbolic tangent sigmoid (tan-sig)

(2) Log sigmoid (log-sig)

(3) Linear

https://doi.org/10.1371/journal.pone.0189369.t003
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Fig 3. Groups of neural architectures proposed for the study.

https://doi.org/10.1371/journal.pone.0189369.g003
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• NNTB-GPU development is based on MATLAB’s Neural Network Toolbox, where the idea

is to take advantage of the computation based on the GPU and to process the search space in

parallel.

• NNTB-CPU is also based on MATLAB’s Neural Network Toolbox, where the idea is to take

advantage of multi-CPU architectures to process data faster.

• NNTB-Hybrid merges the two previous approaches.

• PCTB-CPU is based on MATLAB’s Parallel Computing Toolbox, proposing a distributed

computing approach (master-worker).

Analysis of evaluation times per group of combinations. Acceleration and efficiency are

some of the most important measurements for assessing the quality of the implementation of a

logical sequence (algorithm) on an architecture of multiprocessors [31]. The acceleration of a

logical sequence implemented in parallel executed using n processors is the ratio between the

time that it takes the best logical sequence implemented sequentially to be executed using a sin-

gle processor in a computer and the time that it takes the corresponding logical sequence

implemented in parallel to be executed on the same computer using n processors; see Eq (2).

S ¼
To

Tn
ð2Þ

where

Table 4. Experimental designs used in this research.

Group Designs Factors

Name Levels

1 1HL2AF NHL1 [3 6 9 12 15 18 21 24 27]

AF1 [1 2 3]

AF2 [1 2 3]

2 2HL3AF NHL1 [3 6 9 12 15 18 21 24 27]

NHL2 [3 6 9 12 15 18 21 24 27]

AF1 [1 2 3]

AF2 [1 2 3]

AF3 [1 2 3]

3 3HL4AF NHL1 [3 6 9 12 15 18 21 24 27]

NHL2 [3 6 9 12 15 18 21 24 27]

NHL3 [3 6 9 12 15 18 21 24 27]

AF1 [1 2 3]

AF2 [1 2 3]

AF3 [1 2 3]

AF4 [1 2 3]

https://doi.org/10.1371/journal.pone.0189369.t004

Table 5. Treatments per experimental design.

Design Distribution of elements? Number of Treatments

1HL2AF IN, NHL1i, ON, AF1l, AF2m 63

2HL3AF IN, NHL1i, NHL2j, ON, AF1l, AF2m, AF3n 2 187

3HL4AF IN, NHL1i, NHL2j, NHL3k, ON, AF1l, AF2m, AF3n, AF4o 59 049

?Sub-indexes correspond to the levels assumed in each combination.

https://doi.org/10.1371/journal.pone.0189369.t005
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S: Acceleration.

T0: Computing time with one processor.

Tn: Time with n processors.

If acceleration is normalized by dividing it by the number of processors, then efficiency is

obtained; see Eq (3).

Z ¼
Sn

n
ð3Þ

where

η: Efficiency.

Sn: Speedup with one processor.

n: Number of processors.

Parallel and sequential versions of the logical sequence shown in Fig 4 were developed. The

obtained results were analyzed in terms of acceleration and efficiency.

Results and discussion

Training data

The data collected during the milk analysis stage and later used in constructing, training, and

evaluating the networks are shown in Table 6.

Fig 4. Sequence for constructing, training, and evaluating networks.

https://doi.org/10.1371/journal.pone.0189369.g004
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The results shown are similar to those reported by [32], who analyzed the microbiological

composition and quality of dairy cattle in southern Peru.

Combinations by groups of neural architectures

The first ten combinations by groups of neural architectures, which were used in the construc-

tion of neural networks, are shown in Fig 5.

As can be appreciated, the architecture groups (G1, G2, and G3) differ in the number of

hidden layers (HL), which is a parameter that controls network accuracy. Within each group,

the differences are found in the number of neurons and the type of activation function. This

parameter has been researched as an element for neural network optimization in previous

works, such as those reported by [33, 34].

Architecture group analysis

The idea of applying parallel computing techniques in the area of neural networks has been

used in the following research papers [18–21]. As shown, the use of distributed computing has

Fig 5. First ten combinations for G1, G2, and G3 and interpretation.

https://doi.org/10.1371/journal.pone.0189369.g005

Table 6. Training and validation data per neural network.

Variables Units Values

min max �x σ
Input Density (Dn) g/ml 1.026 1.03 1.028 0.001

Oxidation-Reduction Potential (Rd) hours 6.5 6.79 6.63 0.049

Potential of Hydrogen — 6 8 6.5 0.637

Output Proteins (Pr) g/100 ml 2.69 3.33 3.005 0.14

Lactose (Lc) g/100 ml 4.31 5.24 4.85 0.187

Solids total (St) g/100 ml 10.89 13.14 12.22 0.433

Solids-fat (Sf) g/100 ml 3 4.1 3.62 0.183

Solids-non-fat (Snf) g/100 ml 7.73 9.27 8.54 0.31

Minerals (Mn) g/100 ml 0.41 0.71 0.7 0.023

https://doi.org/10.1371/journal.pone.0189369.t006
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been used mainly in the training phase of the neural network, which generally consumes con-

siderable computational resources when neural networks are vast and complex.

In this work, we developed three algorithms using the parallel techniques provided in

MATLAB’s Neural Network Toolbox; these algorithms are NNTB-GPU, NNTB-CPU, and

NNTB-Hybrid. To compare their performance, we used the G2 dataset. The NNTB-GPU algo-

rithm used all the resources provided by a NVIDIA Quadro K4200 card; NNTB-CPU was run

using four processors; finally, NNTB-Hybrid was run using four processors and the graphics

card. The execution time, in seconds, of each algorithm was 3 028, 2 911, and 3 634, respec-

tively, with the algorithm NNTB-CPU obtaining better performance.

However, by running our sequential algorithm using the G2 dataset, the processing

lasted only 637 seconds. The reasons for this result could be the following: (1) the functions

that we use to parallelize the NNTB-GPU, NNTB-CPU and NNTB-Hybrid algorithms

obtain good performance when neural networks are complex, i.e., many input and

output neurons, many hidden layers, and so forth. However, as shown in Fig 3, the

neural networks that are processed in this research work do not typically have a complex

structure. For this reason, the three approaches previously mentioned spend more time in

establishing the parallel environment than in processing a particular neural network. In

fact, the problem that we are facing is to process many small neural networks to find the

optimal architecture.

Therefore, we developed the PCTB-CPU algorithm, which is based on the general functions

of the MATLAB PCTB. This algorithm uses a master-slave approach and creates a balanced

distribution of work among all available workers, i.e., the total number of architectures to be

tested is divided equally among the workers. The workers report their partial results to the

master, and the master is responsible for integrating all the information and submitting the

result. Following the previous example, the PCTB-CPU algorithm was tested using four work-

ers to process the dataset G2. This time, the duration was 218 seconds, which means that it

achieved 85% of the theoretical acceleration. Using this algorithm, the datasets G1, G2, and G3

were processed.

Regarding the resulting SSE by groups, according to factors, they are illustrated in Fig 6,

and they show that increasing the hidden layers reduces SSE dispersion, generating more

robust multilayer perceptrons; the results agree with the work of Garcia et al. [35] about the

relationship between the number of layers and the network efficiency, as well as with the

results obtained by Izquierdo et al. [33], who evaluated different structures until they deter-

mined the optimal ones for their study conditions.

The analysis of the multifactorial variance for the SSE within each group according to NHL

and AF is shown in Tables 7–9.

From the P-value, it is determined that the NHL has a statistically significant effect on

the SSE in each group and that as of the second group (second hidden layer), the AF is added

to it.

When evaluating the SSE and their relationship with the structural parameters per group,

images a, b, and c in Fig 7 are obtained. It can be observed that increasing the NHL reduced

the SSE until a minimal value is reached, and later increases cause an increase in the SSE. This

result is possibly due to the effect of over training, as explained by Velásquez et al. [36] in their

study.

It is also observed that the SSE exhibits a different behavior for the various types of AFs and

the layer to which they connect. Therefore, the neural structure should be optimized by mini-

mizing the SSE according to the NHL and AF, determining the best combination of said

parameters. Table 10 presents the optimal values for the evaluated groups, as well as the mini-

mal SSEs.
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Optimization process times

During the experimental process, to measure the performance of the proposed logical

sequence, three parameters (computing time, acceleration and efficiency) were used as

references.

The times for determining the SSE in the various groups are shown in Fig 8. According to

[33], the processing times may vary according to the characteristics of the equipment where

Fig 6. SSE for each group.

https://doi.org/10.1371/journal.pone.0189369.g006

Table 7. Variance analysis? for SSE G1.

Source Sum of squares Degrees of freedom Mean square Ratio-F Value-P

Main Effects

NHL1 0.1243 6 0.0207 4.86 0.0005

AF1 0.0145 2 0.0073 1.7 0.1927

AF2 0.0247 2 0.0124 2.9 0.0640

Residual 0.2217 52 0.0043

Total (corrected) 0.3853 62

? Reliability level 99%.

https://doi.org/10.1371/journal.pone.0189369.t007
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the logical sequence is implemented. However, the trends shown by the results are similar to

those obtained in the work by [37] when the number of processors was successively increased

to the process.

From the analysis of the optimization process times, it is inferred that the implementation

requires a large calculation capacity for practical applications. In that sense, the speedup values

of the optimization process, Fig 9, show that there is an inverse relationship between the num-

ber of processors and the total optimization times with a constant tolerance for the various

groups under study.

The information shown in Figs 8 and 9 are complemented with an analysis of the logical

sequence efficiency. Fig 10 shows the efficiency achieved by the proposed parallel algorithm

each time that it was tested using the G1, G2, and G3 treatment sets. For the G1 case, the effi-

ciency quickly decreases, which may be because more time is spent establishing the parallel

environment than processing treatment. However, for the G2 and G3 cases, the algorithm

reported an efficiency of over 70% even when using the maximum number of processors. This

result indicates that the proposed parallel algorithm could scale considerably for larger experi-

mental designs.

Table 9. Variance analysis? for SSE G3.

Source Sum of squares Degrees of freedom Mean square Ratio-F Value-P

Main Effects

NHL1 7.6283 8 0.9535 147.58 0

NHL2 2.7694 8 0.3462 53.58 0

NHL3 2.464 8 0.308 47.67 0

AF1 38.776 2 19.3881 3000.69 0

AF2 0.4399 2 0.2199 34.04 0

AF3 4.6349 2 2.3174 358.67 0

AF4 3.5627 2 1.7814 275.7 0

Residual 381.3121 59016 0.0065

Total (corrected) 441.587 59048

? Reliability level 99%.

https://doi.org/10.1371/journal.pone.0189369.t009

Table 8. Variance analysis? for SSE G2.

Source Sum of squares Degrees of freedom Mean square Ratio-F Value-P

Main Effects

NHL1 0.6434 8 0.0804 13.41 0

NHL2 0.2346 8 0.0293 4.89 0

AF1 0.9168 2 0.4584 76.45 0

AF2 0.1084 2 0.0542 9.04 0.0001

AF3 0.2903 2 0.1451 24.2 0

Residual 12.9758 2164 0.006

Total (corrected) 15.1693 2186

? Reliability level 99%.

https://doi.org/10.1371/journal.pone.0189369.t008
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Conclusions

The optimal architecture of a multilayer-perceptron-type neural network may be achieved

using an analysis sequence of structural parameter combinations.

The number of hidden layers and the number of neurons per layer have statistically signifi-

cant effects on the SSE. Likewise, the SSE shows a different behavior with respect to the various

types of AF and the layer to which they connect.

The implementation of the logical sequence of the optimization is possible by applying par-

allel computing to the process, which reduces the process time and, depending on the number

of processors, improves the performance.

Table 10. Optimal values of NHL and AF per group.

Factor Optimal values

G1 G2 G3

NHL1 22 25 18

NHL2 — 27 27

NHL3 — — 26

AF1 2 3 3

AF2 1 1 3

AF3 — 2 1

AF4 — — 1

SSE 1.0217 0.9876 0.9847

https://doi.org/10.1371/journal.pone.0189369.t010

Fig 7. Interaction of structural parameters per group.

https://doi.org/10.1371/journal.pone.0189369.g007
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Fig 8. Calculation times per group and number of processors.

https://doi.org/10.1371/journal.pone.0189369.g008

Fig 9. Acceleration of optimization per groups.

https://doi.org/10.1371/journal.pone.0189369.g009
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