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Abstract

In this study, selected heavy metals (Hg, As, Cd, Pb, Cr, Cu and Zn) in the lake water and

sediments from the Caohai wetland, which is a valuable state reserve for migrant birds in

China, were investigated to assess the spatial distribution, sources, bioavailability and eco-

logical risks. The results suggested that most of the higher concentrations were found in the

eastern region of the lakeshore. The concentration factor (CF) revealed that Hg, Cd and Zn

were present from moderate risk levels to considerable risk levels in this study; thus, based

on the high pollution load index (PLI) values, the Caohai wetland can be considered pol-

luted. According to the associated effects-range classification, Cd may present substantial

environmental hazards. An investigation of the chemical speciation suggested that Cd and

Zn were unstable across most of the sites, which implied a higher risk of quick desorption

and release. Principal component analysis (PCA) indicated that the heavy metal contamina-

tion originated from both natural and anthropogenic sources.

Introduction

Although wetlands are highly productive ecosystems that supply a great amount of goods and

services to the populations living in their vicinity, they are also highly sensitive [1]. Wetland

environments are usually under pressure from industrial activities, and potentially polluting

activities are frequently developed around them, influencing ecosystem services [2].

In this paper, the distribution of heavy metals in the lake water and surface sediments of the

Caohai wetland was investigated. The Caohai wetland is situated in northwestern Guizhou,

where it is a valuable state reserve for migrant birds in China [3]. The Caohai National Nature

Reserve features a temperate climate with an average annual rainfall of approximately 900
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mm, an annual average temperature of 10.5˚C and an average relative humidity of 79%. Its cli-

mate features moderate temperatures in summer and winter, and the humidity is high in sum-

mer and autumn and low in winter and spring. There are obvious seasonal differences

between the wet and dry seasons [4,5], from May to October, the Caohai wetland enters the

wet season. It has an average length of 14.2 km and an average breadth of 1.76 km, and it con-

stitutes a plateau wetland with a water level of approximately 2170 m [6]. The specific bedrock

of the region creates alkaline water with an average pH of 8.8 (Fig 1). The water of the Caohai

wetland is mainly sourced from precipitation, and the second source is groundwater. The

groundwater (Mao Jia Hai Zi river, Dongshan river, Baima river and Dazhong river) that

inflows into the Caohai wetland originates from the spring water, the flow of this groundwater

depends on the seasonal changes of precipitation to change. In addition, the water of the Cao-

hai wetland flows to the narrow mouth of the northeast to become the headwaters of the

Gezhe river [7].

In recent years, the Caohai wetland has been subjected to multiple pollution sources such as

zinc smelting activities, especially from Hezhang County, which is located approximately 15

km away [8]. Heavy metals from the smelting waste are released by natural leaching and flow

into the Caohai wetland via surface runoff. Weining County is located in the northeast of the

Caohai wetland and has many automotive repair facilities, electroplating factories and small

livestock farms. Large amounts of industrial wastewater, agricultural effluent and sanitary sew-

age are discharged into the wetland, causing heavy pressures on the ecological environment of

Caohai [9] (Text A in S1 Text, S1 and S2 Figs).

The lake water is the primary receiver of pollution, and heavy metals are widely distributed

in it [10]. Meanwhile, it is widely considered that lake sediments are the secondary pollution

source restricting the water quality [11,12]. Because heavy metals cannot be purified by the

self-purification capacity of water, they are constantly deposited and accumulated into sedi-

ments, causing the lake sediments to become a considerable sink for anthropogenic heavy

metal emissions [13,14]. However, heavy metals in the sediments were not stable, and with the

change in the physical and chemical properties of water, heavy metals could again release and

contaminate the overlying water, thus posing a great threat to human health via biological

accumulation and the food chain [15,16]. In addition, the content of heavy metals in the sedi-

ments could reflect the sustainability of sediments in the overlying water and reflect the degree

of danger of the region. Therefore, it is necessary to examine the distribution, sources and eco-

logical risk of heavy metals in the lake water and surface sediments.

In this study, we explored the environmental condition of the Caohai wetland in the context

of the ecological risks associated with zinc pollution from smelting activities. Our primary

Fig 1. Map of the Caohai wetland and sampling locations.

https://doi.org/10.1371/journal.pone.0189295.g001
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aims were to (1) reveal the distribution of heavy metals in the lake water and surface sedi-

ments; (2) evaluate the degree of heavy metal pollution based on sediment quality guidelines,

ecological risk indices, concentration factor (CF; [17]) and pollution load index (PLI; [18]); (3)

investigate the bioavailability of heavy metals in the sediment by studying chemical speciation;

and (4) explore the sources of heavy metals in the Caohai wetland by using principal compo-

nent analysis (PCA).

Materials and methods

Ethics statement

This study did not involve endangered or protected species, no specific permissions were

needed for sampling and analysis in study region.

Sample collection

In our study, lake water and surface sediments (from the top 10 cm) were collected at 11 sites

in the wetland in August 2015 (S1 Table). Every site included 3 sampling points (within 5 m�5

m), every point was sampled three times and the average value of the three samples serves as

the final display for one site sample. Eleven monitoring sites were divided into three groups.

Group 1 (Site 1, Site 2, Site 3, Site 4 and Site 5) was close to the northeast of the Caohai wet-

land. Group 2 (Site 6, Site 7, Site 8, Site 9 and Site 10) was near the southwest, and Site 11

belonged to Group 3, which was located in the center of the Caohai wetland.

Group 1 included four sites near Weining County (Site 1, Site 2, Site 3 and Site 4) to reflect

the input of urban pollution; meanwhile, Site 1 was the outlet of the wetland, and one site (Site

5) was close to the waste residue pile from indigenous zinc smelting. Group 2 (Site 6, Site 7,

Site 8, Site 9 and Site 10) was set as a cleaning control group close to the woodland, and Site 7

was a transition area between Group 1 and Group 2.

All containers were pre-cleaned, acid washed (10% HNO3) and rinsed with Milli-Q water,

followed by oven drying at 40˚C. For the water collection, water samples were collected in plas-

tic bottles and then filtered at the scene using a 0.45-μm filter membrane. The pH was adjusted

to below 2 using concentrated nitric acid (GR), transferred to a clean microcentrifuge tube

with the lid fastened, and transported to the laboratory and preserved in the dark at 4˚C in

preparation for heavy metal content determination [19].

For the sediment collection, 3 sampling points within 5 m�5 m of each other were repeat-

edly sampled at each sampling site, and approximately 300 g of sediment was collected at every

point. The samples were mixed uniformly, numbered, sealed and placed into zip lock bags in

an ice-box, and transferred back to the laboratory [14]. Because underwater sampling should

proceed in a stable and careful manner to avoid stirring the sediments, our motions during

sampling were slow and controlled. The sediment samples were freeze-dried and mashed with

a sterile stick, the gravel was discarded and the sample was ground gently with an agate mortar.

It was then sieved through a 200-mesh nylon sieve, packed in a clean plastic bag and sealed for

processing.

Concentration analyses

For the heavy metals analysis, the lake water samples were tested directly. Conversely, sedi-

ment samples require a certain amount of preprocessing. For the heavy metal content determi-

nation in sediments, 0.1 g of each sample was digested with 2 ml of aqua regia (HNO 3 /HCl,

1:3 v/v) for 3 h at 110˚C [20]. In each digestion step, duplicate samples and reagent blanks

were also added. Using Atomic Fluorescence Spectrometry (AFS, Titian, China) analysis, the
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Hg and As contents were determined. The concentrations of Pb, Cd, Cu, Cr and Zn were

determined according to the Atomic Absorption Spectrophotometric method (GB/T7475-

1987) using an atomic absorption spectrophotometer (FAAS, Perkin Elmer, USA). The con-

centrations of total organic carbon (TOC) were analyzed using an element analyzer (Vario EL

cube, GRE). The recovery rates were kept at approximately 95%.

Speciation analysis

To investigate the speciation of heavy metals in sediments, we chose a 3-stage sequential

extraction procedure as described in Davidson et al. [21] and Ma et al. [22]. The specific steps

were as follows:

Step 1 (Exchangeable fraction): First, 1.00 g of the sample was placed in a 50 mL centrifuge

tube and 40 mL of 0.11 M Hac was added, followed by oscillation overnight. Samples were cen-

trifuged, and the supernatant was collected for the analyses.

Step 2 (Reducible fraction): First, 40 mL of 0.5 M NH2OH�HCl was added to the residue of

step 1, and the pH was regulated to 1.5 using nitric acid and then extracted as above.

Step 3 (Oxidizable fraction): Here, 10 mL of 8.8 M H2O2 was added to the residue of step 2.

To avoid the loss of drastic action, the sample was kept still for 1 h and then evaporated until it

was almost dry, after which 50 mL of 1 M NH4Ac was added and the sample extracted as

above.

Step 4 (Residual fraction): Total heavy metal is determined, excluding the concentrations of

step 1, step 2 and step 3.

Ecological risk analysis

Since the index concentration factor (CF) could express the pollution caused by a single heavy

metal [23], we used CF to investigate each pollution condition, which is defined by the follow-

ing equation:

CF ¼
Mesample

Mebaseline

where Mesample is the measured concentration of metal and Mebaseline is the natural abundance

of a given heavy metal (Text C in S1 Text). The sediment contamination was classified into 4

grades: low degree (CF < 1), moderate degree (1�CF< 3), considerable degree (3�CF < 6)

and a very high degree (CF�6; [19]).

As sediments usually contain combined toxicant groups, such as the combined pollution by

heavy metals, pollution by a single heavy metal could therefore not be determined in the sedi-

ment. Accordingly, in this study, the pollution load index (PLI) was used to identify the inte-

grated pollution levels [18]. The PLI is defined by the following equation:

PLI ¼ ðCF1 � CF2 � CF3 � . . .CFnÞ
1=n
;

where CFn is the CF value of metal n.

To assess the potential influence of combined heavy metal pollution, we used the mean

effects range-median quotient (mERM-Q), as follows:

mERM � Q ¼ ð
Xn

i¼1

ERM � QiÞ=n;

ERM � Qi ¼ Ci=ERMi;

Heavy metal in Caohai Wetland
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where Ci is the concentration of the selected metal i, ERMi is the ERM of the metal i, and n is

the amount of the selected metal. Four grades are classified: mERM-Q�0.1, representing a low

priority site; 0.1<mERM-Q�0.5, representing a medium-low priority site; 0.5<mERM-Q�1.5,

representing a high-medium priority site; and mERM-Q>1.5, representing a high priority site.

These are associated with a 9%, 21%, 49% and 76% probability of being toxic, respectively [24].

Results and discussion

Heavy metals in the water of the Caohai wetland

The total contents of mercury (Hg), arsenic (As), cadmium (Cd), lead (Pb), chromium (Cr),

copper (Cu) and zinc (Zn) are reported in Table 1. The concentrations revealed significant

spatial variation. The metal concentrations in the lake water exhibited wide ranges of 0.029–

0.143 μg/l for Hg, 1.346–2.968 μg/l for As, 0.867–3.527 μg/l for Cd, 2.004–5.587 μg/l for Pb,

2.447–5.587 μg/l for Cr, 1.828–2.631 μg/l for Cu and 28.923–55.782 μg/l for Zn. The compara-

tively high levels of metals in the lake water were generally exhibited in the northeastern sam-

pling sites (e.g., sites 3, 4 and 5), and the metal concentration gradually decreased along the

transect from the northeast to southwest, except for Cu, for which the concentrations were

similar for the sediments from the northeast (2.304 μg/l on average) and the southwest

(2.219 μg/l on average). Sampling sites Site 3 and Site 4, which were located on the eastern

coast of the Caohai wetland close to Weining County, indicated the highest concentrations of

Hg, Cd, Cr and Zn. Both Site 7 and Site 8 were situated in the southwest of the Caohai wetland,

which is farther from the contaminant sources; thus, these sites were less affected by human

activities, and exhibited comparatively lower concentrations of metals.

Compared with the reference values of environmental quality standards for surface water of

China [25], As, Pb, Cd and Cu measure up to NSC Class I standard, Cd and Zn only achieve

NSC Class II, and Hg belongs to NSC Class III. Thus, the water of the Caohai wetland belongs

to NSC Class III, and the national standard prescribes a limit to this type of water for use in

aquaculture, swimming or secondary drinking water. With reference to the national standards,

there is a comparatively serious Hg pollution and slight Cd and Zn pollution in the Caohai

wetland.

Table 1. Heavy metal concentrations in the overlying waters of the Caohai wetland.

Monitoring site Concentration (μg/l)

Hg As Cd Pb Cr Cu Zn

Group 1 Site 1 0.038 1.449 0.867 2.563 4.272 2.067 33.219

Site 2 0.033 2.329 1.032 6.742 5.587 2.325 40.645

Site 3 0.142 1.643 3.013 5.583 4.742 2.364 55.782

Site 4 0.116 2.031 3.527 4.681 4.831 1.937 41.92

Site 5 0.076 1.938 2.229 2.004 3.567 2.052 39.427

Group 2 Site 6 0.047 2.476 1.162 2.537 2.822 1.828 37.936

Site 7 0.041 1.346 1.896 2.483 3.092 2.282 28.923

Site 8 0.029 1.977 0.254 3.013 3.87 2.089 38.714

Site 9 0.065 2.968 1.731 4.462 2.967 1.987 54.236

Site 10 0.074 1.762 1.968 2.174 2.447 2.49 39.538

Group 3 Site 11 0.055 1.530 1.654 3.954 4.087 2.631 44.413

SEPA [25] NSC Class I 0.05 50 1 10 10 10 50

NSC Class II 0.05 50 5 10 50 1000 1000

NSC Class III 0.1 50 5 50 50 1000 1000

https://doi.org/10.1371/journal.pone.0189295.t001
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Although there are significant differences between the northeast and southwest, it is impor-

tant to quantify the variability and reveal the patterns in the variability. Fig 2 reveals similar

distribution patterns of heavy metals in the lake water across the study area and specific analy-

ses are shown in the Text B of SI. The northeastern regions exhibited higher heavy metal con-

centrations than those in the southwest. Higher concentrations were largely distributed close

to Weining County, and lower concentrations were found in areas situated further away from

Weining County. This is likely a result of the frequent human activities along the lakeshore

and the influence of living wastewater discharge.

Heavy metals in the sediments of the Caohai wetland

To understand how severe the metal pollution is in this study region, the pollution levels

recorded in other areas are provided in Table 2 for comparison. A comparison of data sets

revealed that the Cd and Zn levels were much higher than in the other sites listed in Table 2,

verifying that it is considerably more prolific in this region. This is most likely because the

Fig 2. Distributions of heavy metal concentrations in the overlying water.

https://doi.org/10.1371/journal.pone.0189295.g002
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Hezhang zinc smelting area is situated approximately 15 km from the Caohai wetland and

because Cd is usually present in this industry [3]. According to the sediment quality guidelines

(SQGs) of China, the heavy metals Hg, Cd and Zn exceed the standard Class I, Zn is above the

Class II, and Cd exceeds Class III. It is evident that the study area is contaminated by heavy

metals, and furthermore, there appears to be strong enrichment of Zn and Cd. Additionally,

using the SQGs from the State Environmental Protection Administration of China (SEPA), Cd

was found to be above the threshold level for the heavily polluted category. These results reveal

that heavy metal pollution in the Caohai wetland, particularly the sites located in the northeast,

have reached the heavily polluted level.

Ecological risks of heavy metals in sediments

Fig 3 lists the CF values and indicates that at most sites, Cd is considerably high, suggesting

that the sediments should be marked as polluted by Cd (Site 3 Table). In fact, Cd was the big-

gest metal pollutant, as its mean and highest CF values were 2.73 and 5.09, respectively. Simi-

larly, Zn and Hg were also high but secondary to Cd, with mean CF values of 2.59 and 1.25,

respectively. The CF values of other metals were all<1. Considering the above analyses, it was

established that the Caohai wetland sediments were contaminated by Cd, Zn and Hg at varying

levels. It is generally accepted that many primary environmental problems in the area are

related to mining activities, including the weathering of ore and the discharge from the ore flo-

tation plant [27]. In particular, since it is difficult to control the water seeping from the tailings

ponds and non-point sources of pollution, a great variety of pollutants and major heavy metals

are potentially discharged into the Caohai wetland.

The PLI values of Site 3 and Site 4 were>1, demonstrating that the Caohai wetland exhib-

ited pollution. Although the PLI values of the other sites (Site 5, Site 6, Site 8 and Site 11) were

<1, suggesting that these sites have not been subjected to serious anthropogenic pollution, the

heavy metals that originate from anthropogenic sources display higher biological availability

than do those from natural sources; hence, the latter might be easier to transfer along the

food chain [31]. The PLI values decrease along the northeast near Weining County to the

Table 2. The Mean concentrations of heavy metals in surface sediments of the Caohai wetland; the related values reported for the surface sedi-

ments of other areas; and some standard limit values.

Concentration (μg/g dry wet) Reference

Hg As Cd Pb Cr Cu Zn

DZB: mean(SD) 0.55(0.40) 16.50(5.15) 12.58(7.90) 32.54(13.00) 38.44(12.46) 21.87(2.09) 386.41(59.89) Present study

Range (n = 10) 0.17–1.22 8.86–23.57 1.74–23.41 20.04–54.31 24.47–58.63 18.28–23.31 289.23–457.82

Jiaozhou Bay, China NA 9.2 0.42 55.2 69.9 38.8 107.4 Xu et al. [26]

Le’an River, China 0.454 32.45 4.713 100.94 62.80 266.40 273.29 Chen et al. [27]

West Bengal, India NA 5.85 0.14 15.14 40.10 24.20 NA Antizar et al. [28]

NSC Class I 0.20 20.0 0.5 60 80 35 150.0 SEPA [25]

NSC Class II 0.50 65.0 1.5 130 150 100 350.0

NSC Class III 1.00 93.0 5 250 270 200 600.0

ERL 0.15 8.2 1.2 47 81 34 150 Long et al. [29]

ERM 0.71 70 9.6 218 370 270 410

Non-polluted �1.0 <3 - <40 <25 <25 <90 Perin et al. [30]

Moderately polluted - 3–8 - 40–60 25–75 25–50 90–200

Heavily polluted >1.0 >8 >6 >60 >75 >50 >200

NA: not available.

https://doi.org/10.1371/journal.pone.0189295.t002
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southwestern woodland area. It is evident that anthropogenic heavy metals have increased the

PLI values in the study area; Site 3 and Site 4 revealed the highest PLI values, decreasing

towards the southwest, where Site 8 recorded the lowest PLI value of 0.02. The PLI values sug-

gest that the order of the combined heavy metal pollution was Site 3 (5.29) > Site 4 (3.94) >

Site 5 (0.44) > Site 11 (0.33) > Site 6 (0.30) > Site 8 (0.02). Both the PLI and CF values indi-

cated that the most heavily polluted site was Site 3, for which the heavy metals Cd, Zn and Hg

had the greatest contribution (Text D in S1 Text).

SQGs have been developed to assess the chemical sediment contents in the context of con-

servation and are predictive of adverse effects (USPE). These SQGs have been used to deter-

mine the biological effects of sediment pollution in previous research [19]. Following this

research, we decided to implement the effects-range-low (ERL) and effects-range-median

(ERM) to determine the biological effects of pollution in the Caohai wetland. In this study, the

heavy metal Cd exceeded the ERM in our study region, and the most polluted site was deter-

mined to be Site 4. Furthermore, Site 3, Site 5 and Site 11 (close to Site 4) all exceeded the ERL.

The results indicate that Cd has the greatest impact on biological resources.

The results (Fig 3) suggested that the mERM-Q values of the sediments in the Caohai wet-

land ranged from 0.25–0.76 and were thus categorized as ‘medium-low priority’ to ‘high-

medium priority’ with an 0.1<mERM-Q < 1.5, corresponding to a combined probability of

21 to 49% toxicity (S4 Table). Furthermore, the maximum value for mERM-Q was found at

Fig 3. Calculated result of 7 heavy metals in sediments of the Caohai wetland.

https://doi.org/10.1371/journal.pone.0189295.g003
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Site 3 in the northeastern Caohai wetland. As it is in the vicinity of Weining County, it might

indicate that anthropogenic heavy metals sources display higher toxicity.

Bioavailability of heavy metals in sediments

The chemical speciation of heavy metals could reflect their mobility and bioavailability. We

used an optimized BCR (European Community Bureau of Reference) method to determine

the chemical speciation of the 7 heavy metals detected in the sediments. Fig 4 indicates the dif-

ferences in chemical speciation of each heavy metal and reveals significant spatial variation

among the heavy metals as a result of multiple factors.

Sites 3 and 4 exhibited nearly the highest exchangeable fractions, and the lowest was

detected at Site 8. The position of sites Site 3 and Site 4 in the northeast of the wetland near

Weining County renders them susceptible to sources of high-bioavailability heavy metals.

Cadmium and Zn exhibited the highest exchangeable fractions, with mean values of 43.69%

and 24.86%, respectively. These represent the exchangeable fractions with the strongest toxic-

ity that could be readily biologically absorbed and released under conditions of neutral and

weak acids. In this study, the pH of the Caohai wetland was between 7.42 and 9.21, with an

average of 8.25, indicating weak alkalinity. Although this environment is not conducive to the

release of exchangeable metals under normal conditions, the exchangeable metals in sediments

have the risk of secondary release should they be impacted by acid rain or aquatic plant decay.

Some research has shown that acid rain frequently occurs in the region of Guizhou province

[32–34]. The acid rain frequency was highest in the winter, accounting for 43.0% of the whole

year, followed by spring (35.5%), and January had the lowest pH value (5.26~5.67) [33]. Thus,

the exchange of metals in the Caohai wetland was perfectly possible via secondary release in

the case of acid rain in winter and should be given attention.

The reducible fractions usually accumulate by adsorption or precipitation. When the redox

potential decreases or dissolved oxygen is lacking in water, the reducible fractions are released,

which may result in water pollution. In this research, Pb had the highest reducible fraction

(22.24%), whereas Cr, Cu and Hg had the lowest reducible fractions of 4.10%, 6.04% and

6.25%, respectively. The other metals ranged from 11% to 18%. Domestic sewage, which is

potentially input into the wetland from Weining County, includes oxygen-consuming organ-

ics, which could lead to a potential oxidation reduction. Thus, the sediments in the northeast

of the wetland are at risk of released Pb.

Oxidable fractions are centered on heavy-metal ions, and the combination of active groups

of organic ligands or heavy metals generate substances that are insoluble in water. In this

research, the contents of organic matter in the Caohai wetland varied from 6.28~47.29%, with

an average of 24.38%. Copper and Cr had the highest oxidable fractions (29.98% and 23.08%),

whereas Zn, As and Pb had the lowest oxidable fractions of 3.86%, 4.63%% and 4.90%, respec-

tively. Oxidable fractions break down under strong oxidation conditions; thus, the oxidable

fractions of the heavy metals in the Caohai wetland could not easily be released under normal

moderate to weak oxidation conditions. Copper and Cr had the highest oxidable fractions and

had a high affinity with organic matter and sulfide.

Residual fractions are often believed to occur in the original and secondary ore mines,

exhibit a high degree of stability and are rarely utilized by animals. The values of the residual

fractions exhibited wide ranges of 58.58%~67.75% for Hg, 61.27%~74.32% for As, 20.32%

~29.18% for Cd, 54.24%~65.38% for Pb, 55.36%~68.64% for Cr, 39.99%~45.21% for Cu

and 46.47%~58.21% for Zn. The lower the residual fraction is, the easier it is to release and

cause secondary pollution. Therefore, the order of the bioavailability of heavy metals is

Cd>Cu>Zn>Pb>Cr>Hg>As.
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Source identification of heavy metals in sediments

The sources of heavy metal pollution of sediments are both natural and anthropogenic [35].

Thus, due to their biological toxicity, the geochemical properties and transfer ability of heavy

metals could be influenced by TOC [36]. Considering Pearson correlation matrix could reflect

the degree of linear association of two variables and support the results obtained by PCA/FA

[37], we used the Pearson correlation matrix to investigate the relationship between TOC and

heavy metals (Table 3) to understand the characteristics of the metals in the Caohai sediments.

The results indicated that the TOC content was highly significantly positively correlated with

As (at the 0.01 level). This is due to the chemical constitution of the sediments reflecting the

coupling interaction between the cycles of heavy metals and TOC [22]. Meanwhile, the highly

significantly positive correlation implied that the distribution of As was under the influence of

TOC rather than an anthropogenic source, and combined with the analysis of distribution,

quantified the variability (in SI) and suggested that the main source of arsenic is natural

sources. Instead, TOC content was negatively correlated with other heavy metals, which

showed that these heavy metals were influenced by anthropogenic sources; in particular, Cr (at

the 0.05 level), Cu (at the 0.05 level) and Zn (at the 0.01 level) had highly significantly negative

Fig 4. Chemical speciation of heavy metals in sediment.

https://doi.org/10.1371/journal.pone.0189295.g004
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correlations. Furthermore, in addition to Cu, other heavy metals (Hg, Cd, Pb, Cr, and Zn) all

had highly positive correlations, which might indicate that Cu had a source other than the

anthropogenic source. Only Cr was not negatively correlated with Cu, which may suggest that

Cr and Cu had the same anthropogenic source input (Text E in S1 Text).

To determine the sources of the 7 heavy metals present in Caohai sediments, we used the

multivariate principal component analysis (PCA). Using SPSS (19.0), the resulting KMO value

was 0.648 and Bartlett’s result was 123.396 (df = 28, p<0.001).

Together, the 2 principal components represent 80.1% (PC1 54.5%; PC2 25.6%) of the total

variance. As indicated in S3 Fig, the PCA divided the TOC and the 7 heavy metals into 3

groups: Group 1 (Hg, Cd and Pb), Group 2 (As, TOC) and Group 3 (Cu, Cr and Zn). Interest-

ingly, as found in the Pearson correlation matrix, As and TOC formed a group on one side of

the plot, distant from other heavy metals (S3 Fig), suggesting that there are significantly differ-

ent sources in Group 2. Six heavy metals, especially Pb, were positively associated with PC1.

The weight of 0.843 on PC1 indicated that the major sources of Pb are related to the discharge

from the burning of coal, fuels and leaded petrol into meteoric water [22,38]. Thus, PC1 is pri-

marily of an anthropogenic source. The energy structure is relatively backward in Weining

county, and coal burning is still the main source of heat for cooking and warming. Therefore,

artificial coal burning might be the primary source of Pb. It was also reported that there is a

long history of Zn smelting in Hezhang County, which is located approximately 15 km from

the Caohai wetland, and that because Cd and Hg are usually present in Zn ores [3,39], this sug-

gests that the source of Cd, Hg and Pb in Group 1 is probably from mining activity and ore

burning. Zn not only came from mining activity but also came from industrial activities. It is

well documented that Cu, Cr and Zn are present in metal smelting and electroplating [40],

which suggests that the source of Cu, Cr and Zn in Group 3 might originate from industrial

activities. Local automobile repair plants and electroplating factories were probably the pri-

mary sources of Cu, Cr and Zn.

PC2 is deemed to primarily reflect a natural geological source. Based on the distribution

and correlation analysis, As seems to come from natural sources. Meanwhile, Pan et al. [19]

suggested that the source of Cd was influenced by the contribution of parent rocks; thus, Cd

also has a natural geological source, whereas Cd has a relatively high loading weight (0.464) on

PC2. Hence, PC2 might indicate a natural geological origin for the metal pollution.

Overall, Group 1 was the result of both natural geological and anthropogenic sources, but

primarily anthropogenic. Group 2 was primarily due to natural geological sources, whereas

Group 3 mostly came from anthropogenic sources.

Table 3. The correlation of TOC and heavy metals in sediments of the Caohai wetland (N = 18).

TOC Hg As Cd Pb Cr Cu Zn

TOC 1

Hg -0.275 1

As 0.904** -0.358 1

Cd -0.197 0.761** -0.237 1

Pb -0.269 0.852** -0.346 0.689** 1

Cr -0.588* 0.694** -0.535* 0.575* 0.815** 1

Cu -0.573* -0.169 -0.336 -0.294 -0.249 0.197 1

Zn -0.599** 0.552* -0.738** 0.593** 0.592** 0.494* -0.158 1

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).

https://doi.org/10.1371/journal.pone.0189295.t003
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Study limitations

This study only determined the concentrations of water samples and sediment samples in the

Caohai wetland in August 2015 and used the data to assess the distribution, sources, bioavail-

ability and ecological risks of heavy metals, some problems still need to be further investigated

(Text F in S1 Text). In future studies, seasonal variation, effects of water chemistry, sampling

size and biological samples should be paid more attention.

Conclusions

Systemic geochemistry analyses were implemented in the Caohai wetland to investigate the

distribution of heavy metals in the lake water and surface sediments. The results revealed, in

different media (water and sediments), that heavy metals were found to be present at varying

concentrations. With reference to national standards, Hg is the most serious pollutant in

water, followed by Cd and Zn, and made the water of Caohai wetland belong to NSC Class III.

In sediments, Cd was the most polluted metal and was beyond the limit value of NSC Class III.

Furthermore, the heavy metals were temporally separated, in that the highest heavy metal

concentrations were predominantly associated with the northeast, with a general decreasing

trend towards the southwest.

The index concentration factor (CF) values suggest that the heavy metals Hg and Zn have

moderately polluted the sediments of the Caohai wetland, but the Cd pollution is considerably

higher. In addition, the PLI results indicated that the CF values reveal higher metal concentra-

tions in the northeast. Based on the SQGs of the study areas, Cd exceeded ERM and is likely

the cause of adverse biological effects, especially at sites 3 and 4. In conjunction with mERM-

Q, these results indicate that the combination of these heavy metals in sediments represent a

21% to 49% chance, respectively, of being toxic.

The chemical speciation analysis indicates that Cd and Zn were unstable in most of the

study sites, suggesting a higher risk of quick desorption and release, particularly in the case of

acid rain in winter. In some districts, especially the northeast, Pb might be released with

domestic sewage discharge, thus posing a chronic risk of toxicity for benthonic organisms.

In addition, PCA suggested that in addition to potential natural contributions, the sedi-

ments may be influenced by anthropogenic pollution sources, such as coal burning, mining

activity, industrial emissions and living wastewater. Therefore, controlling pollutants, improv-

ing wastewater treatment and strengthening the supervision and management in the vicinity

of the wetland may be important for treating heavy metal pollution. Furthermore, a compre-

hensive method of precise environmental risk evaluation should be implemented by using Cd,

Hg and Zn as the key targets for environmental management and pollution prevention in the

Caohai wetland.

Supporting information

S1 Text.

(DOCX)

S1 Table. Coordinates of sampling points.

(DOCX)

S2 Table. The concentrations of heavy metals in sediments.

(DOCX)

S3 Table. CF of heavy metals in sediments.

(DOCX)

Heavy metal in Caohai Wetland

PLOS ONE | https://doi.org/10.1371/journal.pone.0189295 December 18, 2017 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189295.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189295.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189295.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189295.s004
https://doi.org/10.1371/journal.pone.0189295


S4 Table. mERM-Q values of the sediments and the probabilities of being toxic(POBT).

(DOCX)

S1 Fig. Weining county.

(PDF)

S2 Fig. The southeast of Caohai wetland.

(PDF)

S3 Fig. The PCA Loading Plot for TOC and Heavy Metals in Sediment.

(PDF)

Acknowledgments

We thank the anonymous referees and the Academic Editor for their thorough reviews and

constructive comments which have greatly improved the quality of this paper.

Author Contributions

Conceptualization: Jing Hu, Shaoqi Zhou, Pan Wu.

Data curation: Jing Hu.

Formal analysis: Jing Hu.

Investigation: Jing Hu, Kunjie Qu.

Methodology: Shaoqi Zhou, Pan Wu.

Project administration: Shaoqi Zhou.

Software: Jing Hu.

Writing – original draft: Jing Hu.

Writing – review & editing: Jing Hu.

References
1. Bassi N, Kumar MD, Sharma A, Pardha-Saradhi P. Status of wetlands in India: a review of extent, eco-

system benefits, threats and management strategies. Journal of Hydrology: Regional Studies. 2014; 2:

1–19.

2. Chaikumbung M, Doucouliagos H, Scarborough H. The economic value of wetlands in developing

countries: a meta-regression analysis. Ecological Economics. 2016; 124: 164–174.

3. Bi XY, Feng XB, Yang YG, Li XD, Sin GPY, Qiu G, et al. Heavy metals in an impacted wetland system:

a typical case from southwestern China. Sci Total Environ. 2007; 387: 257–268. https://doi.org/10.

1016/j.scitotenv.2007.07.059 PMID: 17822743

4. Zhang ZM, Lin SX, Zhang QH, Guo Y, Lin CH. The distribution characteristics of soil carbon, nitrogen

and phosphorus under different land use patterns in Caohai plateau wetland. Journal of Soil and Water

Conservation. 2013; 27: 199–204 (In Chinese with English abstract).

5. Zhu ZJ, Chen JA, Li H, Ren SC, Zeng Y, Li YJ. Discovery of abnormal positive values of carbon isotope

of carbonate sediments from lake Caohai, Guizhou province and their implications. Hu Po Ke Xue.

2011; 23: 681–685 (In Chinese with English abstract).

6. Zhu Z, Chen JA, Zeng Y. Abnormal positive δ13C values of carbonate in lake Caohai, southwest China,

and their possible relation to lower temperature. Quat Int. 2013; 286: 85–93.

7. Lin SX, Zhang QH, Guo Y, Ou YH, Lin CH. Pollution characteristics and potential ecological risk assess-

ment of heavy metals in sediments of Caohai in Guizhou province, China. Nong Ye Huan Jing Ke Xue

Xue Bao. 2012; 31: 2236–2241 (In Chinese with English abstract).

8. Feng X, Li G, Qiu G. A preliminary study on mercury contamination to the environment from artisanal

zinc smelting using indigenous methods in Hezhang county, Guizhou, China: Part 2. Mercury

Heavy metal in Caohai Wetland

PLOS ONE | https://doi.org/10.1371/journal.pone.0189295 December 18, 2017 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189295.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189295.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189295.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189295.s008
https://doi.org/10.1016/j.scitotenv.2007.07.059
https://doi.org/10.1016/j.scitotenv.2007.07.059
http://www.ncbi.nlm.nih.gov/pubmed/17822743
https://doi.org/10.1371/journal.pone.0189295


contaminations to soil and crop. Sci Total Environ. 2006; 368: 47–55. https://doi.org/10.1016/j.

scitotenv.2005.09.036 PMID: 16223519

9. Zhou C, Yu LF, Cai GJ, An M, Xia HP. Spatial-temporal variation of water quality in Caohai lake. J

Hydrogeol. 2016; 37: 24–30 (In Chinese with English abstract).

10. Shaike MM, Nath B, Birch GF. Partitioning of trace elements in contaminated estuarine sediments: the

role of environmental settings. Ecotoxicol Environ Saf. 2014; 110: 246–253. https://doi.org/10.1016/j.

ecoenv.2014.09.007 PMID: 25265026

11. Gibson BD, Ptacek CJ, Blowes DW, Daugherty SD. Sediment resuspension under variable geochemi-

cal conditions and implications for contaminant release. J Soils Sediments. 2015; 15: 1644–1656.

12. Liu S, Shi X, Yang G, Khokiattiwong S, Kornkanitnan N. Distribution of major and trace elements in sur-

face sediments of the western gulf of Thailand: implications to modern sedimentation. Cont Shelf Res.

2016; 117: 81–91.

13. Ros À, Colomer J, Serra T, Pujol D, Soler M, Casamitjana X. Experimental observations on sediment

resuspension within submerged model canopies under oscillatory flow. Cont Shelf Res. 2014; 91: 220–

231.

14. Gredilla A, Stoichev T, De Vallejuelo SFO, Rodriguez-Iruretagoiena A, De Morais P, Arana G, et al.

Spatial distribution of some trace and major elements in sediments of the Cavado estuary (Esposende,

Portugal). Mar Pollut Bull. 2015; 99: 305–311. https://doi.org/10.1016/j.marpolbul.2015.07.040 PMID:

26228072

15. Pekey H, Doğan G. Application of positive matrix factorisation for the source apportionment of heavy

metals in sediments: a comparison with a previous factor analysis study. Microchem J. 2013; 106: 233–

237.

16. Gao XL, Zhuang W, Chen CTA, Zhang Y. Sediment quality of the SW coastal Laizhou bay, Bohai sea,

China: a comprehensive assessment based on the analysis of heavy metals. PLoS One. 2015; 10.

https://doi.org/10.1371/journal.pone.0122190 PMID: 25816338

17. Loska K, Cebula J, Pelczar J, Wiechuła D, Kwapuliński J. Use of enrichment, and contamination factors

together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water

reservoir in Poland. Water Air Soil Pollut. 1997; 93: 347–365.

18. Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW. Problems in the assessment of heavy-metal levels in

estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen. 1980; 33: 566–

575.

19. Pan JJ, Pan JF, Wang M. Trace elements distribution and ecological risk assessment of seawater and

sediments from Dingzi bay, Shandong Peninsula, north China. Mar Pollut Bull. 2014; 89: 427–434.

https://doi.org/10.1016/j.marpolbul.2014.10.022 PMID: 25455380

20. Pedro S, Duarte B, Reis G, Pereira E, Duarte AC, Costa JL, et al. Metal partitioning and availability in

estuarine surface sediments: changes promoted by feeding activity of Scrobicularia plana and Liza

ramada. Estuar Coast Shelf Sci. 2015; 167: 240–247.

21. Davidson CM, Thomas RP, McVey SE, Perala R, Littlejohn D, Ure AM. Evaluation of a sequential

extraction procedure for the speciation of heavy metals in sediments. Anal Chim Acta. 1994; 291: 277–

286.

22. Ma XL, Zuo H, Tian M, Zhang L, Meng J, Zhou X, et al. Assessment of heavy metals contamination in

sediments from three adjacent regions of the yellow river using metal chemical fractions and multivari-

ate analysis techniques. Chemosphere. 2016; 144: 264–272. https://doi.org/10.1016/j.chemosphere.

2015.08.026 PMID: 26363329

23. Gao X, Zhou F, Chen T. Pollution status of the Bohai Sea: an overview of the environmental quality

assessment related trace metals. Environ. Int. 2014; 62: 12–30. https://doi.org/10.1016/j.envint.2013.

09.019 PMID: 24161379

24. Long ER, MacDonald DD, Severn CG, Hong CB. Classifying probabilities of acute toxicity in marine

sediments with empirically derived sediment quality guidelines. Environmental Toxicology and Chemis-

try. 2000; 19: 2598–2601.

25. SEPA (State Environmental Protection Administration of China). Marine sediment quality (GB 18668–

2002). Beijing: Standards Press of China; 2002.

26. Xu F, Qiu L, Cao Y, Huang J, Liu Z, Tian X, et al. Trace metals in the surface sediments of the intertidal

Jiaozhou bay, China: sources and contamination assessment. Mar Pollut Bull. 2016; 104: 371–378.

https://doi.org/10.1016/j.marpolbul.2016.01.019 PMID: 26806660

27. Chen H, Chen R, Teng Y, Wu J. Contamination characteristics, ecological risk and source identification

of trace metals in sediments of the le’an river (China). Ecotoxicol Environ Saf. 2016; 125: 85–92. https://

doi.org/10.1016/j.ecoenv.2015.11.042 PMID: 26685780

Heavy metal in Caohai Wetland

PLOS ONE | https://doi.org/10.1371/journal.pone.0189295 December 18, 2017 14 / 15

https://doi.org/10.1016/j.scitotenv.2005.09.036
https://doi.org/10.1016/j.scitotenv.2005.09.036
http://www.ncbi.nlm.nih.gov/pubmed/16223519
https://doi.org/10.1016/j.ecoenv.2014.09.007
https://doi.org/10.1016/j.ecoenv.2014.09.007
http://www.ncbi.nlm.nih.gov/pubmed/25265026
https://doi.org/10.1016/j.marpolbul.2015.07.040
http://www.ncbi.nlm.nih.gov/pubmed/26228072
https://doi.org/10.1371/journal.pone.0122190
http://www.ncbi.nlm.nih.gov/pubmed/25816338
https://doi.org/10.1016/j.marpolbul.2014.10.022
http://www.ncbi.nlm.nih.gov/pubmed/25455380
https://doi.org/10.1016/j.chemosphere.2015.08.026
https://doi.org/10.1016/j.chemosphere.2015.08.026
http://www.ncbi.nlm.nih.gov/pubmed/26363329
https://doi.org/10.1016/j.envint.2013.09.019
https://doi.org/10.1016/j.envint.2013.09.019
http://www.ncbi.nlm.nih.gov/pubmed/24161379
https://doi.org/10.1016/j.marpolbul.2016.01.019
http://www.ncbi.nlm.nih.gov/pubmed/26806660
https://doi.org/10.1016/j.ecoenv.2015.11.042
https://doi.org/10.1016/j.ecoenv.2015.11.042
http://www.ncbi.nlm.nih.gov/pubmed/26685780
https://doi.org/10.1371/journal.pone.0189295


28. Antizar-Ladislao B, Mondal P, Mitra S, Sarkar SK. Assessment of trace metal contamination level and

toxicity in sediments from coastal regions of west Bengal, eastern part of India. Mar Pollut Bull. 2015;

101: 886–894. https://doi.org/10.1016/j.marpolbul.2015.11.014 PMID: 26581818

29. Long ER, Ingersoll CG, MacDonald DD. Calculation and uses of mean sediment quality guideline quo-

tients: a critical review. Environ Sci Technol. 2006; 40: 1726–1736. PMID: 16570590

30. Perin G, Bonardi M, Fabris R, Simoncini B, Manente S, Tosi L, Scotto S. Heavy metal pollution in central

Venice Lagoon bottom sediments: evaluation of the metal bioavailability by geochemical speciation pro-

cedure. Environ. Technol. 1997; 18: 593–604.

31. Deng B, Zhang J, Zhang G, Zhou J. Enhanced anthropogenic heavy metal dispersal from tidal distur-

bance in the Jiaozhou bay, north China. Environ Monit Assess. 2010; 161: 349–358. https://doi.org/10.

1007/s10661-009-0751-x PMID: 19205912

32. Zhao XY, Li JJ, Sun Z, Wang HY, Liu DW, Yuan X. Characteristics of chemical compositions of precipi-

tation in a typical acid-rain city in Guizhou province. Earth and Environment. 2014; 42: 316–321(In Chi-

nese with English abstract).

33. Li GQ, Jiang WJ, Zhou S, Chi ZX. Analysis on the characteristics of acid rain in western Guizhou. Jour-

nal of Guizhou Meteorology. 2016; 40: 27–31 (In Chinese with English abstract).

34. Fei Y. The prelimin are analysis for the condition of acid rain and the prevention measures for it’s risk in

Guizhou province. Journal of Guizhou Normal University. 2011; 29: 39–42 (In Chinese with English

abstract).

35. Bing H, Wu Y, Sun Z, Yao S. Historical trends of heavy metal contamination and their sources in lacus-

trine sediment from Xijiu lake, Taihu lake catchment, China. J Environ Sci. 2011; 23: 1671–1678.

36. Armid A, Shinjo R, Zaeni A, Sani A, Ruslan R. The distribution of heavy metals including Pb, Cd and Cr

in Kendari bay surficial sediments. Mar Pollut Bull. 2014; 84: 373–378. https://doi.org/10.1016/j.

marpolbul.2014.05.021 PMID: 24880681

37. Shah Eqani SA, Kanwal A. Spatial distribution of dustebound trace elements in Pakistan and their impli-

cations for human exposure. Environmental Pollution, 2016; 213: 213–222. https://doi.org/10.1016/j.

envpol.2016.02.017 PMID: 26901073

38. Cameron RE. Guide to site and soil description for hazardous waste site characterization. Metals.

Report No: EPA/600/4–91/029. Washington, DC: Environmental Protection Agency; 1992.

39. Eisler R. Eisler’s encyclopedia of environmentally hazardous priority chemicals. Oxford, UK: Elsevier

Science; 2007.

40. Udayakumar P, Jose JJ, Krishnan KA, Kumar CSR, Manju MN, Salas PM. Heavy metal accumulation

in the surficial sediments along southwest coast of India. Environmental Earth Sciences. 2014; 72:

1887–1900.

Heavy metal in Caohai Wetland

PLOS ONE | https://doi.org/10.1371/journal.pone.0189295 December 18, 2017 15 / 15

https://doi.org/10.1016/j.marpolbul.2015.11.014
http://www.ncbi.nlm.nih.gov/pubmed/26581818
http://www.ncbi.nlm.nih.gov/pubmed/16570590
https://doi.org/10.1007/s10661-009-0751-x
https://doi.org/10.1007/s10661-009-0751-x
http://www.ncbi.nlm.nih.gov/pubmed/19205912
https://doi.org/10.1016/j.marpolbul.2014.05.021
https://doi.org/10.1016/j.marpolbul.2014.05.021
http://www.ncbi.nlm.nih.gov/pubmed/24880681
https://doi.org/10.1016/j.envpol.2016.02.017
https://doi.org/10.1016/j.envpol.2016.02.017
http://www.ncbi.nlm.nih.gov/pubmed/26901073
https://doi.org/10.1371/journal.pone.0189295

