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Abstract

Investigation of the driven mechanism of the price dynamics in complex financial systems is

important and challenging. In this paper, we propose an investment strategy to study how

dynamic fluctuations drive the price movements. The strategy is successfully applied to dif-

ferent stock markets in the world, and the result indicates that the driving effect of the

dynamic fluctuations is rather robust. We investigate how the strategy performance is influ-

enced by the market states and optimize the strategy performance by introducing two

parameters. The strategy is also compared with several typical technical trading rules. Our

findings not only provide an investment strategy which extends investors’ profits, but also

offer a useful method to look into the dynamic properties of complex financial systems.

Introduction

Financial markets, as a typical complex dynamic system with many-body interactions, have

drawn much attention of scientists from different fields during the past decades and much

progress has been achieved [1–10]. Quantification of the price dynamics in financial markets

would provide a great basis for deepening our understanding of the financial market behav-

iours [8, 11–20].

There have been various approaches in researches on the comprehension of financial mar-

kets. Recently, it is reported that massive data sources, such as Twitter and Google Trends, can

be linked to the transaction frequency and price movements in the stock markets [21–24].

Since changes in these “big data” can be interpreted as early signals of market moves, several

hypothetical strategies have been constructed for validation of this argument [25–28]. The

empirical analysis of financial time series’ properties provides new insights into the non trivial

nature of the stochastic process of stock prices [29–34]. Besides, some agent-based modeling

methods have been proposed to investigate the role of heterogeneity of agents with respect to

the price dynamics [35–41].

The temporal correlation functions can be used to characterize the dynamic properties of

the financial markets [42, 43]. Since the autocorrelating time of returns is extremely short,

which is on the minute time scale, our understanding on the movement of the price return

itself is limited.
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Understanding the driven mechanism of the price dynamics in financial markets is impor-

tant and challenging. Recently, a dynamic observable nonlocal in time is constructed to

explore the correlation between past volatilities and future returns [42]. This nonlocal correla-

tion is designated as the “fluctuation-driven effect”, which may be concerning the nonstation-

ary dynamic property of the complex systems [44]. In this paper, we construct an investment

strategy to study how dynamic fluctuations drive the price movements in stock markets. We

should emphasize that the fluctuation-driven effect based strategy is different from other infor-

mation-driven strategies. It is constructed from the perspective of the internal price dynamics

in the financial markets instead of the external information such as search volumes or inves-

tors’ sentiments. With the strategy, we not only advance our understanding to the financial

markets but also provide a concrete application for financial practitioners.

According to the efficient market hypothesis [45], the strategies based on the analysis of his-

torical price movements should not be useful because all agents were rational and able to

respond promptly to all market information so that there will be no arbitrage opportunity.

However, accumulating evidences are presented against this hypothesis [32, 46–49]. Some

technical trading rules have been proved to be effective [50–56]. Different algorithms are uti-

lized to forecast the price movements and quantify the price dynamics [57–60]. Various

researches have suggested that trading strategies can be regarded not only as a technique to

generate excessive trading profits but also as a powerful instrument to examine the traditional

financial hypothesis and explore the dynamic properties of financial markets [28, 61–66].

In this paper, an investment strategy is proposed to explore the fluctuation-driven price

dynamics in financial markets. The strategy provides a practical application for financial prac-

titioners, which can be seen as an evidence to examine the efficient market hypothesis. We

implement the strategy in different stock markets in the world, and study the relation between

the strategy profitability and the strength of the fluctuation-driven effect. We investigate how

the strategy performance is influenced by different market states and optimize the strategy per-

formance by introducing two more parameters. The strategy is compared with several typical

technical trading rules as well.

Materials and methods

Data retrieval

We collect the daily closing price of 20 stock market indices in the world. All the data are

obtained from Yahoo! Finance (finance.yahoo.com). The time periods of the market indices

are presented in Table 1. Our computation is accomplished on the platform MATLAB R2012a.

Volatility-return correlation nonlocal in time

The price of a financial index at time t0 is denoted by p(t0). The logarithmic return is defined as

Rðt0Þ ¼ lnpðt0Þ � lnpðt0 � 1Þ; ð1Þ

and the volatility is defined as v(t0) = |R(t0)|, which measures the magnitude of the price

fluctuation.

To describe the volatility-return correlation nonlocal in time, a dynamic function is pro-

posed in Ref. [42]

DPðtÞ ¼ PþðtÞjDvðt0Þ>0 � PþðtÞjDvðt0Þ<0: ð2Þ

Here the conditional probability P+(t)|Δv(t0)>0 is the probability of R(t0 + t)> 0 on the condi-

tion of Δv(t0)> 0. Correspondingly, the conditional probability P+(t)|Δv(t0)<0 is the probability
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of R(t0 + t)> 0 for Δv(t0)< 0. Δv(t0) is the difference of average volatilities in two different time

windows,

Dvðt0Þ ¼
1

Ts

XTs

i¼1

vðt0 � iþ 1Þ �
1

Tl

XTl

i¼1

vðt0 � iþ 1Þ ð3Þ

with Tl�Ts. Ts and Tl are called the short window and long window, respectively.

If past volatilities and future returns do not correlate with each other, P+(t)|Δv(t0)>0 and

P+(t)|Δv(t0)<0 should be equal, and ΔP(t) should be zero. If ΔP(t) is computed to be non-zero,

there should exist a non-zero volatility-return correlation and such a correlation is nonlocal in

time.

The time windows Ts and Tl are crucial in the calculation of ΔP(t). Ts represents the period

of time with which investors measure the fluctuation of current prices. Tl reflects the auto-cor-

relating time of the dynamic fluctuations in stock markets, which is used to estimate the back-

ground volatilities. Ts should be much smaller than Tl. In our calculations, Ts ranges from 1 to

44 days. Tl ranges from 45 to 250 days. Each pair of Ts and Tl is called a time window pair.

Computation of the conditional probabilities. We present the computation of

P+(t)|Δv(t0)>0 and P+(t)|Δv(t0)<0 in this section. The length of the time series to calculate ΔP is

denoted by T0. According to the definition of Δv(t0), Tl stands for the past Tl days before time

t0, which is the long time window; and Ts stands for the past Ts days before time t0, which is

the short time window. With t0 ranging from Tl to T0 − t, we count the number of t0 of the fol-

lowing case:

Table 1. The whole time period T, parameter k, annualized cumulative return of the ‘buy-and-hold’ strategy and the FDE strategy.

Index T k Rbuy� and� holdA RFDEA

MERV (Argentina) 2014.3-2016.9 0.5 0.281 0.661(60)

S&P500 (America) 2011.1-2015.12 0.6 0.053 0.334(25)

AXJO (Australia) 2012.8-2015.1 0.5 0.012 0.241(17)

BFX (Belgium) 2013.1-2015.7 0.5 0.127 0.362(61)

BVSP (Brazil) 2012.11-2015.6 0.5 0.128 0.466(34)

GSPTSE (Canada) 2012.6-2015.9 0.6 -0.077 0.307(18)

IPSA (Chile) 2012.5-2016.7 0.7 0.013 0.167(14)

SCI (China) 2009.4-2014.4 0.6 -0.061 0.488(33)

FTSE (England) 2013.1-2016.9 0.7 0.110 0.259(15)

FCHI (France) 2012.1-2015.9 0.6 0.032 0.506(32)

DAX (Germany) 2013.2-2015.7 0.5 0.153 0.412(36)

HSI (Hongkong) 2013.5-2015.8 0.5 0.043 0.246(19)

BSESN (India) 2012.10-2016.1 0.6 -0.072 0.315(19)

JKSE (Indonesia) 2013.11-2016.4 0.5 -0.052 0.396(22)

N225 (Japan) 2012.7-2016.9 0.7 -0.150 0.456(46)

KOSPI (Korea) 2011.6-2014.6 0.6 0.002 0.280(16)

KLSE (Malaysia) 2011.9-2014.5 0.5 0.072 0.165(16)

MXX (Mexico) 2012.8-2016.7 0.7 0.010 0.269(16)

NZ50 (NewZealand) 2013.10-2016.6 0.6 0.148 0.259(16)

TWII (TaiWan) 2013.7-2016.7 0.6 -0.069 0.241(19)

The whole time period T, parameter k, annualized cumulative return of the ‘buy-and-hold’ strategy and the FDE strategy for all the 20 stock market indices.

The FDE strategy can outperform different market indices in the world.

https://doi.org/10.1371/journal.pone.0189274.t001
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• Δv(t0)> 0

• Δv(t0)> 0 and R(t0 + t)> 0

• Δv(t0)< 0

• Δv(t0)< 0 and R(t0 + t)> 0

and denote them by N+, Nþ
þ

, N− and Nþ
�

respectively.

Then the probability of R(t0 + t)> 0 on the condition of Δv(t0)> 0 is

PþðtÞj
Dvðt0Þ>0

¼ Nþ
þ
=Nþ ð4Þ

and the probability of R(t0 + t)>0 on the condition of Δv(t0)< 0 is

PþðtÞj
Dvðt0Þ<0

¼ Nþ
�
=N� ð5Þ

The typical behavior of ΔP is provided in Fig 1 of Ref. [42]. In this paper, as a first approach,

we take t = 1 and denote AP = ΔP(1), to construct our strategy.

Construction of the strategy

As returns represent the price changes, and volatilities measure the fluctuations of the price

movement, the volatility-return correlation nonlocal in time can be regarded as a description

of how the price movements are driven by the nonlocal fluctuations. The nonlocal correlation

is thus designated as the “fluctuation-driven effect (FDE)” to the price dynamics. In this paper,

we construct a FDE strategy to further investigate the driven mechanism of the price dynamics

in financial markets.

In the construction of the FDE strategy, there are several time variables and parameters. Ts

and Tl are the short time and long time windows respectively for computing Δv(t0); t0 in Δv(t0)
stands for time t0; t in ΔP(t) is the time lag of the correlation between v(t0) and r(t0 + t).

According to the previous results, ΔP is positive for most stock market indices in the world

[42]. The positive ΔP is practically corresponding to that the volatilities in the past period of

time enhance the positive returns in future times. Thus the FDE strategy can be expressed as

follows: at time t0, if Δv(t0)> 0, a buy signal will be generated. Correspondingly, if Δv(t0)< 0, a

sell signal will be generated.

To demonstrate the feasibility of this strategy, we divide the whole data series into two parts:

training period and testing period. The former is used to determine the parameters of our strat-

egy and the latter to test the strategy performance. The length of the whole data series, the train-

ing period, the testing period are denoted by T, T0, and L respectively. We set a parameter k to

quantify the ratio of the length of the training period to the whole data series, i.e., k = T0/T. The

range of k is from 0.5 to 0.7 in our computations, and T is about 3 to 5 years. Both T and k are

shown in Table 1. We compute AP from the training period with each time window pair of Ts

and Tl, and then fix the time window pair of our strategy by the maximum |AP|.

Then the strategy is implemented on the testing period. At day t0, Δv(t0) is calculated with

the fixed Ts and Tl. The cumulative return of the strategy is denoted by Rc(t0) [27]. The inves-

tor’s behaviour is as follows:

• If Δv(t0)> 0, the investor buys the market index at the closing price p(t0) on day t0 and sells it

at price p(t0 + 1). In this case, Rc(t0 + 1) = Rc(t0) + R(t0 + 1).

• If Δv(t0)< 0, the investor sells the market index at the closing price p(t0) on day t0 and buys it

back at price p(t0 + 1). In this case, Rc(t0 + 1) = Rc(t0) − R(t0 + 1).

Fluctuation-driven price dynamics and investment strategies
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Initially, Rc is set to be zero. Rc at t0 represents the increase of the value from the investor’s

initial assets with the FDE strategy. When the investor decides to buy or sell, all his money is

used up to buy or all his assets are sold out. It should be noted that if AP of the training period

is negative, we ought to reverse our strategy: if Δv(t0)> 0, a sell signal will be generated; if

Δv(t0)< 0, a buy signal will be generated.

Results

Feasibility of the FDE strategy

We implement the FDE strategy on different stock market indices in the world. The result of

the Shanghai Composite Index (SCI) and the Standard&Poor’s 500 Index (S&P500) is shown

in Fig 1. We compare the performance of the FDE strategy with two benchmark strategies, the

random strategy and the ‘buy-and-hold’ strategy.

In Fig 1, the ‘buy-and-hold’ strategy stands for buying the market index at the beginning of

the trading time period, holding, and then selling it at the end. Thus, the cumulative return Rc

of the ‘buy-and-hold’ strategy is simply computed by Rc(t0 + 1) = Rc(t0) + R(t0 + 1). In the ran-

dom strategy, the probability that the index will be bought or sold is always 50%, and the trading

decision is unaffected by decisions in previous days. Correspondingly, Rc of the random strategy

is computed by Rc(t0 + 1) = Rc(t0) + R(t0 + 1) when it buys, and Rc(t0 + 1) = Rc(t0) − R(t0 + 1)

when it sells. We report the standard deviation of the cumulative returns derived from 10,000

independent simulations of the random strategy. The mean cumulative return of the 10,000

uncorrelated random strategies is zero.

In Fig 1(a), the cumulative return Rc of the FDE strategy for the SCI is 97.2% for two years,

with k = 0.6, Ts = 1, Tl = 50. Compared to -12.1% of the ‘buy-and-hold’ strategy, the strategy

yields considerable profit. We perform the same computation for the S&P500. As displayed in

Fig 1(b), the ultimate Rc is 67.3% for two years with k = 0.6, Ts = 25, Tl = 245. It is not as much

as the SCI, but still promising compared to 10.6% of the ‘buy-and-hold’ strategy. The reason

may be that the American stock market is highly developed, with large market size and compli-

cated derivative financial tools, while the Chinese stock market is emerging and of small mar-

ket size, in which the derivative financial tools are relatively basic and simple. The American

stock market is more efficient so that investors are not able to make profits easily.

As shown in Table 1, the strategy is also implemented in other 18 stock markets. We adopt

the annualized cumulative return RA in order to compare the results in different stock markets,

which is defined as

RA ¼ Rc � 250=L; ð6Þ

where L is the length of the testing time period, L = T × (1 − k), and 250 represents the number

of trading days in a year.

The results demonstrate that the FDE strategy can outperform different market indices in

the world, which indicate that the fluctuation-driven effect is rather robust.

In order to investigate the relation between the fluctuation-driven effect and the strategy

performance, we compute AP and Rc with different time windows pairs Ts and Tl. Here Ts

ranges from 1 to 44, Tl ranges from 45 to 250.

The distributions of the window pairs corresponding to different AP are shown in

Fig 2(a) and 2(b) for the SCI and the S&P500 respectively. As displayed in the figure, only a

few time window pairs correspond to the large AP. These window pairs can be regarded as

the key quantities to characterize the fluctuation-driven dynamic properties of the financial

markets.

Fluctuation-driven price dynamics and investment strategies
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The mean cumulative returns of the FDE strategy corresponding to different AP are shown

in Fig 2(c) and 2(d). In Fig 2(c) and 2(d), hRci generally increases as AP increases for both the

SCI and the S&P500. Compared to the American stock market, the FDE strategy performs bet-

ter in the Chinese stock market. These results provide us an intuitive understanding of the

fluctuation-driven effect.

Fig 1. Performance of the FDE strategy. Cumulative return for (a) the SCI and (b) the S&P500. Rc of the FDE strategy is plotted in red line.

It is compared to the ‘buy-and-hold’ strategy plotted in blue line and the standard deviation of 10,000 simulations with a random strategy

displayed in dashed green lines. Here hRrandomc i ¼ 0.

https://doi.org/10.1371/journal.pone.0189274.g001
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Strategy performance in different market states

To address the question whether the strategy performs asymmetrically in the volatile and the

stable market states, we separate the strategy into two parts. In one part we trade only if Δv> 0

and in the other part only if Δv< 0, corresponding to the volatile and stable market state

respectively. Then we compute the winning percentage As for these two parts with different

time windows pairs Ts and Tl. The winning percentage of the strategy is defined as

As ¼
NþjR>0

N
; ð7Þ

where N+ refers to the number of transactions that bring positive strategy returns. We only

consider the time window pairs which satisfy the condition AP> 1.2h|AP|i for the SCI, and

AP> 1.5h|AP|i for the S&P500.

In Fig 3, we show the probability density functions of As for the two parts of the FDE strat-

egy. hAs|Δv>0i = 54.5% and hAs|Δv<0i = 52.5% for the SCI which can be seen in Fig 3(a). The

difference indicates the strategy performs better when Δv> 0 rather than Δv< 0. A similar

result is obtained for the S&P500 in Fig 3(b), with hAs|Δv>0i = 55.6% and hAs|Δv<0i = 54.0%.

Fig 2. Mean cumulative returns corresponding to different AP. The distributions of the amounts of time window pairs corresponding to

different AP for (a)the SCI and (b)the S&P500. The mean cumulative return corresponding to different AP for (c)the SCI and (d)the S&P500.

https://doi.org/10.1371/journal.pone.0189274.g002
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Our result suggests that the fluctuation-driven effect is not symmetric in different market

states, but it is stronger when the market state is more volatile.

Parallel computations are performed for other 18 stock market indices. The strategy is

more profitable when Δv> 0 in most stock markets, which consolidates our result that the vol-

atile market state conduces more to the fluctuation-driven effect. It should be noted that

despite the existence of the asymmetry of this effect, As|Δv>0 and As|Δv<0 are both more than

50% in all the markets, which indicates that our strategy is quite robust.

Optimization of the strategy

In the previous results, ΔP is weak for some stock markets or some certain periods of time. To

enhance it and quantify to which degree the strategy performance can be affected by the mar-

ket state, we introduce two more parameters α+ and α− to characterize the trading signal Δv.

We previously constructed Δv by comparing the average volatility over Ts with an average

volatility over a longer period of time Tl. Now we introduce Δvα to quantify how volatile the

market is,

Dvaðt0Þ ¼ hvðt0ÞiTs
� a � hvðt0ÞiTl

: ð8Þ

For Δvα(t0)> 0, the larger α is, the more volatile the market in Ts is; for Δvα(t0)< 0, the

smaller α is, the more stable the market in Ts is.

Accordingly, we can update the construction of the strategy in the following way:

• If Δvα+
(t0)> 0, we buy the market index at the closing price p(t0) on day t0 and sell it at price

p(t0 + 1).

• If Δvα−(t
0)< 0, we sell the market index at the closing price p(t0) on day t0 and buy it back at

price p(t0 + 1).

• If Δvα+
(t0)< 0 and Δvα−(t0)> 0, we neither buy nor sell.

Fig 3. Probability density functions of the winning percentage for the volatile and stable market states. (a) The distributions of As for

the two parts of the FDE strategy, one for Δv > 0(red shade) and the other for Δv < 0(blue shade) for the SCI. (b) A parallel analysis for the

S&P500.

https://doi.org/10.1371/journal.pone.0189274.g003
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Considering that the price in financial markets generally fluctuates within a certain range,

we let α+ range from 1 to 1.5, and α− range from 0.5 to 1, which covers most situations.

For each pair of α+ and α−, we compute the strategy winning percentage As with different

time window pairs Ts and Tl. We take an average of As for the window pairs which satisfy the

condition AP> 1.2h|AP|i for the SCI, and AP> 1.5h|AP|i for the S&P500.

It is shown in Fig 4(a) that for the SCI, As is promoted as α+ increases and α− decreases. The

highest As arises at α+ = 1.5 and α− = 0.6. As for the S&P500 in Fig 4(b), the optimum choice is

α+ = 1.18 and α− = 0.58. The new parameters are obviously effective in improving the strategy

profitability for both two market indices. It should be pointed out that the trading frequency

would be reduced by introducing α+ and α−. However, the FDE strategy can still be regarded

as a part of a hybrid strategy, combining with other trading rules to improve the overall perfor-

mance in financial markets.

Comparison with typical trading rules

The FDE strategy can be regarded as a concrete application of the nonlocal volatility-return

correlation. It is crucial to examine its performance and compare it with other trading strate-

gies. Here we adopt three widely used technical trading rules [52]. The trading indicators are

Relative Strength Index (RSI), Moving Average Convergence Divergence (MACD) and

Momentum.

Algorithm of the technical trading rules.

• RSI: The RSI is an indicator that shows the strength of the asset price by comparison of the

individual upward or downward movements of the consecutive prices. Its value is deter-

mined as

RSInðt0Þ ¼
Pn� 1

j¼0
½pðt0 � jÞ � pðt0 � j � 1Þ�pðt0 � jÞ>pðt0 � j� 1Þ
Pn� 1

j¼0
jpðt0 � jÞ � pðt0 � j � 1Þj

� 100; ð9Þ

where RSIn(t0) is the relative strength index at time t0, p(t0) is the price of index at time t0 and

n is the number of RSI periods. In this paper, the 14-day RSI is studied, which is a popular

Fig 4. The winning percentage with different α+ and α−. As computed with different α+ and α− for (a) the SCI and (b) the S&P500. α+

ranges from 1 to 1.5 and α− ranges from 0.5 to 1.

https://doi.org/10.1371/journal.pone.0189274.g004
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length utilized by traders. When RSI(t0)> 30� RSI(t0 − 1), a buy signal is generated; when

RSI(t0)> 70� RSI(t0 − 1), a sell signal is generated.

• MACD: The MACD is designed mainly to identify the trend changes of the asset price. It is

calculated by subtracting a longer Exponential Moving Average (EMA) from a shorter EMA,

which is defined as

MACDðt0Þ ¼ EMAdsðt0Þ � EMAdlðt0Þ; ð10Þ

where ds = 12 and dl = 26, which are the most commonly used short and long-period EMAs.

In addition, we use a sign in order to generate the buy and sell signal of MACD. It is defined

as

SMACDðt0Þ ¼
1

n

Xn� 1

j¼0

MACDðt0 � jÞ; ð11Þ

where n = 9. In our study, when MACD(t0)< SMACD(t0)< 0, a buy signal is generated; when

MACD(t0)> SMACD(t0)> 0, a sell signal is generated.

• Momentum: The Momentum is an indicator that measures the strength of the tendency of

an index or a stock, and it expresses the variation of the price in a concrete period of time.

The Momentum is represented by a difference, which is defined as

Mnðt0Þ ¼ pðt0Þ � pðt0 � nþ 1Þ; ð12Þ

where p(t0) is the price of the index at time t0. As standard, we take n = 12 in this paper. A buy

signal is generated if M(t0)> 0�M(t0 − 1). A sell signal is generated if M(t0)< 0�M(t0 − 1).

For all the trading rules, their cumulative return is computed in the following way: Rc(t0 + 1) =

Rc(t0) + R(t0 + 1) when they buy, and Rc(t0 + 1) = Rc(t0) − R(t0 + 1) when they sell.

The comparison of different strategy performances is displayed in Fig 5. The FDE strategy

outperforms these three trading rules for both the SCI and the S&P500. In Ref. [62], the com-

parison of the technical strategies and the random strategy is provided. It is shown that the

profitabilities of the technical strategies and the random strategy are both around 50%, consis-

tent with our computations. The better performance of the FDE strategy proves the effective-

ness and reliability of our strategy.

If a trading rule can generate excess returns over the simple buy-and-hold policy, it serves

as an evidence against the efficient market hypothesis. All these three technical trading rules,

however, originate from the practical experience of the financial investors. There does not

seem to be a clear dynamic mechanism related to the construction of these trading rules. In

contrast, the FDE strategy is based on the volatility-return correlation nonlocal in time, which

may be concerning the nonstationary dynamic property of the complex systems. This correla-

tion is a robust and intrinsic property widely observed in different complex dynamic systems.

In this sense, the FDE strategy provides us a new perspective into the understanding of the

complex financial systems.

Conclusion

In summary, we construct an investment strategy to explore how dynamic fluctuations drive

the price movements in complex financial systems. The strategy is based on the volatility-

return correlation nonlocal in time, which is designated as the “fluctuation-driven effect” to

the price dynamics. The strategy provides a concrete application for the financial investors,

which is effective in most stock markets. The profitability of the strategy can be enhanced by
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the strength of the fluctuation-driven effect. It is illustrated that the volatile market state leads

to a better performance of the strategy. Further, We introduce two parameters α+ and α− to

describe the fluctuation-driven effect, and the winning percentage of the strategy As is pro-

moted with large α+ and small α−. In addition, it is shown that the fluctuation-driven effect

based strategy can outperform several typical technical trading rules.

Fig 5. Comparison of the FDE strategy and other strategies. Cumulative return of the FDE strategy and other three technical trading

rules for (a) the SCI and (b) the S&P500.

https://doi.org/10.1371/journal.pone.0189274.g005
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These findings provide us a new insight into the fluctuation-driven price dynamics of stock

markets. The volatility-return correlation nonlocal in time is a robust and intrinsic property

concerning the control of the price movements, which is widely observed in different complex

dynamic systems [44]. Through constructing a strategy, we investigate the properties of the

fluctuation-driven effect and offer a practical significance to it. Besides, various nonlocal corre-

lation functions in other complex dynamic systems are to be explored.
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