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Abstract

A major issue of machinery fault diagnosis using vibration signals is that it is over-reliant on

personnel knowledge and experience in interpreting the signal. Thus, machine learning has

been adapted for machinery fault diagnosis. The quantity and quality of the input features,

however, influence the fault classification performance. Feature selection plays a vital role

in selecting the most representative feature subset for the machine learning algorithm. In

contrast, the trade-off relationship between capability when selecting the best feature subset

and computational effort is inevitable in the wrapper-based feature selection (WFS) method.

This paper proposes an improved WFS technique before integration with a support vector

machine (SVM) model classifier as a complete fault diagnosis system for a rolling element

bearing case study. The bearing vibration dataset made available by the Case Western

Reserve University Bearing Data Centre was executed using the proposed WFS and its per-

formance has been analysed and discussed. The results reveal that the proposed WFS

secures the best feature subset with a lower computational effort by eliminating the redun-

dancy of re-evaluation. The proposed WFS has therefore been found to be capable and effi-

cient to carry out feature selection tasks.

Introduction

Condition monitoring and fault diagnosis is essential for a wide range of mechanical compo-

nents to ensure optimal performance. A bearing is a common mechanical component that has

an appreciable impact on machine integrity. Vibration signal analysis has been proven to be

the most effective method for rotating machinery fault diagnosis. Its effectiveness, however,

is highly dependent on the knowledge and experience of the operator [1]. There has been

increasing interest in automated machinery fault diagnosis through the adaptive machine

learning approach. This provides a more consistent diagnostic outcome; however, the quantity

and quality of the input features have a great influence on the fault diagnostic performance.

The complexity of the features that have been extracted from a continuous vibration signal

leads to the capability of the features remaining unknown, resulting in unconvincing informa-

tion conversion and representativeness for various conditions, stages or intermediate cycles

[2–6]. Meanwhile, an abundance of feature inputs leads to overfitting outcomes. Thus, feature
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selection is usually performed to identify the most representative feature subsets for the

machine learning algorithm to achieve the greatest classification performance by eliminating

the overfitting issue [7]. Feature selection is therefore a necessary task to select the most repre-

sentative feature subsets for the machine learning algorithm.

The feature selection approach can generally be classified into three categories: the filter,

wrapper, and embedded methods. Wrapper feature selection alternatives are usually combined

with machine learning classifiers to develop a heuristic mechanism that aims to provide an

optimal input for targeting optimization functions by considering the options available within

a search space boundary. This is performed by the renowned genetic algorithm (GA) [8,9],

particle swarm optimization (PSO) [10,11], the ensemble learning algorithm [12], extreme

learning machines (ELM) [13], ant colony optimization (ACO) [14,15], the imperialist com-

petitive algorithm (ICA) [16], and the harmony search (HS) algorithm [17,18], among others.

This distinctive characteristic gives the wrapper method a much-needed robustness and accu-

racy, especially with regard to massive, multidimensional data processing, which requires a

highly sophisticated classification [19]. Nonetheless, it is obvious that the trade-off relationship

between capability in selecting the best feature subset and computational effort is inevitable in

the wrapper-based feature selection (WFS) method [20–24]. For instance, the GA involves the

iterative identification of a probable solution based on genetic evolution theory. The evaluation

resource increases exponentially with regard to the population size and offspring selection

strategy. Six extracted features present 63 feature combinations evaluation, while 12 extracted

features present 4095 feature combinations for evaluation. Table 1 displays the number of fea-

ture combinations for the number of extracted features. It is clear that it would be very compu-

tationally demanding for a feature evaluation to be carried out for all feature combinations.

Hence, a simplified classification model is beneficial for post-processing system identification,

cost-savings and minimizing uncertainty.

Various feature selection crossover combinations such as the hybrid filter-wrapper method

have been implemented, with a twofold aim: To refine the feature selection performance and

reduce the disadvantages introduced by individual techniques [25–27]. Nonetheless, the pat-

tern recognition classifier design for real-world cases typically resembles a black box study

scheme; it is rather tedious to justify a satisfactory equilibrium among multiple influencing fac-

tors without a priori knowledge [28]. In addition, overemphasis on either dimension (perfor-

mance effectiveness or modelling simplification), setting simple algorithm assumptions and

overlooking the influence of interrelationships between variables [29] likely jeopardizes the

fulfilment of the machine learning objective. As a result, in addition to performing feature

selection, a tendency to avoid overdesign in simulation together with sluggishness and prema-

ture local optima convergence are equally crucial.

This paper proposes an improved WFS method that aims to select the fittest feature subset

with minimum computational resources via selecting potential candidates only through

unique feature combinations. This provides the advantage of avoiding the unnecessary consid-

eration of repetitive feature combinations and previously eliminated candidates. In this

Table 1. Number of combinations based on the number of features extracted.

Number of features Number of combinations

3 7

6 63

12 4,095

24 16,777,215

48 281,474,976,710,655

https://doi.org/10.1371/journal.pone.0189143.t001
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section, the necessities of the feature selection in automated machinery fault diagnosis and the

limitations and drawbacks of the WFS method have been discussed in detail. The methodology

for the bearing data collection, from the feature extraction to the proposed selection strategy,

is described in the following section. The performance of the proposed WFS method is dis-

cussed based on the k-fold cross-validated classifier performance and compared to the recently

published Max-Relevance-Max-Distance (MRMD) technique.

Materials and methods

The following part of this paper describes the methodology of the bearing data collection, the

feature extraction and the proposed WFS strategy in greater detail.

Data collection

The bearing conditions dataset used in this study was downloaded from the Case Western

Reserve University Bearing Data Centre website with the intention of specifically representing

ball bearings in healthy and faulty conditions (rolling element, inner raceway and outer race-

way faults). The test rig consisted of a 2-horse power (HP) motor, a torque transducer and a

dynamometer. The arrangement of the test rig was used to simulate different bearing condi-

tions (Fig 1). The motor operated at approximately 1750 rpm with a 1-HP load. Vibration data

were collected at a sampling rate of 12 kHz by accelerometers that were attached to the bearing

housing.

A total of 400 sets of time series vibrations were extracted from the raw continuous vibra-

tion signal collected from a 7-mil fault diameter with a 1-HP load. Then, the 400 sets of vibra-

tion data were divided into two sets of data, one of which was used to establish the relationship

between the input and output of the machine learning model (training phase), while the other

set was used to validate the trained machine learning model (testing phase). The distribution

of the vibration dataset employed in this study is tabulated in Table 2.

Feature extraction

In this section, the time series vibration data from Section 3 is subjected to statistical analyses.

The features obtained, namely, the skewness factor, kurtosis factor, crest factor, shape factor,

impulse factor and margin factor, were converted from the corresponding equations in

Fig 1. Experimental test rig.

https://doi.org/10.1371/journal.pone.0189143.g001
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Table 3. The statistical features were subsequently used as features (inputs) for SVM model

training and testing purposes. Each statistical feature presented has unique characteristics and

reveals informative data regarding system status.

Fig 2 shows the data distribution of the skewness factor, kurtosis factor, crest factor, shape

factor, impulse factor and margin factor, respectively, for the vibration signals collected from a

7-mil fault diameter with a 1-HP motor load. The dataset was attached as S1 Data File.

Since there was a total of 100 samples for each bearing condition, 50% of the samples were

randomly selected as training data to synthesize the machine learning model, while the

remaining 50% of the samples were used to validate the trained machine learning model.

The proposed wrapper-based feature selection method

In this study, an improved WFS method was proposed for performing the feature selection

task. The proposed WFS method employed the SVM as a classifier in feature selection. The

performance of each feature was based on SVM classifier training accuracy after multi-fold

cross-validation appraisal [30] in pursuance of model consistency, by minimizing bias and

overfitting. The proposed WFS reduced execution time by avoiding repeated computations

of identical and undesirable feature combinations. Thus, for every iteration, the proposed

WFS method only evaluated unique combinations of features via two approaches. It is

observed by ignoring the repetitive assessment of identical feature combinations that occur

during the random generation process of feature combinations and undesirable low quality

solutions from past recursive simulation. In addition, the proposed WFS method generated

next-level feature combinations based on the performance of the previous level. Fig 3 illus-

trates the methodology of the proposed WFS algorithm. In first-level selection, the algorithm

Table 2. Vibration data distribution.

Bearing condition Training data Testing data

Healthy 50 50

Rolling element fault 50 50

Inner raceway fault 50 50

Outer raceway fault 50 50

https://doi.org/10.1371/journal.pone.0189143.t002

Table 3. Statistical features.

No. Statistical Feature Equation

A Skewness factor 1
N

PN
n¼1
ðxðnÞ� �x Þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
n¼1
ðxðnÞ� �x Þ2

q� �3

B Kurtosis factor 1
N

PN
n¼1
ðxðnÞ� �x Þ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
n¼1
ðxðnÞ� �x Þ2

q� �4

C Crest factor maxjxðnÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
n¼1

xðnÞ2

q

D Shape factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
n¼1

xðnÞ2

q

1
N

PN
n¼1
jxðnÞj

E Impulse factor maxjxðnÞj

1
N

PN
n¼1
jxðnÞj

F Margin factor maxjxðnÞj

1
N

PN
n¼1

ffiffiffiffiffiffiffi
jxðnÞj
p

� �2

https://doi.org/10.1371/journal.pone.0189143.t003
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evaluated each individual feature. Then, the algorithm generated the second-level feature com-

binations by combining unselected individual features with the features that performed at an

above-average level (red-outlined rectangle in Fig 3). This process terminated when the feature

combination had fully utilized all the features extracted. Finally, the algorithm selected the fea-

ture combinations with the least number of features from the highest training accuracy (yel-

low-filled rectangle in Fig 3) as the most representative features of the entire dataset. In

addition to selecting the most representative features of the dataset, the feature selection also

reduced the feature dimensionality for machine learning algorithms. As a result, the skewness

factor and shape factor (i.e., features A and D) were selected in this example.

Results and discussion

Table 4 shows the training accuracy of the key combinations of features at each level. The yel-

low-shaded feature combinations are those with the best training accuracy at each level, and

the blue-shaded training accuracy cell designates the best training accuracy in the table. As a

result, features A and D (skewness and shape factor) were selected to represent the entire bear-

ing conditions dataset. The training accuracy in Table 4 indicates that entering all the extracted

Fig 2. (a) Skewness factor, (b) kurtosis factor, (c) crest factor, (d) shape factor, (e) impulse factor and (f)

margin factor of all bearing conditions.

https://doi.org/10.1371/journal.pone.0189143.g002
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features into the machine learning algorithm does not guarantee the highest classification

accuracy, as the training accuracy for the selected features (i.e., features A and D) was 81%,

and the training accuracy for all the features extracted was 74%. In contrast, the testing accu-

racy of the bearing faults dataset was 83% for the selected features and 76% for all the features

extracted. A representative feature combination for the entire dataset was therefore selected

using the proposed WFS algorithm.

Further investigation has been conducted using a recently published feature selection tech-

nique in order to validate the proposed WFS method. The MRMD technique was selected

after it demonstrated a good balance between classifier accuracy and stability when subjected

to an image processing dataset [31,32]. Its superiority was compared to alternatives such as

minimal-redundancy-maximal-relevance (mRMR) [33] and Information Gain. Tables 5 and 6

tabulate the cyclical assessment of the proposed WFS and MRMD. The testing accuracy was

obtained through 10-fold cross-validation to represent a more reliable testing result. Fig 4 dis-

plays the comparison of the testing accuracy for feature subsets selected by the proposed WFS

and MRMD in different dimensions. The proposed WFS became saturated after selecting the

second features. Compared to the MRMD, the training accuracy of the WFS is higher until the

sixth feature is selected. It is important to acknowledge that the WFS method obtained the

optimal feature subset more quickly than the MRMD; however, the latter provides a better

Fig 3. The proposed feature selection algorithm (features A, B, C, D, E and F represent skewness factor,

kurtosis factor, crest factor, shape factor, impulse factor and margin factor, respectively).

https://doi.org/10.1371/journal.pone.0189143.g003

Table 4. Training accuracy for the key combination of features (features A, B, C, D, E and F represent skewness factor, kurtosis factor, crest factor,

shape factor, impulse factor and margin factor, respectively).

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Feature Accuracy Feature Accuracy Feature Accuracy Feature Accuracy Feature Accuracy Feature Accuracy

A 28.5% D,A 81.0% D,A,B 73.0% D,A,C,B 73.5% D,A,C,B,E 73.5% D,A,C,B,E,F 74.0%

B 40.5% D,B 50.0% D,A,C 73.5% D,A,C,E 73.5% D,A,C,B,F 73.5%

C 2.5% D,C 50.0% D,A,E 72.5% D,A,C,F 73.5% D,A,C,E,F 73.5%

D 50.0% D,E 50.0% D,A,F 73.5% D,A,F,B 72.0%

E 23.0% D,F 50.0% D,A,F,E 73.0%

F 34.0%

https://doi.org/10.1371/journal.pone.0189143.t004
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consistency in term of classifier outcome when selecting the feature and is more significant

when enormous feature subsets are available. This is probably because, initially, the WFS tar-

geted a machinery faults application that supplies limited features while the MRMD aims for

an image processing practice.

Conclusion

The aim of this study was to improve the capability of the WFS method for selecting the best

feature subset with a reduced computational effort. The analysis of the results revealed that the

proposed WFS is capable of selecting the most representative feature subset for the bearing

dataset. In addition, this study also confirmed that entering all the extracted features into the

machine learning algorithm does not guarantee the best classification performance. Thus, fea-

ture selection plays a vital role in ensuring the optimum performance of a classifier. The pro-

posed WFS method also reduces the number of feature combinations needing to be evaluated

by avoiding the re-evaluation of identical feature combinations. This reduced the computa-

tional effort required by two thirds. In sum, the main advantage of the novel, state-of-the-art

Table 5. Cyclical assessment for the proposed WFS by 10-fold cross-validation.

Cycle Number of Feature Dimension

1 2 3 4 5 6

1 0.500 0.850 0.880 0.815 0.845 0.850

2 0.500 0.870 0.880 0.835 0.880 0.860

3 0.500 0.840 0.870 0.875 0.875 0.865

4 0.500 0.825 0.845 0.860 0.805 0.805

5 0.500 0.885 0.900 0.865 0.745 0.850

6 0.500 0.845 0.845 0.845 0.860 0.845

7 0.500 0.860 0.840 0.885 0.870 0.870

8 0.500 0.860 0.865 0.875 0.860 0.825

9 0.500 0.880 0.860 0.820 0.850 0.835

10 0.500 0.860 0.880 0.865 0.865 0.800

Mean 0.500 0.858 0.867 0.854 0.846 0.841

± SD ± 0 ± 0.018 ± 0.019 ± 0.024 ± 0.041 ± 0.024

https://doi.org/10.1371/journal.pone.0189143.t005

Table 6. Cyclical assessment for the MRMD by 10-fold cross-validation.

Cycle Number of Feature Dimension

1 2 3 4 5 6

1 0.500 0.500 0.505 0.500 0.500 0.850

2 0.500 0.500 0.515 0.550 0.500 0.860

3 0.500 0.500 0.500 0.520 0.500 0.865

4 0.500 0.500 0.500 0.500 0.500 0.805

5 0.500 0.500 0.500 0.500 0.520 0.850

6 0.500 0.500 0.500 0.500 0.525 0.845

7 0.500 0.505 0.535 0.500 0.570 0.870

8 0.500 0.510 0.520 0.500 0.500 0.825

9 0.500 0.500 0.545 0.500 0.550 0.835

10 0.500 0.500 0.500 0.530 0.510 0.800

Mean 0.500 0.502 0.512 0.510 0.518 0.841

± SD ± 0 ± 0.003 ± 0.017 ± 0.018 ± 0.025 ± 0.024

https://doi.org/10.1371/journal.pone.0189143.t006
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WFS method introduced here is its ability to select the best feature subset using less computa-

tional effort. This is essential when analysing a large number of inputs. This proposed WFS

method should be embedded into machine learning algorithms in order to improve their per-

formance. A further improvement of the proposed WFS method can focus on the selection of

image related visual features.

Supporting information

S1 Data File. Dataset for features selection.
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