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Abstract

This study has described and experimentally validated the differential electrodes surface

electromyography (sEMG) model for tibialis anterior muscles during isometric contraction.

This model has investigated the effect of pennation angle on the simulated sEMG signal.

The results show that there is no significant effect of pennation angle in the range 0˚ to 20˚

to the single fibre action potential shape recorded on the skin surface. However, the

changes with respect to pennation angle are observed in sEMG amplitude, frequency and

fractal dimension. It is also observed that at different levels of muscle contractions there is

similarity in the relationships with Root Mean Square, Median Frequency, and Fractal

Dimension of the recorded and simulated sEMG signals.

Introduction

Tibialis Anterior (TA) is essential for posture and gait stability. Age-associated weakness of TA

is known to be a major cause of falls [1–3]. As there is no direct way for measuring TA contrac-

tion force, sEMG provides a useful tool to measure the electrical activity of the muscle associ-

ated with the force of contraction.

Numerical modelling has been considered to improve the interpretation of the relationship

between neuromuscular parameters, generated force and sEMG signal [4] and these models

have demonstrated the relationship of many parameters with the signal [5–9]. However, their

applications are very limited because of number of assumptions involved, such as the parallel

orientation of muscle fibres to the surface [9]. These assumptions make the models unsuitable

for Tibialis muscles which are pennate. In pennate muscles, fibres run at an angle to the axis of

traction. The anatomical cross sectional area (ACSA) does not represent the cross section per-

pendicular to all fibres in the muscle, i.e., the physiological CSA (PCSA) [10]. The maximum

force of a muscle depends on its PCSA rather than its ACSA [10, 11].
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Modelling sEMG of TA requires consideration of pennation angle of the muscle [11].

SEMG signals are recorded using differential electrodes as it enhances the signal to noise ratio

[12]. However, some researchers have investigated pennate muscles [13–17], they have not

considered the differential electrodes and made assumptions on the shape of the signals [18].

While the pre-defined shape of MUAP is reasonable for muscles such as biceps, it may lead to

erroneous results because of the possible age-associated change in muscle shape due to penna-

tion angle in TA. It is reported that power spectrum depend on shape of MUAP [19, 20]. How-

ard et al [21] reported that properties of action potential changes due to aging. Hence, for the

model to be effective for investigating changes to sEMG with ageing or disease, it is essential

for the model to provide the examiner the accurate estimate of the shape of SFAP.Zuniga et al

[22] reported that there is no significant difference in the EMG amplitude and mean power

frequency MPF responses for EMG recorded from the electrode oriented parallel and perpen-

dicular to the muscle fibres of the vastus lateralis muscle (VL). Shi et al [23] reported exponen-

tial relationship between the RMS and pennation angle of brachialis. These studies have

considered only the amplitude and spectral based features and have not investigated the fea-

tures describing its chaotic nature. However, muscle contractions are reported to exhibit frac-

tal characteristics [24, 25]. We report a computational model that describes the generation of

sEMG signals for TA muscle where we have investigated the effect of pennation angle on

sEMG recorded using differential electrode. The model has been validated experimentally

based on the temporal, spectral and chaotic signal properties by comparing simulated and

experimental recordings using the three features; Root Mean Square (RMS), Median Fre-

quency (MDF) and Fractal Dimension (FD).

Materials and methods

Description of the model

The model is based on the works reported by Wheeler et al [9] and Siddqi et al [18] with two

significant enhancements; i) differential electrodes and ii) pennation angle. The use of differ-

ential electrodes overcomes the need for pre-defined shape of Motor Unit Action Potentials

(MUAP), while the second allows the investigation of muscles such as TA.

Volume conduction. The motor-unit territory cross-section was considered to be circular

and described using Cartesian coordinate system located at the centre of muscle. The cross-

section area was obtained based on the type of muscle fibres and number of fibres in the mus-

cle. The electrodes were separated from the muscle by two layers; skin and subcutaneous [7].

The innervation zone was located at the centre of the fibre length. The model is described in

Fig 1.

Muscle fibre action potential was calculated by Rosenfalk Eq 1 [8, 26]. The current distribu-

tion between the inside and outside of the muscle cell was modelled as the second spatial deriv-

ative of action potential voltage Vm [27] given in Eq 2.

VmðZÞ ¼ AðlZÞ3e� lZ � B ð1Þ

Im ðtÞ ¼ CAl
2
ðlðvtÞÞð6 � 6lðvtÞ þ l

2
ðvtÞ2Þe� lðvtÞ ð2Þ

where, Im(t) is trans membrane current, C is a constant and is given as
d2si p

4v2 , s ¼
si
se

� �2

, σi is

internal conductivity, σe is external conductivity, d is fiber diameter, v is the conduction veloc-

ity, A is the amplitude of action potential, B is resting membrane potential, λ is a scaling factor,
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ze is the distance between the electrode and neuromuscular junction and σ is assumed to be

direction independent.

Earlier models [9, 18] have considered a single electrode with a pre-defined tri-phasic

motor unit action potential. However, such models are limited because these cannot be used

to investigate the effect of electrode placement, inter-electrode distance and pennation angle.

To overcome these limitations, the model described in this paper has considered differential

electrodes and the TA muscle has been modelled as uni-pennate structure [18] with angle θ to

the surface. Thus, Eq 3 which describes the volume conduction effect in the muscle has been

modified to Eq 4.

fðtÞParallel ¼
1

4pse

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz � z0Þ2 þ ½sðx � x0Þ2 þ ðy � y0Þ2�
q ð3Þ

fðtÞPennate ¼
1

4pse

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz � z0cosy � y0sinyÞ
2
þ ½sðx � x0Þ2 þ ðy0cosy � z0sinyÞ

2
�

q ð4Þ

In these equations, the neuro-muscular junction is considered as point of origin (0, 0, 0), x,

y, z is the location of the action potential and x’, y’, z’ is the location of the electrode ‘0’ and x’1,

y’1, z’1 of electrode ‘1’. The muscle fibres are aligned along z direction.

Motor unit recruitment and rate coding. In the model described in this paper, the

motor-units (MU) are recruited according to the size principle [28]. All the motor units are

recruited at a given force recruitment range (RR) according to Fuglevand model [29]. RR is

expressed in percentage of MVC.

Fig 1. Representation of EMG model: a) position of motor units of muscle with respect to electrode located at skin, b) position of

parallel fibre and pennate fibre with respect to electrode.

https://doi.org/10.1371/journal.pone.0189036.g001
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The ith MU is activated once the neural drive crosses its recruitment threshold (RTi) which

is based on the force recruitment range (RR) based on Fuglevand model [29].

RTi ¼ exp
lnRR
TMu

� �

i ð5Þ

where TMu is the total number of motor units and ‘i’ is the motor unit index based on its size

rank. RR is the recruitment range and is assumed to be the voluntary input based on fraction

of MVC. The firing rate is controlled by input force RR shown in Fig 2 and given in Eq 6 (3).

Firing rate of active motor-units has been considered to increase linearly from Minimum

Firing Rate (MFR) to Peak Firing Rate (PFR) as a function of the fraction of maximum volun-

tary contraction of the muscle. It is assumed that all motor units reach their PFR at 100%

MVC. MFR ranges from 7 to 23 Hz while PFR ranges from 14 to 50 Hz for human skeletal

muscles (5). This has been summed in Eqs 6 and 7;

FRi;RR ¼ ðRTRR � RTiÞai þMFR ð6Þ

ai ¼
ðPFR � MFRÞ
ð100 � RTiÞ

ð7Þ

where FRi,RR represents the firing of ith motor unit at input force level RR and αi represents the

slope associated with ith motor unit;

Fig 2. Schematic diagram representing the relation between firing rate and muscle force (MVC).

https://doi.org/10.1371/journal.pone.0189036.g002
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Model simulation

The values of the parameter were taken from experimental studies reported in the literature

and are listed in Table 1 [30]. The model was simulated 20 times with values randomly

obtained from the range shown in Table 1 such that it represented more realistic values and

was comparable with the experimental data.

Experiments

Five young volunteers with age—range: 23–30 years Mean (±SD): 26.1 ±2.9 years and body

mass index—range: Mean (±SD): 22.3 Kg/ m2 +2.9 with no clinical or self-reported history of

neuromuscular disease or ankle injury participated in this study. Seven participants were

approached, and two subjects did not participate in the study. All research involving human

participants has been approved by Royal Melbourne Institute of Technology (RMIT) Univer-

sity College Human Ethics Advisory Network (CHEAN) committee and all clinical investiga-

tions have been conducted according to the principles expressed in the Declaration of

Helsinki. Prior to the participation in the experiment, written informed consent was obtained

from the participants.

The experimental set-up and protocol for recording surface Electromyography used in this

study have been reported in Siddiqi et al [18]. SEMG activity was recorded from TA (Fig 1)

muscle using SENIAM configuration. The ground electrode was placed at the patella. The

locations for electrodes were shaved, abraded and cleansed with an alcohol swipe to ensure

good connectivity. The signals were recorded using the Delsys Myomonitor 4 (Delsys, Boston)

with fixed gain of 1000, CMRR of 92 dB and bandwidth of 2–450 Hz, with 12 dB/ octave roll-

off. The sampling frequency was 1000 Hz with a resolution of 16 bits/ sample. The Delsys sin-

gle-channel active differential surface electrodes with an embedded preamplifier and inter-

electrode distance of 10 mm were used.

Participants sat with their right leg strapped, hip at 90˚, knee at 140˚ and ankle at 90˚.

SM100-type strain gauge force sensor (Interface S type) was used to immobilize the foot-plate

and measure the isometric force produced during dorsiflexion or plantar flexion. Its output

was displayed to give visual feedback to the subject for maintaining steady contraction. Partici-

pants performed an isometric contraction at 25%, 50%, 75% of their maximum voluntary con-

traction (MVC) for 15 seconds each. Throughout the experiment, the left leg was planted

Table 1. Model parameters applied in the simulation study.

Parameter Value

Number of motor units [31] 125–652

Muscle fiber diameter Type 1(μm)[32] (43) 35.46

Muscle fiber diameter Type 2 ((μm) [32] 50.68

Muscle radius (mm) [33] 20±2

Slow fiber Conduction velocity (m/s) 3.9± 0.3

Fast fiber Conduction velocity (m/s) [34] 4.9± 0.3

Muscle half fiber length (mm) [35] 45±0.4

Mean firing rate (Hz) [5] 7–23

Peak firing rate (Hz) [5] 14–50

Pennation angle (degree) [35] 20±2

Cutaneous tissue (mm) [36] 3

https://doi.org/10.1371/journal.pone.0189036.t001
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firmly on the ground. Absence of heel lift, and foot or toe movement during plantar flexion

and dorsiflexion was ensured with the foot and ankle secured to the footplate.

Data analysis

The experimentally recorded and simulated sEMG signals were analysed to obtain three fea-

tures; RMS, MDF and FD. While most of the earlier studies have investigated the RMS and

MDF of simulated sEMG, these suffer from large inter-subject variation which makes it diffi-

cult for validating the model based on experimental recordings. FD is an important feature

and is an intrinsic property of a muscle [37, 38] and has lower variability compared with other

parameters. To determine the relationship of the angle of pennation with the signal property,

the model was simulated for different values of θ and single fibre action potential (SFAP) was

obtained. Correlation analysis was conducted to identify the similarity between SFAP for fibres

with θ pennation angle with the parallel fibres (θ = 0). Consider sEMG with parallel muscle

fibres is x and sEMG corresponding to fibres with pennation angle of θ is y; then rxy = Sample

correlation coefficient, sxy = Sample covariance, sx = Sample standard deviation of x, sy = Sam-

ple standard deviation of y Correlation coefficient, given by

rxy ¼
Sxy
SxSy

ð8Þ

The following features of sEMG were computed to compare the simulation and experimen-

tal data:

1. Root Mean Square (RMS),

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
x2

i

N

s

: ð9Þ

xi represents the ith sample of the signal while N is the window size which was taken to be

2500 ms based on [39][33].

2. Median Distribution Frequency (MDF):

XMDF

j¼1
Pj ¼

XM

j¼MDF
Pj ¼

1

2

XM

j¼1
Pj ð10Þ

Pj is the power spectrum at frequency bin j and M is length of the frequency bin(33).

3. Higuchi’s Fractal Dimension (FD): FD was computed using the algorithm described in [40,

41] and briefly described below.

Considering y (n) is the signal for epoch n, n = 1 to N, and this is sub-divided in k segments,yk
m

yk
m ¼ fyðmÞ; yðmþ kÞ; yðmþ 2kÞ; . . . :yðmþ

N � m
k

� �

kÞgm ¼ 0; 1; 2 . . . :; k ð11Þ

where m represents the initial time and k is interval time.

bN� m
k c denotes integer part of N� m

k
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The average length Lm(k) is calculated as

LmðkÞ ¼

XbðN� mÞ=kc

i¼1

jyðmþ ikÞ � yðmþ ði � 1Þkjðn � 1Þ

bN � mc
k

k
ð12Þ

The total length of the entire epoch in k time interval is calculated as

LðkÞ ¼
Xk

m¼1
LmðkÞ ð13Þ

L(k) is proportional to k-D for total average length for scale k. D is the FD in Higuchi’s

method. The slope of the least squares linear best fit of the curve ln(L(k)) versus ln(1/k) esti-

mates the fractal dimension.

Tuning of k parameter is necessary in Higuchi’s algorithm because the correct selection of k

parameter has an important role to obtain reliable FD values [41](36). In this work, k = 6 is

used to get the best estimate of fractal dimension [40, 41]. Correlation analysis was performed

to identify the similarity in the shape of the SFAP for different pennation angles.

Statistical testing.

a) Paired sample t-test: RMS, MDF and FD are expressed as mean (standard deviation), and

compared using two-sample t-test for sEMG signals simulated and experimental data. The

differences were considered significant at p<0.05.

b) Two One Sided Test (TOST): The similarity of the experimental and simulation data was

tested using Two One Sided Test (TOST) [42]. The test was performed for the three levels

of MVC and for the three features independently; RMS, MDF and FD. Bland Altman plots

are used to select the lower bound and upper bound for TOST.

Result

The effect of pennation angle on the shape of simulated single fibre action potential (SFAP) for

θ ranging from 0 to 20 degrees is shown in Fig 3. The pennation angle is increased up to 20

degree because maximum pennation angle for TA is reported 20 degree in literature [22] (22).

It is observed that the shape of SFAP is similar and triphasic for all the four values of θ. Table 2

represents the correlation coefficients and P values between shape of SFAP of parallel muscle

Fig 3. The SFAP with differential electrode a) parallel fibre b) pennate fibre.

https://doi.org/10.1371/journal.pone.0189036.g003
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and pennate muscle with different pennation angle. It is observed that the correlation is high

for all the angles in the range (r>0.9). The relationship of pennation angle with amplitude,

frequency and fractal dimension (FD) of sEMG is shown in Figs 4–6 respectively. From these

figures, it is observed that amplitude, frequency and FD of sEMG increase with increased pen-

nation angle, while the shape remains unchanged.

Table 3 shows the mean values of RMS, MDF and FD for the three different levels of

%MVC for simulated and experimental data. Two sample t-test is performed between

Fig 4. Change in sEMG amplitude with variation in pennation angle.

https://doi.org/10.1371/journal.pone.0189036.g004

Table 2. Correlation coefficient comparing the shape of single fibre action potential between parallel

and pennate fibre of different angles.

Pennate Fiber Correlation coefficient P-value

0 degree (parallel fiber) 1.0 1.0

5 degrees 0.9909 0.6785

10 degrees 0.9711 0.699

20 degrees 0.9208 0.493

https://doi.org/10.1371/journal.pone.0189036.t002
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experimental and simulated data for each level of MVCS and corresponding p-values

are given. From the Box-whisker plots in Figs 7–9, it is observed that while the three

features of the experimental and simulated data follow similar trends, one common differ-

ence is that the experimental data has larger range of the quartiles compared with the simu-

lated data.

The results of the similarity test performed by TOST are shown in Table 4. To select the

lower and upper boundaries for equivalent test, Bland Altman plots are given for each feature

in different MVCs as shown in Figs 10–12. This test shows that there is similarity between the

two data sets; simulated and experimental, within the intervals (±2 SD) at 90% confidence

interval as observed in Bland Altman plots. The corresponding ‘p’ values shown in the Table 4

indicate that the two data are significantly similar within the range.

Fig 5. Change in sEMG frequency with variation in pennation angle.

https://doi.org/10.1371/journal.pone.0189036.g005
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Fig 6. Change in sEMG fractal dimension with variation in pennation angle.

https://doi.org/10.1371/journal.pone.0189036.g006

Table 3. Comparison of mean and SD between simulated experimental sEMG signals and statistical t-test for Tibialis Anterior muscle.

F.No. Feature %MVC Simulated Experimental p-value

Mean SD Mean SD

1 RMS 25% 5.88e-06 3.43e-06 1.38e-05 1.13e-05 0.169

50% 2.30e-05 1.3e-05 2.39e-05 1.47e-05 0.922

75% 3.02e-05 1.84e-05 2.80e-05 1.61e-05 0.850

2 MDF 25% 117.11 13.87 115.37 17.07 0.86

50% 114.98 13.44 114.14 14.26 0.925

75% 107.42 11.91 116.49 11.978 0.26

3 FD 25% 1.50 0.05 1.48 0.078 0.66

50% 1.51 0.04 1.48 0.072 0.566

75% 1.51 0.02 1.49 0.08 0.59

https://doi.org/10.1371/journal.pone.0189036.t003
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Discussion

We have investigated the effect of pennation angle on the shape of SFAP and observed that

there is no significant difference between the signals for θ ranging from 0 to 20˚. This supports

the approximation which was proposed by Siddiqi et al [18]where TA had been approximated

to be parallel fibre muscles. Amplitude of sEMG increases as pennation angle increases from 0

degree to 30 degree and this is in line with literature [23]. Studying the effect of pennation

angle is important when comparing sEMG recorded from young and older cohort since it is

known that pennation angle changes with age for pennate muscle [11]. However, this analysis

suggests that there is no change in the shape of the SFAP with pennation angle, and this would

indicate that the age-associated change in sEMG is not due to this factor.

From Figs 7–9 and Table 3, it is observed that the trend of RMS, MDF, FD of simulated and

experimentally recorded sEMG are similar. While the RMS results are in agreement with pre-

vious studies [43, 44] for biceps brachii muscle and as has been discussed by Moritani et al

[45], no earlier study has examined the FD of simulated sEMG.

Fig 7. Comparison between RMS of simulated and experimentally obtained sEMG for 25%, 50% and 75% MVC. The circle and

asterisk in each data set indicate mean and outlier respectively.

https://doi.org/10.1371/journal.pone.0189036.g007
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The results show that while the trends of MDF of the simulated and experimental record-

ings with respect to the fractional MVC are similar, the absolute values are different. There

may be number of reasons that could contribute to this difference. For example, the spectrum

of sEMG is highly dependent on the electrode placement and inter-electrode distance [46] and

hence comparing the absolute values of the MDF may be difficult.

One common difference between the simulated and experimental data is that the quartile

range for experimental is much higher than the simulated. Moreover, this study has consid-

ered the parameters to belong to a range of values rather than single value and repeated sim-

ulations have been initialized randomly within the range, the results indicate that the actual

variation appears to be larger. This may be because we have assumed normal distribution

which would be require very large number of experiments while this study reports the data

from five participants.

Fig 8. Comparison between MDF of simulated and experimentally obtained sEMG for 25%, 50% and 75% MVC. The circle and

asterisk in each data set indicate mean and outlier respectively.

https://doi.org/10.1371/journal.pone.0189036.g008
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This study has investigated the FD of simulated and experimentally recorded sEMG. While

the trends of the two are similar, there is a difference in the absolute values. The FD corre-

sponding to the experimental data is higher than that of the simulated data. It is known that

the Higuchi’s FD is dependent on the complexity of the signal sources and this difference may

be attributable to the necessity of models being simplified versions of the real system.

The study has some limitations as it has experimentally tested only with small number of

healthy participants. The model reported in this study is two- dimensional, and future studies

will investigate the influence of physiological conditions such as aging and disorder on the

skeletal muscle system with large number of participants.

Conclusions

This study has developed a computational model that describes sEMG suitable for pennate

muscles. The model was validated for the TA muscle by comparing the experimental with the

simulated sEMG for different fractions of MVC. Three features were considered; RMS, MDF

and FD. The results show that while the relationship between these features and fraction of

MVC are similar between simulated and experimental data, there is difference in the absolute

values. This indicates that the simulated values are subjected to normalization and while it

can be used to predict the trends, but is unsuitable for predicting the absolute values of the

recording.

Fig 9. Comparison between FD of simulated and experimentally obtained sEMG for 25%, 50% and

75% MVC. The circle and asterisk in each data set indicate mean and outlier respectively.

https://doi.org/10.1371/journal.pone.0189036.g009

Table 4. Statistical equivalence test for simulated and experimental values for RMS, MDF and FD.

RMS FD MDF

MVC P-value Test Value Test Value

25% 0.006 25% 0.005 25% 0.046

50% 0.020 50% 0.0026 50% 0.045

75% 0.023 75% 0.001 75% 0.049

Test interpretation Equivalent Test interpretation Equivalent Test interpretation Equivalent

https://doi.org/10.1371/journal.pone.0189036.t004
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Fig 11. Bland Altman plots between FD of simulated and experimentally obtained sEMG signals: (a)

25% MVC, (b) 50% MVC (c) 75% MVC.

https://doi.org/10.1371/journal.pone.0189036.g011

Fig 10. Bland Altman plots between RMS of simulated and experimentally obtained sEMG signals: (a)

25% MVC, (b) 50% MVC (c) 75% MVC.

https://doi.org/10.1371/journal.pone.0189036.g010
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The model has investigated sEMG for different muscle fibre types, pennation angle and the

results show that there is no significant difference in the shape of SFAP because of change in

the pennation angle in the range of 0 to 20˚. However, the changes were observed in ampli-

tude, frequency, and chaotic nature of sEMG signals. This reveals that parallel model of the TA

can be used to approximate the TA, and this eliminates the need of computationally intensive

volume conductor model with angle of muscle fibres to represent the muscle.
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