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Abstract

Metabolomics experiments identify metabolites whose abundance varies as the conditions

under study change. Pathway enrichment tools help in the identification of key metabolic

processes and in building a plausible biological explanation for these variations. Although

several methods are available for pathway enrichment using experimental evidence, meta-

bolomics does not yet have a comprehensive overview in a network layout at multiple

molecular levels. We propose a novel pathway enrichment procedure for analysing sum-

mary metabolomics data based on sub-network analysis in a graph representation of a ref-

erence database. Relevant entries are extracted from the database according to statistical

measures over a null diffusive process that accounts for network topology and pathway

crosstalk. Entries are reported as a sub-pathway network, including not only pathways, but

also modules, enzymes, reactions and possibly other compound candidates for further anal-

yses. This provides a richer biological context, suitable for generating new study hypotheses

and potential enzymatic targets. Using this method, we report results from cells depleted for

an uncharacterised mitochondrial gene using GC and LC-MS data and employing KEGG as

a knowledge base. Partial validation is provided with NMR-based tracking of 13C glucose

labelling of these cells.

Introduction

Metabolomics is the science that studies the chemical reactions taking place in a living organ-

ism by measuring their lightweight reactants and products, also called metabolites. Metabolo-

mics is used in the study of human disease, biomarker identification, drug evaluation and

treatment prognosis [1]. Metabolomics datasets are generated from the identification and
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quantification of the metabolites in a sample. Afterwards, statistical analysis of the datasets

enables researchers to devise a plausible explanation for the changes identified and to under-

stand the underlying biological processes involved [2].

Current methods to measure metabolites mainly rely on Nuclear Magnetic Resonance

(NMR) and Mass Spectrometry (MS) technologies [3], the latter consisting of two broad cate-

gories: Liquid Chromatography and Gas Chromatography coupled to MS (LC/MS and GC/

MS). Raw data processing, also known as primary analysis, can be achieved using tools includ-

ing MeltDB [4], MetaboAnalyst [5], MAIT [6], along with spectral databases [7] like the

Human Metabolome Database [8], resulting in a table of relative metabolite abundances.

Data interpretation, known as secondary analysis, benefits from the identification of meta-

bolic pathways to draw conclusions, encouraging the use of so-called pathway enrichment

techniques. Their purpose is to provide the metabolites with their biological context, drawing

from comprehensive databases like Kyoto Encyclopedia of Genes and Genomes, KEGG [9],

Reactome [10], WikiPathways [11] and the Small Molecule Pathway Database [11]. Enrich-

ment outputs can be further analysed by manual network manipulation through tools such as

Cytoscape [12], whose plug-in MetScape [13] builds networks containing compounds, reac-

tions, enzymes and genes. In this work, pathway enrichment techniques will be divided into

three generations, following the review in [14].

The first generation of enrichment techniques is based on Over Representation Analysis

(ORA), a statistical test that assesses whether the occurrence of a label within a subset is greater

than expected by chance in the background population. Applied to metabolomics, it takes as

input the identifiers of affected metabolites (previously determined through a statistical test

involving conditions) and assesses a p-value for each pathway. ORA is available through the

web tools IMPaLA [15], MetaboAnalyst, MBRole and MPEA [16, 17]. Limitations of ORA

include an oversimplification of the biology, a thresholding decision issue when generating the

input metabolite list and a lower power for capturing subtle and coordinated changes within a

pathway [18].

A second generation of enrichment methods, Functional Class Scoring (FCS), avoids the

cutoff choice in generating the affected metabolite list and claims the capability of capturing

subtle but consistent changes in concentration [2, 19]. This concept was imported from Gene

Set Enrichment Analysis [18] and is available through MSEA [20] in MetaboAnalyst and

IMPaLA. A shortcoming of FCS methods is that they ignore the network nature of biological

pathways [14]. As biological datasets are heterogeneous, and as no method is always best, the

researcher’s expertise and prior knowledge remain key factors when choosing between ORA

and FCS [21].

The third generation of enrichment techniques attempts to incorporate topological data on

the underlying biological networks. This concept was applied early to genetic data through

ScorePAGE [22] and is available in current tools like Pathway-Express [23]. For metabolomics

data, MetaboAnalyst assigns each metabolic pathway a topological score accounting for the

centrality of measured metabolites.

Pathway enrichment techniques face challenges, such as dealing with pathway crosstalk and

overlap [14] or generating comprehensive outputs rather than pathway p-value lists [21]. Sta-

tistical tests that account for pathway crosstalk and overlap have been proposed for gene data

[24, 25]. Although pathway analysis techniques constitute essential resources for metabolomics

secondary analysis, the abstract and artificial borders between pathways may not faithfully

reflect biological mechanisms [2]. This issue can be bypassed using sub-network analysis, a

secondary analysis procedure to infer relevant biological modules under the condition of study

[26] without being limited by pathway definitions. Sub-network analysis has also been applied

to the canonical pathways to obtain enrichment in a sub-pathway scale for gene and protein
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data [27, 28]. Some methods, such as jActiveModules [29], define scores and attempt to find

optimally scoring sub-networks. Likewise, diffusion kernels and random walk algorithms that

score the nodes of a network, such as PageRank [30], have been applied to genetic data [31, 32]

and metabolic networks [33].

The HotNet algorithm [31], applied to gene networks, computes pairwise influence mea-

sures from node gs to node gi, by introducing a flow on gs and allowing it to leave through all

the nodes. The diffusion score of node gi, f s
i , is interpreted as the influence i(gs, gi). A new undi-

rected graph is built using the weights w(gj, gk) = min[i(gj, gk), i(gk, gj)], in which sub-networks

encompassing a large number of gene mutations are sought. TieDIE [32] applies a similar con-

cept, aiming to connect a source and a target gene set. Flow is introduced between the source

and the target sets, giving rise to two diffusion processes that score all the nodes. The linking

score of each node, defined as the minimum of its two diffusion scores, serves as a ranking to

apply a global threshold and report the resulting sub-network.

Here we describe the development of an innovative methodology that combines the use-

fulness of pathway enrichment with the flexibility of sub-network analysis. Starting from

summary metabolomics data, we apply a null diffusive process over a network-based repre-

sentation of the KEGG database and derive a relevant sub-network. Besides offering an

overview in the form of a list of affected pathways, we propose a novel sub-pathway represen-

tation at several molecular levels that justifies the reported pathways through additional bio-

logical entities (reactions, enzymes and KEGG modules) to identify candidates for further

study. All of the reported entries, along with their annotations, are drawn in a heterogeneous

network layout.

Materials and methods

Overview

An overall scheme of the proposed methodology is presented (Fig 1): on the one hand, we

retrieve knowledge from KEGG as a graph object; on the other hand, the input to our algo-

rithm is a list of significantly affected metabolites from an experimental study, obtained for

example by applying a non-parametric Wilcoxon test to each metabolite’s abundance. After-

wards, the graph is regarded as a meshed object in which the nodes representing the affected

metabolites introduce unitary flow. The resulting node scores are normalised using a null dif-

fusive model, and the top scores define an interpretable relevant subgraph. All this work has

been implemented in the R language [34] and the network algorithms rely on the igraph R

package [35]. Our R code is under active development and available at https://github.com/

b2slab/FELLA.

Contextual knowledge is depicted according to the KEGG database (Fig 1), through the fol-

lowing categories: compounds, reactions, enzymes, modules and pathways. This network is

specific for Homo sapiens and its construction is detailed in S1 Appendix.

Scoring algorithms

We derived scores for all the nodes through random walks on the KEGG graph, in order to

assess their importance relative to the metabolites in the input. Performing random walks on

the undirected graph is equivalent to running a diffusion process; specifically, we model heat

diffusion. Conversely, if the graph is directed, the problem matches the PageRank algorithm

for website ranking. Both the undirected and the directed versions are applied and referred to

as diffusive processes (Fig 1).

In the undirected graph case, using a heat diffusion model, we model the biological pertur-

bation in the KEGG graph as heat flow that traverses our KEGG graph. It is important to
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emphasise that this heat diffusion approach is purely a knowledge propagation abstraction, in

no way simulating heat diffusion on the actual biological entities. Heat is forced to flow from

nodes corresponding to affected metabolites and through database annotations, leading to a

score for each node in the KEGG graph: its stationary temperature (Eq 1). The rationale

behind this approach is that nodes lying close to the affected metabolites, which are heat

sources, will hold a higher stationary temperature. This can happen due to great proximity to a

particular heat source or to overall closeness to multiple ones. In order to determine the tem-

peratures, we apply the finite difference formulation [36] of the heat equation, using the

explicit method, applied to a meshed object (Fig 2a) [37].

T ¼ � KI� 1 � G ¼ RHD � G ð1Þ

On the one hand, KI is the conductance matrix, where KI = L + B, L being the unnormalised

graph Laplacian and B the diagonal adjacency matrix with Bii = 1 if node i is a pathway and

Bii = 0 otherwise. The matrix B ensures that flow can leave the graph through pathways nodes.

The matrix RHD is defined as −KI−1, the linear mapping to compute the temperatures. On the

other hand, G is the heat generation vector, whose entries Gi are unitary if i is an affected

metabolite and 0 otherwise.

In our node arrangement (Fig 2a), the affected metabolites constantly introduce heat flow

into the structure and only the nodes in the top level (metabolic pathways) are allowed to dis-

perse it. Further details are available in S2 Appendix.

In the directed graph case, the PageRank scoring algorithm is a web model that assigns each

website a score reflecting the number of incoming hyperlinks as well as the quality of their

respective websites. The web surfer performs random walks on a directed graph, with an initial

probability distribution over the nodes. In each step, the surfer resumes his random walk with

probability d and restarts it with probability 1 − d, where d is the damping factor. If the surfer

continues, he or she will choose an edge with a probability proportional to its weight. The

default computation of PageRank scores is iterative for efficiency reasons, although a formula

Fig 1. Workflow summary. Contextual knowledge is extracted from KEGG as a graph object while experimental data is introduced as a list

of affected metabolites. A null diffusive model assesses, and reports in a subgraph, which part of the KEGG graph is relevant for the input

metabolites.

https://doi.org/10.1371/journal.pone.0189012.g001
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similar to (Eq 1) can be derived and will be used in the proposed methods. The damping factor

is set to d = 0.85 as in the original publication.

The arrangement of nodes for the PageRank calculation is identical to the one for diffu-

sion (Fig 2b), being edges directed towards the upper levels. Random walks start only at the

affected metabolites and explore all the reachable nodes. Further details are available in

S3 Appendix.

Null models

The ranking of the network nodes is not achieved through raw scores, due to potential biases

related to topological features. This is also the case in classical over-representation analysis,

as it can be rephrased as a particular case of heat diffusion (Fig 3) where the observed statistic

is the node temperature and its null distribution is the hypergeometric distribution. In view

of this, our approach also includes a permutation analysis in the input, leading to a null dis-

tribution of scores for each node. Node scores are normalised using their null distributions

and ranked, allowing a subgraph (Fig 1) to be extracted. Further details can be found in

S4 Appendix.

Fig 2. Nodes arrangement for (a) heat diffusion and (b) PageRank. The affected metabolites are highlighted with a black ring. For heat

diffusion (a), affected metabolites are forced to generate unitary flow. Every pathway is highlighted with a blue ring, representing its

connection to a cool boundary node. In equilibrium, the highest temperature pathways (and nodes) will have the greatest heat flow,

suggesting a relevant role in the experiment. For PageRank (b), affected metabolites are the start of random walks. PageRank scores,

represented by the intensity of the blue colour, will attain higher values in the frequently reached random walk nodes.

https://doi.org/10.1371/journal.pone.0189012.g002

Fig 3. Toy example of an over-representation analysis of a hypothetical “pathway A” containing 3 metabolites out of a total of 10.

The list to be enriched contains 4 metabolites, showing 2 hits in the pathway. The corresponding (Fisher’s exact test) over-representation

can be understood as a diffusion process on the depicted network followed by a null model. The temperature of pathway A is always

coincident with the number of hits in the pathway, implying that its null distribution is the hypergeometric distribution, to which a one-tailed

temperature comparison is made.

https://doi.org/10.1371/journal.pone.0189012.g003
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The null model will be introduced in the heat diffusion scenario (the PageRank case is anal-

ogous). Let nin be the number of compounds in the input. Then, exactly nin different KEGG

compounds are chosen at random following dependent Bernoulli distributions, so that Xi = 1

if i is chosen and Xi = 0 otherwise. Normalisation can be performed using (i) the theoretical

mean and variance of the scores, which can be obtained from Eq 1, using the fact that, for the

null model, G is a random vector X with known mean and covariance matrix:

EðTnullÞ ¼ RHD � EðXÞ ð2Þ

SðTnullÞ ¼ RHD � SðXÞ � RT
HD ð3Þ

The normalised score (z-score) of node i is defined in terms of the expected value mi ¼

EðTnullÞi and standard deviation si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðTnullÞi;i

q

zi ¼
Ti � mi

si
ð4Þ

Then, nodes with the top k scores are kept and reported. Alternatively, scores can be nor-

malised through (ii) Monte Carlo simulations with nperm permutations, which provide an esti-

mate of the probability pi that the null distribution attains a score greater than or equal to the

observed one. Estimation of pi involves the empirical cumulative distribution function with a

small correction [38], ri being the number of permutations in which the null score of node i is

greater or equal than Ti:

pi ¼
ri þ 1

nperm þ 1
ð5Þ

A consensus solution is derived from nvote independent sets of Monte Carlo trials, each trial

reporting the top k nodes. The consensus solution may therefore report a node count not

exactly equal to k.

NMR validation

The reported subgraphs contain entities other than pathways and compounds that can be use-

ful for the researchers. Among these, the highlighted reactions have been partially validated by

quantifying their distance to an independent second set of affected metabolites.

In order to analyse the reactions in the scope of a metabolic network, distances are com-

puted on the unweighted, maximal connected subgraph containing all the compounds and

reactions from the KEGG graph, referred to as the reaction-compound graph. The validation

metric is the resistance distance, previously used in the chemical literature [39]. Under these

settings, the reported reactions are compared to all the reactions that involve the input metab-

olites (their nearest neighbours) in terms of their resistance distance to the second set of

metabolites.

Evaluation with synthetic signals

In order to deploy an analysis of true and false positive pathway identifications, we opted to

statistically characterize the pathway prioritisation induced by the diffusion scores. Artificial

pathway signals have been generated to (a) find biases in the absence of a signal that might

cause false positives, and to (b) quantify the ability to recover true positive pathways. The pro-

posed methods are not directly compared to IMPaLA and MetaboAnalyst due to the lack of a

batch analysis mode, but instead to their underlying distribution using Fisher’s exact test. Our
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Monte Carlo approaches have not been aggregated into consensus solutions. The performance

metric is the pathway rank in the list ordered by a method, where 1

np
is the best rank and 1 is

the worst one, np being the number of pathways in the KEGG graph. Ranks in Fisher’s exact

test are computed using the raw p-values, so that top ranked pathways correspond to lowest p-

values. To compute the p-values, a metabolite is considered to belong to a pathway if it can be

reached via the pathway in our directed KEGG graph (Fig 2).

In (a), noisy signals are generated and the ranks of all the pathways are calculated within

signals. Then, the mean rank of a specific pathway i is computed across all the signals. This

measure can reveal pathways that tend to have an extreme rank irrespective of the input.

In (b), a target pathway generates the signal and its rank is used as the metric of interest.

Methods able to recover the signal will show low ranks in general terms.

Description of the experimental data

Our method has been tested using data from a case-control experiment aimed at determining

the function of an uncharacterised mitochondrial protein by silencing the gene using short

hairpin RNAs (shRNA). Metabolites abundances were determined from five replicates of cell

cultures expressing either control or experimental shRNA.

Metabolite measurements were performed by Metabolon platform (www.metabolon.com)

using GC/MS (Thermo-Finnigan Trace DSQ single-quadrupole) and LC/MS (Waters

ACQUITY UPLC and a Thermo-Finnigan LTQ-FT). The proprietary Metabolon analysis

reported 168 quantified metabolites annotated in the KEGG database.

In addition, we have used NMR following the labelling of the same cells with [U-13C] glu-

cose [40] to trace carbon atoms, in order to further validate the conclusions of our new

method. The reported reactions are evaluated in terms of their resistance distance to the

affected metabolites found by NMR.

Description of the synthetic data

All the signals generate a list with fixed length nin = 35 for each one of the np pathway nodes in

the KEGG graph. Three sampling types have been defined—differences arise in the specifica-

tion of how much more probable compounds in the target pathway are.

The first signal is a uniform sampling of nin compounds that imitates noise: the probability

of drawing a compound j within pathway i, pi,j, is ki = 1 times more likely to be drawn than

compounds outside the pathway, and thus does not depend on the pathway.

In the second signal, compounds belonging to pathway i are ki = 10 times more likely to be

drawn. Therefore, there are two different probability values: inside pathway and outside path-

way. This sampling is affine to the assumptions in Fisher’s exact test from ORA.

As for the third signal, pi,j is proportional to the quantity RHDij, which is greater in com-

pounds close to the pathway. This takes into account the whole KEGG graph, thus being influ-

enced by indirect connections and compound specificity.

Results

Input for the algorithms

After the curation step, our knowledge base graph contains 10,183 nodes and 31,539 edges.

The nodes are stratified in 288 pathways, 178 modules, 1,149 enzymes, 4,699 reactions and

3,869 compounds. The degree distribution of its vertices follow a scale-free network model,

where P(k)*k−γ, with γ = 2.084 2 [2, 3], see S1 Appendix.
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On the other hand, MS led to 168 quantified metabolites from KEGG. Two identifiers that

each appeared twice have been dropped, as well as a KEGG drug, excluded from the KEGG

compound category. The remaining 163 metabolites have been tested between both conditions,

leading to 38 significant metabolites (two-tailed non-parametric Wilcoxon, FDR< 0.05), of

which 33 have been mapped to our KEGG graph.

The 33 MS-derived compounds served as input for each of the proposed enrichment algo-

rithms. Heat Diffusion (HD) and PageRank (PR) are followed by norm (z-score normalisation)

or sim (Monte Carlo permutations). Normalised scores have been computed through the null

models with nin = 33, followed with subgraph selection with a desired number of nodes

k = 250. For simulated methods, a consensus subgraph using nvote = 9 runs of nperm = 10,000

permutations each has been derived by majority vote on each node.

Regardless of the specific details, high diffusion scores are an indicator of overall closeness

to the MS-derived metabolites and potential relevance in the condition being studied. This

intuition, known as guilt-by-association, can be phrased in the context of heat diffusion: high

temperatures are found close to the heat sources. Therefore, warm nodes are candidates for

further study as they are easily reached through database annotations from the input

metabolites.

Null model impact

The impact of using the null model in HD and an overview of the random temperatures

behaviour is described in Fig 4. The null model is closely related to the graph structure and

node topology, quantified through the vertex degree. In Fig 4a, the mean temperatures show

different trends for the five levels in the graph; in particular, there is an increase in the mean

pathway temperature as the pathway becomes larger. This implies that, regardless of the input,

larger pathways will generally show warmer temperatures and the results will be biased

towards them. Likewise, the standard deviations of the null temperatures show level-specific

changes (Fig 4b), with the compounds being the most affected entities—the higher the degree

of the compound, the lower its standard deviation.

The usage of z-scores instead of raw temperatures has consequences in the highlighted

nodes. Reporting the nodes with the top 250 raw temperatures does not reveal any pathway

(Fig 4c), whereas five pathways lay among the top 250 z-scores (Fig 4d). Likewise, if only path-

way nodes are considered, their ranking using raw temperatures is closely related to the rank-

ing using the mean temperatures from the null model (Fig 5a), which is a property of the

graph but not of the experimental data; using z-scores instead corrects this bias (Fig 5b). If the

top 20 pathways are selected through their raw temperature, some of them are even below

their mean null temperature (Fig 5c), whereas keeping the top 20 z-scores removes the bias

towards larger pathways and suggests otherwise overlooked pathways (Fig 5d).

Subgraph extraction

Four subgraphs have been extracted using the MS-derived compounds. The desired number

of nodes k for each approach, together with the actual number of reported nodes and the num-

ber of KEGG pathways, are shown in Table 1. A connected component (CC) of an undirected

graph is a maximal connected subgraph so that any two nodes in the subgraph are connected

by a path. For the directed graphs, the weak CC definition is used, in which directed edges are

considered as undirected when computing the CC. The number of nodes belonging to each

solution subgraph, along with its largest CC and the number of CCs, are also reported. Addi-

tional details regarding the largest CC and number of CCs for other values of k can be found

in S5 Appendix.
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Fig 4. Expected value (a) and standard deviation (b) of the null temperatures, stratified by level—jitter applied for visual purposes and 0.95

confidence intervals computed by the default GAM models in ggplot2 R library [41]. Clear biases arise due to the node degree, a topological

property of the nodes: the larger the pathway, the higher its mean value, and the more connected a compound is, the smaller its variance. If

pathways are ranked by raw temperatures, a large pathway will have an undesired, consistent advantage over small ones and will be

reported too often. The usage of z-scores (d) instead of raw temperatures (c) to select the top 250 nodes addresses these biases and

highlights pathway and module nodes that were eclipsed by other compounds and reactions with higher mean null temperatures.

https://doi.org/10.1371/journal.pone.0189012.g004
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Fig 5. Ranking the 288 KEGG pathways—lower is best– using raw temperatures (a) biases the ranks towards pathways

with higher mean null temperature, which in turn tend to be large pathways. Using the z-scores instead (b) breaks this

clear dependence and avoids reporting pathways just because of their size. The top 20 pathways through raw

temperatures (c), depicted as black dots, include pathways that are even below their mean value, while the top 20 z-

scores (d) suggest smaller pathways that were penalised by the aforementioned bias.

https://doi.org/10.1371/journal.pone.0189012.g005

Table 1. Summary of the outputs.

Name k Pathways Nodes #CC Largest CC

HD norm 250 hsa00250, hsa00270, hsa00480, hsa05230, hsa05231 250 8 206

HD sim 250 hsa00250, hsa00270, hsa00330, hsa00480, hsa05230, hsa05231 261 8 221

PR norm 250 hsa00250, hsa00270, hsa00480, hsa05231 250 9 187

PR sim 250 hsa00250, hsa00270, hsa00480, hsa05231 279 10 152

Summary of the outputs, using diffusion (HD) as well as PageRank (PR), and normalising the scores with Monte Carlo simulations (sim) or z-scores (norm).

Monte Carlo simulations have been run 10,000 times per solution, and 9 solutions have been computed to build a consensus solution. Note that the desired

number of nodes k is slightly different to the number of nodes actually reported in the Monte Carlo simulations. The last two columns contain the number of

connected components (CC) and the number of nodes in the largest CC.

https://doi.org/10.1371/journal.pone.0189012.t001
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Defining the overlap coefficient between two solutions G1 and G2 as

overlapðG1;G2Þ ¼
jG1\G2 j

min ðjG1 j;jG2 jÞ
, solutions tend to overlap despite their differences (Table 2).

Regarding the stratification of the subgraphs in terms of KEGG categories, they follow a

trend similar to the KEGG graph (S5 Appendix).

Pathway analysis

Our methods are compared to IMPaLA and MetaboAnalyst to verify the concordance in

terms of metabolic pathways. All the approaches have been compared using the example data

from IMPaLA (S2 Table) and MetaboAnalyst (S3 Table), and they show consistent and com-

patible reports.

The results for our dataset are summarised in Table 3 and described in S1 Table, together

with further details about the reports of the alternative tools. The metabolic pathways Ala-

nine, aspartate and glutamate metabolism (hsa00250), Cysteine and methionine metabolism

(hsa00270) and especially the Glutathione metabolism (hsa00480) recur in all of the

approaches. Some of our solutions are more specific, suggesting the module Glutathione

Biosynthesis (M00118) as well. Our null model takes pathway overlap and crosstalk into

account and allows a visualisation of the pathway structure through the null diffusion corre-

lation matrix (S4 Appendix).

Table 2. Solutions overlap.

HD norm HD sim PR norm PR sim

HD norm 1.00 0.82 0.88 0.82

HD sim 0.82 1.00 0.77 0.83

PR norm 0.88 0.77 1.00 0.84

PR sim 0.82 0.83 0.84 1.00

Overlap coefficient statistics for HD and PR. The overlapping nature of solutions is a sign of consistency

among approaches.

https://doi.org/10.1371/journal.pone.0189012.t002

Table 3. Reported pathways.

KEGG id Pathway name HD norm HD sim PR norm PR sim MA FCS MA ORA IMPaLA ORA

hsa00250 Alanine, aspartate and glutamate metabolism + + + + + + -

hsa00270 Cysteine and methionine metabolism + + + + + + +

hsa00480 Glutathione metabolism + + + + + + +

hsa05230 (hsa00970) Central carbon metabolism in cancer + + - - * - +

hsa05231 (hsa00564) Choline metabolism in cancer + + + + * - -

hsa00260 (M00020) Glycine, serine and threonine metabolism * * - - + - -

hsa00330 (M00133) Arginine and proline metabolism * + - - + - +

hsa00510 (M00073) N-Glycan biosynthesis - - * * - - -

Pathways reported by our methods. ‘+’ means a hit for the term reported in the KEGG id column, ‘*’ stands for a hit of the closely related term in parenthesis

in the same column and ‘-’ states no hit. Our 4 solutions are compared to MetaboAnalyst (MA), using ORA and FCS, and IMPaLA using ORA. Pathways

hsa00250, hsa00270 and hsa00480 are repeatedly reported by all the methodologies. Pathways hsa05230 and hsa05231 are reported by some of our

methods, while alternative approaches find some close (*) and exact (+) matches. In some cases, instead of reporting a whole pathway, only specific

modules within it are reported as relevant; this is the case of M00133 and M00073. Furthermore, module M00073 does not contain any compounds, being

out of the scope of MetaboAnalyst and IMPaLA, but is reported by one of our methods due to the presence of other indirect relationships through enzymes

in the graph.

https://doi.org/10.1371/journal.pone.0189012.t003
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The subgraph resulting from applying HD sim (Fig 6) inherits the scale-free structure from

the whole graph and enrols the three recurrently reported pathways in the same connected

component: hsa00250, hsa00270 and hsa00480. The biological perturbation stemming from

the MS-derived compounds can be tracked in terms of reactions, enzymes and modules, up to

the relevant pathways.

Fig 6. Subgraph reported through HD norm, the names of reactions and enzymes have been omitted for clarity. Compounds are

green, reactions are blue, enzymes are orange, modules are purple and pathways are red. The compounds in the input are highlighted as

green squares to ease the tracing of the biological perturbation up to the pathways. The presence of reactions and enzymes that link

pathways in this subgraph might suggest relevant entities by which affected pathways crosstalk. All the reported pathways and modules lie

in a large CC, as well as a newly proposed metabolite (L-Glutamate).

https://doi.org/10.1371/journal.pone.0189012.g006
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On the other hand, results on the recovery of synthetic signals can be found in Fig 7. In (a)

absence of signal, HD ranks pathways with a mean rank close to 0.5, and only a few are biased

to the top or the bottom of the list. Mean ranks in Fisher’s exact test and PR are also centered

around 0.5, but have more dispersion. In (b) the presence of a target pathway, three sampling

schemes have been explored. In (1) the signal is actually noise and the target pathway is a

decoy. The rank of the target pathway for HD and PR is uniformly spread in [0, 1], whereas

Fisher’s exact test shows some asymmetry in the rank distribution. In (2), the sampling proba-

bility depends on the presence or absence of the metabolite in the pathway. Fisher’s exact test

outperforms HD and PR as the median rank of the target pathway is closer to 0, as expected by

its optimality. However, in (3), the sampling probability is network-based and HD outper-

forms PR, which in turn outperforms Fisher’s exact test. Differences between sim (Monte

Carlo trials) and norm (parametric approach) are subtle.

NMR analysis

NMR carbon tracking revealed 13 isotopically enriched metabolites from 13C-glucose,

showing differential fractional enrichment between case-control, of which 5 had already

been found through MS; some of these metabolites can be seen in Fig 8 in the context of the

Glutathione metabolism. Our solutions are assessed in terms of the resistance distance from

the reported reactions to the remaining 8 metabolites. The smaller the overall distance of a

solution, the more related its nodes are to the 8 metabolites proven affected by NMR. The

resistance distances have been computed on the reaction-compound graph, which is the

largest CC of the subgraph that contains all the reactions and compounds in the KEGG

graph.

The reactions suggested in our subgraphs show lower resistance distances to the 8 NMR-

derived metabolites than the totality of reactions in the reaction-compound graph (Table 4).

Furthermore, they are also lower than the resistance distances from the neighbouring reactions

of the MS-derived metabolites to the 8 NMR metabolites (FDR < 0.01).

Fig 7. Synthetic signals evaluation using the pathway rank as a metric to assess orderings. Lowest ranks correspond to best ranked

pathways. The proposed methodology is compared to ORA, represented by Fisher’s exact test. (a) 288 noisy signals have been generated,

and every pathway has been ranked in each of the 288 runs. Data points for a given methodology are the mean rank of each pathway, giving

288 data points per box. (b) 288 signals with a target pathway have been generated, in three scenarios: pure noise, proportion-based

sampling and network-based sampling. Each box contains the rank of the target pathway, leading to 288 data points per box.

https://doi.org/10.1371/journal.pone.0189012.g007
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Discussion

Our approach for enriching summary metabolomics data, Fig 1, is based on diffusion pro-

cesses over a graph drawn from several KEGG categories (Fig 2). KEGG is the database of

choice due to its level of curation and structure, which eases the graph representation. Specifi-

cally, the definition of KEGG categories naturally allows a hierarchical arrangement of levels.

Fig 8. KEGG representation of the Glutathione metabolism (hsa00480). KEGG compounds found affected through MS (orange) and

NMR (blue) are pinpointed in the figure. Additionally, enzymes and compounds reported by HD norm are depicted in red. Our approach

provides a criterion for highlighting a pathway together with the entities it contains, for example its reported enzymes, to build a sub-pathway

representation richer than the classical methods that rely solely on pathways and compounds. Reprinted from www.genome.jp under a CC

BY license, with permission from Kanehisha Laboratories, original copyright 2014.

https://doi.org/10.1371/journal.pone.0189012.g008
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Our graph design is enhanced by the compound-reaction-enzyme-gene networks built by

MetScape (S1 Appendix), and the inclusion of modules and pathways in our arrangement

allows a comprehensive picture of the affected biology.

The graph contains all the KEGG compounds and the subset of affected metabolites forced

to diffuse inside it (Fig 2). The closer a node is to the affected compounds, the higher its score

becomes. Likewise, the top scoring candidates naturally involve higher flow and become rele-

vant in the flow discharge from the graph. Because our KEGG graph is conceived and curated

in a bottom-up manner, diffusion is expected to follow that trend too: the perturbation in the

lowest level will diffuse to the upper levels to exit the graph. Ideally, a relevant subgraph found

through this diffusion (Fig 6) would inherit the stratification of the KEGG graph, thus allowing

the extrapolation of knowledge in terms of compounds to the rest of categories. This allows

holistic picturing of pathways of interest, such as Glutathione metabolism (Fig 8) and impor-

tantly, it relates affected pathways through reactions, enzymes and compounds.

The mathematical formulation of the heat diffusion stationary temperatures is equivalent to

the scores in HotNet and TieDIE, with ad-hoc boundary conditions (Fig 2). Conversely, our

settings for PageRank force upwards diffusion and allow exit from every node through the

damping factor. Node selection for HotNet follows a combinatorial model, whereas TieDIE

applies a unique threshold for all the scores, which in turn come from two diffusive processes.

In our case, selection is achieved through a unique diffusion followed by a null model that nor-

malises the scores. Comparing raw scores between nodes can lead to biases related to the node

level and topology (Fig 4a and 4b), pathway nodes clearly being affected by their degree and, in

addition, overshadowed by other compounds and reactions with higher mean null tempera-

tures. Without further action, the temperatures of larger pathways are systematically warmer

regardless of the input, thus biasing all the results and any biological interpretation. Instead,

our concept of a high score for a given node relies on comparing its score to its null distribu-

tion, treating each node according to its own topological features (Fig 1).

This is consistent with the pathway over-representation analysis, as the latter can be posed

as a very simple diffusion problem that needs the null model to translate the observed statistics

into p-values that are comparable across pathways (Fig 3). Ranking pathways by the number of

hits and ignoring the null model would bias the results towards larger pathways, which is also

what happens in our diffusion approach if raw temperatures are used (Fig 5a and 5b).

Table 4. Distance to NMR metabolites.

Method Graph order C00299 C00122 C00116 C00105 C00020 C00581 C00300 C00025

Reaction-compound graph 4539[8008] 0.56(0.62) 0.56(0.62) 0.57(0.62) 0.54(0.62) 0.47(0.62) 0.93(0.62) 0.82(0.62) 0.47(0.62)

First neighbours 414[447] 0.42(0.12) 0.43(0.12) 0.44(0.12) 0.40(0.12) 0.33(0.12) 0.79(0.12) 0.68(0.12) 0.33(0.12)

HD norm 147[250] 0.39(0.10) 0.39(0.10) 0.40(0.10) 0.37(0.10) 0.30(0.10) 0.76(0.10) 0.65(0.10) 0.30(0.10)

HD sim 148[261] 0.39(0.09) 0.39(0.09) 0.40(0.10) 0.37(0.09) 0.30(0.09) 0.76(0.09) 0.65(0.09) 0.30(0.09)

PR norm 143[250] 0.39(0.10) 0.39(0.10) 0.40(0.10) 0.37(0.10) 0.30(0.10) 0.75(0.10) 0.65(0.10) 0.30(0.10)

PR sim 172[279] 0.40(0.12) 0.41(0.12) 0.42(0.12) 0.38(0.12) 0.31(0.12) 0.77(0.12) 0.66(0.12) 0.31(0.12)

Mean resistance distance between the reactions reported in our solutions and each compound reported using NMR, with their standard deviations in

parentheses. For each subgraph of KEGG graph, the number of reactions and the total number of nodes (in square brackets) are displayed. The reaction-

compound subgraph contains the largest connected component having all the reactions and compounds in the KEGG graph. The first neighbours subgraph

contains the MS-derived metabolites and all the reactions in which they participate. Resistance distances are computed on the reaction-compound graph.

For every NMR-derived metabolite, there is a significant difference in resistance distances between the reactions proposed in our solutions and the

reactions involving any of the MS-derived metabolite (one-sided Wilcoxon test, FDR < 0.01 for the 32 possible comparisons: 8 NMR metabolites, tests of 4

solutions against the first neighbours reactions). This implies that the reported reactions are closer to the NMR-derived compounds than the bulk of

neighbouring reactions.

https://doi.org/10.1371/journal.pone.0189012.t004
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Finally, we extract four subgraphs by considering the top k scores for HD norm, HD sim,

PR norm and PR sim. Spurious highlighted nodes are expected to appear as isolated or having

very small CCs, similar to random selection of nodes in a sparse graph, whereas strong biologi-

cal perturbations yield larger CCs. Therefore, the large CCs reported in the four subgraphs

(Table 1) are natural goodness-of-solution indicators.

Analysing the two statistical approaches, we suggest both deterministic parametric tech-

niques and stochastic non-parametric ones. Computing a z-score is simple and fast, giving

insights into how high a score is in terms of standard deviations from the mean value. On the

other hand, Monte Carlo trials can show some variability between solutions, so an ensemble

approach can address this, while providing confidence measures for each reported node. Con-

versely, several quantiles can be estimated and stored if the graph is unchanged for further

analyses, which is reasonable for a given KEGG database release.

Regarding time and memory complexity, the complete analysis of the database requires a

one-off computation the inverse of the conductance matrix of the graph, which is feasible in

our scenario and already pre-computed for our public package. The cost of the Monte Carlo

trials is benchmarked in S5 Appendix. Comparing both random walk approaches, we observe

a tendency to report larger CCs through heat diffusion (Table 1), because it can propose new

compounds in the solution that connect otherwise disjoint CCs. This is not the case for PageR-

ank, as forcing the diffusion upwards excludes other compounds from being visited by the ran-

dom walks. As expected, all the approaches tend to report the metabolites that were specified

in the input, although the z-scores can be more restrictive when suggesting new compounds in

heat diffusion, possibly due to their high variance. Despite the differences between scoring

methods and statistical approximations, solutions show a consistency because of their high

overlap (Table 2). Furthermore, reporting subgraphs with a stratification similar to the KEGG

graph (S5 Appendix) indicates perturbation traceability and allows inference on various

KEGG categories by measuring only compounds.

As a pathway enrichment method, our procedure shows results consistent with the state of

the art. Artificial signals have been generated to discover biases in particular pathways and

assess the goodness of the rankings produced by the methods. In (a) the absence of signal, the

mean rank of a pathway is expected to be uniform on [0, 1] and have a mean value of 0.5. If the

mean value is closer to 0, the pathway might be systematically favoured in any analysis and

could become a recurrent false positive. HD shows small deviations from 0.5 in the mean rank

of the 288 pathways in the KEGG graph while PR and Fisher’s exact test show more dispersion.

This may be due to the discrete nature of Fisher’s exact test, which is partly inherited by PR as

it only allows upwards propagation. In (b) the presence of signal, a target pathway generates

the signal and is ranked in the prioritisation of each method. In the first sampling scheme, the

target pathway is actually a decoy and is expected to be ranked uniformly on [0, 1]. This is the

case for HD and PR, but Fisher’s exact test shows an asymmetrical distribution, probably a

consequence of pathways tied at 0 hits. If the sampling strategy is affine to Fisher’s exact test

alternative hypothesis, this test has an edge over HD and PR in terms of discovering the true

positive. Conversely, if the sampling is network-based, HD and PR perform better, as the

binary nature of Fisher’s exact test cannot account for metabolites close to, but not inside of, a

target pathway. This sampling generates signals that are harder to recover because of the net-

work topology: crosstalk effects are present and unspecific metabolites divide their contribu-

tion over all the pathways to which they belong. This implies that, focusing on the pathway

ranking problem, the optimal choice between Fisher’s exact test and HR or PR depends on the

network influence in the generative model of the data.

An added value of our approach is in providing further details about the reported path-

ways, together with more specificity due to the presence of KEGG modules. Our results offer
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sub-pathway resolution and, unlike other sub-pathway focused tools, details at several molec-

ular levels between the metabolites and the pathways. Entities like enzymes or metabolites

that appear relevant and shared among pathways can give insights of pathway overlap and

crosstalk that is specific to the condition under study. Our pathway hits are consistent with

the current techniques, both using list format and abundance data (Table 3). The same ten-

dency is observed when benchmarking with IMPaLA and MetaboAnalyst example data,

details in S2 and S3 Tables. However, the nature of our scores takes into account pathway

overlap, which is not the case for IMPaLA (ORA) and MetaboAnalyst (ORA and MSEA).

Our prior studies [42] suggest that the Glutathione metabolism (Fig 8) is of particular inter-

est and it is consistently pinpointed by the enrichment methods. Its study is illustrative of the

workings of our methodology: nodes surrounding the input metabolites support warmer tem-

peratures and hence the proposed enzymes within the pathway are close to the MS-derived

metabolites. The suggestion of these enzymes gives a richer view within the pathway and can

help generate new biological hypotheses. This context also depicts L-glutamate, an extra

metabolite suggested by the method, which is surrounded by MS-derived metabolites and also

found through NMR.

The lack of a gold standard procedure and a reference benchmark dataset with known biol-

ogy for pathway enrichment [14, 21] encouraged the analysis of metabolic changes using isoto-

pic labelling and NMR. The novelty of our tool includes the generation of a comprehensive

subgraph that contains more than pathways and compounds—consequently we also partially

validate the reactions that appear in the subgraph. The definition of performance is not

straightforward, given the lack of means to prove that a node (compound, reaction) is not

affected, so the usual quality measures (false positives, true negatives) are not applicable.

Results show that our reported reactions have lower resistance distances to the 8 metabolites

found by NMR than all the reactions involving any of the MS-derived metabolites (Table 4).

The choice of resistance distance as a validation metric is motivated by the presence of hubs in

the metabolic network that affect the usual shortest paths metrics, meaning that connections

through very specific metabolic reactions are masked by very general reactions involving hubs

like adenosine triphosphate (ATP). As resistance distance takes into account the whole graph

structure, and specifically the presence of multiple shortest paths, it is more informative than

shortest paths distance.

Conclusions

We propose a secondary analysis methodology for summary metabolomics data that combines

pathway enrichment and sub-network analysis. Instead of reporting a list of pathways, we

build meaningful sub-pathway representations of the biology at several molecular levels,

derived through a null diffusive process on a curated graph object built from the KEGG data-

base. This approach accounts for pathway over-representation, topology and crosstalk. Nodes

reported as relevant are drawn in a comprehensive heterogeneous network that contains not

only pathways and compounds, but also enzymes, reactions and KEGG modules. This richer

biological context adds value to the top pathway hits by suggesting possible paths through

which affected compounds translate into dysregulated pathways.

The proposed methodology has been tested and assessed in a case-control study, where the

suggested pathways are consistent with alternative pathway enrichment techniques and the

reported reactions have been partially validated through NMR-based tracking of glucose car-

bon. Our analysis suggests that the Glutathione metabolism is one of the most affected path-

ways. Glutathione is critical for the suppression of reactive oxygen species and this result is

consistent with our preliminary observations that these cells exhibit higher levels of
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mitochondrial reactive oxygen species. Tests on simulated data suggest that our methodology

can benefit from pathway signals whose generative model is network-based. These results sup-

port the potential of our novel methods for aiding in the interpretation of complex metabolo-

mics datasets.
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