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Abstract

With the increasing availability of multi-dimensional biological datasets for the same sam-

ples (i.e., gene expression, microRNAs, copy numbers, mutations, methylations), it has now

become possible to systematically understand the regulatory mechanisms operating in a

cancer cell. For this task, it is important to discover a set of co-expressed genes with func-

tions, representing a so-called functional gene module, because co-expressed genes tend

to be co-regulated by the same regulators, including transcription factors, microRNAs, and

copy number aberrations. Several algorithms have been used to identify such gene mod-

ules, including hierarchical clustering and non-negative matrix factorization. Although these

algorithms have been applied to many microarray datasets, only a few systematic analyses

of these algorithms have been performed for RNA-sequencing (RNA-Seq) data to date.

Although gene expression levels determined based on microarray and RNA-Seq datasets

tend to be highly correlated, the expression levels of some genes differ depending on the

platforms used for analysis, which may result in the construction of different gene modules

for the same samples. Here, we compare several module detection algorithms applied to

both microarray and RNA-seq datasets. We further propose a new functional gene module

detection algorithm (FGMD), which is based on a hierarchical clustering algorithm that was

modified to reflect actual biological observations, including the fact that a single gene may

be involved in multiple biological pathways. Application of existing algorithms and the new

FGMD algorithm to breast cancer and ovarian cancer datasets from The Cancer Genome

Atlas showed that the FGMD algorithm had the best performance for most of the functional

pathway enrichment tests and in the transcription factor enrichment test. We expect that the

FGMD algorithm will contribute to improving the identification of functional gene modules

related to cancer.

Introduction

Cancer is primarily a genetic disease, and aberrations in the DNA sequence and expression of

multiple genes in cancer cells have been detected. Although many studies have identified the

candidate genes that play important roles in cancer development, the combinatorial effects of
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a set of genes, which may constitute a functional gene module, have not yet been fully eluci-

dated. Indeed, co-expressed genes across multiple samples have been frequently observed to

interact with each other and to participate in the same biological functions or signaling path-

ways [1]. A co-expressed gene network is generally represented as an undirected graph, where

the nodes represent genes and the edges represent the strength of relationships between them.

Functional gene modules often correspond to dense subnetworks of the co-expressed gene

network; thus, it is important to identify genes that are highly correlated in the network,

because cancer genes generally regulate other genes, directly or indirectly. A co-expressed

gene network is generally represented as an undirected graph, where the nodes represent

genes and the edges represent the strength of relationships between them. Several co-expres-

sion networks have been constructed to date and used to identify biomarkers such as hub

genes and disease candidate genes [2]. For example, GeneFriends [3] was developed to predict

novel candidate disease genes by expanding known disease genes based on a co-expression

network. Moreover, co-expressed genes are likely to be co-regulated by the same regulators [4]

such as a transcription factor (TF) or microRNA (miRNA). Genes under the control of the

same regulator or that are located in the same copy number aberration regions tend to exhibit

similar expression patterns [5–8].

An important step toward identifying such gene regulatory modules is to incorporate infor-

mation on the relationships among genes. For example, some genes are directly regulated by

TFs while others are indirectly regulated by TFs by interacting with the directly regulated

genes. Thus, when analyzing gene expression data, it is important to detect functional gene

modules in which the genes are highly inter-correlated and play a key role in cancer-related

functions and pathways.

Because gene expression levels can now be readily measured using microarray and RNA-

sequencing (RNA-Seq), in the present study, we aimed to systematically compare functional

gene modules identified from these two platforms using widely adopted algorithms. Further-

more, we developed a new algorithm to detect functional modules, and compared its perfor-

mance to that of the existing algorithms.

We first systematically compared gene expression data obtained by microarray and

RNA-Seq from breast invasive carcinoma (BRCA) samples available in The Cancer Genome

Atlas (TCGA) project [9]. Zhao et al. [10] reported that although the two platforms showed

similar tendencies in revealing expression changes for the same samples, some genes showed

significant differential expression between the microarray and RNA-Seq datasets. Therefore,

we computed several statistics representing the characteristics of the two datasets, including

coefficient of variation, total connectivity, density, centralization, and heterogeneity [11], and

measured the correlations of gene expression levels between the data generated from microar-

ray and RNA-Seq.

Second, we developed a functional gene module detection (FGMD) algorithm that starts

with seed gene pairs, expands these pairs to construct modules, combines similar modules,

and finally splits them into specialized modules by utilizing hierarchical clustering [12].

Although hierarchical clustering has been widely adopted for detecting functional gene mod-

ules, in these previous models, one gene is assumed to only belong to one module in a mutually

exclusive manner. Therefore, this method does not reflect the biological reality that a single

gene is often involved in several biological functions or signaling pathways. Nevertheless, hier-

archical clustering has several advantages. First, it easily establishes a variety of distance met-

rics that can be used to quantitatively determine the relationships among genes. Second, the

number of clusters can be determined using algorithms such as the “Dynamic Tree Cut” algo-

rithm [13], which can identify nested clusters and is robust to outliers. Thus, to derive the
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FGMD algorithm, we built a hierarchical clustering model that was extended to incorporate

the fact that one gene can be involved in many modules.

Third, we systematically compared the performance of several algorithms for detecting

functional gene modules based on module evaluation criteria for microarray and RNA-Seq

platforms. The SAMBA biclustering algorithm [14] finds subgraphs exhibiting consistent pat-

terns in a subset of conditions. Here, densely connected subgraphs of the bipartite graph are

considered as modules. Although this approach provides many significant modules enriched

in several pathways, the performance is highly dependent on the normalization method

adopted, data type, and size of the dataset. The non-negative matrix factorization (NMF) algo-

rithm [15] factorizes a gene expression matrix into the basis matrix and the coefficients matrix.

The membership of genes for a given module is determined through the basis matrix. Even

though NMF is widely used for module detection, it is difficult to find the optimal rank r that

determines the number of modules, and the performance is highly dependent on the rank r.
Weighted correlation network analysis (WGCNA) [16] constructs co-expression networks

and the co-expression similarity raised to a power. Then, hierarchical clustering with the

“Dynamic Tree Cut” algorithm is used to construct gene modules of the highly correlated

genes. Even though this approach can identify several biologically significant modules, the

genes in the module tend to show a relative lack of functional relevance. Moreover, in contrast

to the SAMBA biclustering algorithm and NMF algorithm, WGCNA does not reflect the fact

that one gene can be involved in multiple modules.

Finally, we constructed ovarian cancer (OVC) modules using gene and isoform expression

data. We first compared the gene and isoform expression data of RNA-Seq for an OVC dataset

from TCGA [17]. We then demonstrate that some validated gene–gene interaction (GGI)

pairs can only be captured based on isoform expression. In addition, we applied the FGMD

algorithm to the gene and isoform expression data and compared the respective modules con-

structed with the two datasets.

Materials and methods

Datasets and preprocessing

For the breast cancer data, we collected gene expression data for 492 tumor samples and 53

unmatched normal samples obtained from both microarray and RNA-Seq platforms published

in TCGA. Microarray and RNA-Seq data were generated from an Agilent G4502A and Illu-

mina HiSeq_RNA_Seq platform, respectively, and we used level-3 data in TCGA. To under-

stand the relationship between the two platforms, we extracted 14,352 genes that were

common to the microarray and RNA-Seq datasets. Because the RNA-Seq dataset contained

many genes with zero RPKM values [18], we replaced the zero values with the minimum non-

zero value. Then, gene expression values were normalized to the log2 ratio between values in

tumor samples and the average values of unmatched normal samples to obtain the relative

abundance values (Fig 1(A)).

For the ovarian cancer data, we collected RNA-Seq data for 291 tumor samples from TCGA

generated by the Illumina HiSeq_RNA_SeqV2 platform, which provides isoform-level expres-

sion as well as gene-level expression. Thus, we used 20,531 genes and 73,599 isoforms. Because

there were no available expression data for normal tissue samples, tumor expression values

were not normalized to those of normal samples in this case.

Comparison of gene expression data from microarray and RNA-Seq

We calculated the basic statistics of the gene expression values from the microarray and

RNA-Seq datasets, such as the minimum, maximum, average, and range. Similar to Iancu
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Fig 1. Overview of our approach. (A) Collect gene expression data obtained from microarray and RNA-Seq platforms for paired samples, and calculate the

log2 ratios between tumor samples and the average of normal samples. (B) Compare gene expression data of the microarray and RNA-Seq datasets. (C)

Construct FGMD modules using the microarray and RNA-Seq gene expression data. Further details are provided in Fig 2. (D) Compare the modules

constructed by FGMD to those constructed by other methods. PCC, Pearson correlation coefficient; TF, transcription factor.

https://doi.org/10.1371/journal.pone.0188900.g001

FGMD: A novel approach for functional gene module detection in cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0188900 December 15, 2017 4 / 29

https://doi.org/10.1371/journal.pone.0188900.g001
https://doi.org/10.1371/journal.pone.0188900


et al. [11], we computed the absolute values of the Pearson correlation coefficient (PCC)

matrix between all gene pairs and further examined gene pairs with a large difference in abso-

lute PCC values between the microarray and RNA-Seq data. Let aij = |corr(xi, xj)|, which indi-

cates the connection strength. For each gene, the total node connectivity is computed as ki = ∑j

aij, representing the sum of the absolute PCC values between gene i and all other genes. The

coefficient of variation was calculated as the standard deviation of the connection strengths

divided by the average of the connection strengths. In addition, global network statistics were

computed using the following equations:

Density ¼
P

i

P
jaij

nðn � 1Þ

Centralization ¼
maxðkÞ

n
� Density

Heterogeneity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varianceðkÞÞ

p

meanðkÞÞ

where k = {k1, k2, k3, . . ., kn}, and n represents the number of genes.

Comparison of gene and isoform expression data of RNA-Seq

We examined the minimum, 25th percentile, median, 75th percentile, and maximum expres-

sion values, and filtered out genes and isoforms whose expression values were close to zero. In

addition, we computed the PCC values of isoform expression levels between gene pairs in

GGIs from the Human Protein Reference Database (HPRD) [19]. Then, we compared the

PCC values of gene expression for the same gene pairs in the GGI. Note that for isoform

expression, we used the maximum value of the PCC values among all combinations of isoform

pairs corresponding to the genes.

FGMD algorithm

We here present the FGMD algorithm, which extends the hierarchical clustering algorithm to

incorporate the actual biological observation that a gene is often involved in multiple functions

or pathways (Fig 1(C)). We first selected seed gene pairs and constructed modules by expand-

ing the gene pairs using a greedy approach. We then performed a merging process and a split

process to identify functional gene modules. Fig 2 provides an overview of the FGMD algo-

rithm and details are described below.

Step 1. Extraction of seed gene pairs based on PCC values. A PCC matrix is constructed,

where the similarity between genes is measured using an absolute PCC value. We select gene

pairs with the top S% of PCC values as seed gene pairs (S = 0.005), and construct a seed gene

pair network, where the nodes are genes and the edges are connected between seed gene pairs;

one gene can belong to multiple pairs. In the seed gene pair network, we compute the degree

of a gene as the number of connected genes through the seed gene pair edges. If one gene is

connected to too many genes or to only a few genes, the gene (along with its connected edges)

will be filtered out because genes with high connectivity to other genes generate similar mod-

ules, while genes related to few genes result in small-sized modules. Specifically, genes in the

seed gene pair network are filtered out if the degree of the genes is smaller than Dmin = 5 or

larger than Dmax = the degree of the top 0.1% of genes when genes are ordered by the degrees

in the network. Note that even if one gene in a pair is filtered out, the paired gene can remain

if it still satisfies the degree condition above.
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Fig 2. Overview of the FGMD algorithm. (A) Extract seed gene pairs that show high Pearson correlation coefficient (PCC) values and satisfy degree

constraints. (B) Construct seed gene pair expansion (SPE) modules by expanding seed gene pairs. (C) Combine similar modules based on the

overlap ratio using hierarchical clustering with “Dynamic Tree Cut.” (D) Construct FGMD modules by applying hierarchical clustering to each large

module.

https://doi.org/10.1371/journal.pone.0188900.g002
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Step 2. Seed gene pair expansion. We next construct modules based on seed gene pairs. A

seed gene pair is regarded as an initial module. Then, k candidate genes, representing the num-

ber of genes added to the module at a time (here, k = 10), are selected that satisfy the following

conditions:

(i) The similarity between genes in a module and a candidate gene is determined to be the

minimum PCC value (Pmin) among all PCC values between the candidate gene and

genes in the modules.

(ii) Pmin is higher than the module threshold M. The module threshold M is determined as

the top 1% of PCC values in the PCC matrix.

(iii) Genes not satisfying degree constraints are excluded to reduce redundancy among

modules.

(iv) Among genes satisfying (i), (ii), and (iii), k genes with the largest Pmin values are selected

as candidate genes.

The above procedure is iterated until there are no more genes satisfying the conditions. The

final constructed modules are termed seed gene pair expansion (SPE) modules. In the expan-

sion process, one gene can be selected by multiple seed gene pairs so that several modules may

overlap with each other.

Step 3. Merging similar modules. In some cases, the overlap between some SPE modules

might be too large. We can therefore measure the overlap ratio between modules using the fol-

lowing equation and construct an overlap ratio matrix.

overlap ratioðm1;m2Þ ¼
jm1\m2j

jm1[m2j
;

where m1 and m2 are the numbers of genes in the two modules. We used a hierarchical cluster-

ing method to control the overlap ratio. The dissimilarity matrix is (1—overlap ratio matrix),

and highly overlapped modules are grouped into the same cluster using hierarchical clustering

followed by Dynamic Tree Cut [13], which starts with a few large clusters in the dendrogram,

and adaptively iterates for cluster decomposition and combination. Then, we construct new

modules by merging genes in the same cluster. These modules are referred to as “large

modules.”

Step 4. Construction of functional gene modules. Finally, we reconstruct the modules by

dividing the large modules into smaller modules. For each large module, genes in the module

are clustered using the hierarchical clustering algorithm with (1 − PCC of expression levels

between two genes) as the dissimilarity values. Then, highly correlated genes are grouped into

a cluster using the Dynamic Tree Cut algorithm. As a result, “FGMD modules” are con-

structed, where genes overlap among modules with a proper overlap ratio. Source codes for

the FGMD algorithm are available at http://gcancer.org/FGMD.

Module validation

For validation, we employed several module evaluation criteria, including in-module PCC val-

ues, overlap ratio among modules, enrichment of functional pathways, enrichment of the tar-

gets of TFs, and the ratio of cancer-related genes.

We performed enrichment tests of the modules for Gene Ontology (GO) biological pro-

cesses, Kyoto Encyclopedia Gene and Genome (KEGG) pathways, and BioCarta pathways to

validate the functional relevance of the identified modules. First, we downloaded information

of these pathways from the Gene Set Enrichment Analysis (GSEA) database (http://www.
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broadinstitute.org/gsea). Then, we excluded biological functions and signaling pathways asso-

ciated with less than three genes and more than 300 genes to exclude any modules that were

either too specific or too general. Second, for each term, we computed a p-value using a hyper-

geometric test and adjusted it to a q-value based on the Benjamini-Hochberg multiple compar-

ison correction method; terms with a q-value< 0.05 were considered statistically significant.

The TF enrichment test was performed according to the same method employed for the func-

tional pathway enrichment test. Allocco et al. [4] observed that co-expressing genes tended to

be regulated by the same TFs. Hence, if some modules are enriched with target genes regulated

by TFs, these modules are likely to be regulated by the same TF in either a direct or indirect

manner.

We collected information on BRCA-related genes from the Breast Cancer Database (http://

www.breastcancerdatabase.org), which contains BRCA genes altered at the DNA, RNA, and

protein levels as well as drug-induced altered genes. The dataset originally contained informa-

tion on 2,958 BRCA genes. Among them, we extracted 2,544 BRCA genes in common with

our gene set, indicating that 17.7% of the genes in our dataset are BRCA-related genes. We

then computed the ratio of BRCA genes in the modules and computed the p-values. 567 cancer

gene census (CGC) genes and 2,027 cancer-related genes were collected from Cancer Gene

Census (http://cancer.sanger.ac.uk/census) [20] and the Bushman lab (http://www.

bushmanlab.org/links/genelists) [20–23], respectively.

In addition, we evaluated the statistical significance of the genes in the modules based on

the null hypothesis that the average PCC values of genes in modules are similar to the average

PCC values of genes in random modules of the same size. For each module, we performed the

following test.

(i) Calculate moduleavg, the average of the PCC values of genes in modules without diago-

nal elements.

(ii) Construct random gene modules by randomly selecting genes from a gene expression

matrix.

(iii) Calculate randomavg(i), the average of the PCC values of genes in the ith random module

without diagonal elements.

(iv) Repeat (ii) and (iii) N times.

(v) Calculate the p-value using the following equation.

p� value ¼
PN

i¼1
Iðmoduleavg < randomavgðiÞÞ

N

We used N = 1,000, and the p-values were corrected to q-values to address multiple compar-

ison issues using the Bonferroni correction.

Performance comparisons

The performance of five existing module detection algorithms was compared to that of the

FGMD algorithm using the same gene expression data. Because some algorithms, including

FGMD, generate too small or too large modules, we removed modules containing less than 10

genes or more than 300 genes. Similarly, for the isoform modules, only modules containing

more than 10 and less than 500 isoforms were used. Modules generated by the algorithms are
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referred to as M1–M9. Modules M1–M8 are described in the following sections, and M9 refers

to modules generated by the FGMD algorithm.

Hierarchical clustering: M1 and M2. Hierarchical clustering [12] iteratively combines

small clusters into larger clusters. Because the Euclidean distance and PCC are widely used

metrics for constructing a dissimilarity matrix, we constructed the modules using these two

metrics as the dissimilarity matrix, referred to as M1 and M2, respectively. We performed hier-

archical clustering using the ‘hclust’ package in R.

K-means clustering: M3. In the K-means algorithm [24], the parameter k, representing

the number of clusters, needs to be pre-determined. Here, we set k to 1000, which could gener-

ate many singleton clusters. Based on the module selection criteria, the singleton clusters were

deleted and the remaining clusters were used as modules (M3). We performed K-means clus-

tering using EXPANDER software [25].

CLICK clustering: M4. CLICK clustering [26] utilizes graph-theoretic and statistical tech-

niques, where the data are modeled as a weighted graph. In this graph, the vertices are genes

and the edge weights represent the degree of similarity between genes. The graphs are parti-

tioned into components based on the minimum cut algorithm, and similar clusters were itera-

tively merged (M4). We performed CLICK clustering using EXPANDER software [25].

SAMBA biclustering: M5. The SAMBA biclustering algorithm [14] finds subgraphs

exhibiting consistent patterns in a subset of conditions. One of the key advantages of the

biclustering algorithm is to allow overlaps among modules, reflecting the biological fact that

one gene may be related to several functions. This algorithm models gene expression data as a

bipartite graph, where one part is a set of genes and the other is a set of samples. Edges are

linked between genes and conditions if the expression values of a subset of genes are signifi-

cantly altered in a subset of the samples, representing high correlations. As a result, subgraphs

of the bipartite graph are output as functional gene modules (M5). We performed the SAMBA

biclustering using EXPANDER software [25].

NMF: M6 and M7. NMF [15] factorizes a matrix V into two matrices, W and H, where all

three matrices have only non-negative values. NMF attempts to find a small number of meta-

genes that represent a linear combination of m genes [15]. A gene expression matrix with size

m × n is factorized into matrix W with size m × r and into matrix H with size r × n, where r is

the rank. In these matrices, each column r in W defines metagenes and column n in H repre-

sents the gene expression of metagenes for corresponding samples. Because the BRCA gene

expression dataset includes negative values, we converted these to non-negative values accord-

ing to the procedure outlined in Kim and Tidor [27]. We created two matrices, containing

only positive or negative values from the original gene expression matrix, respectively. Other

values in the two matrices were set to zero, and the negative matrix was converted to the posi-

tive matrix by multiplying by -1. Finally, the two matrices were combined to m by a 2n matrix

that only contains positive values. We performed NMF using the “NMF” package in R. This

package implements the NMF algorithm based on Kullback-Leibler divergence, which was

previously used to reduce the dimensions of gene expression data [28]. In determining the

membership of genes for each module, we used a method proposed by Kim and Park [29].

First, the basis matrix W was converted to probability scores to easily interpret the contribu-

tion of each gene to each module. Then, we selected genes whose values were higher than

ûðmedianÞ þ 3ŝðmedian absolute deviationÞ and whose maximum contribution in the row of

the basis matrix W was greater than the median of all values.

In the NMF algorithm, it is important to appropriately choose the rank r, which defines the

size of the matrix and thus determines the number of modules. However, the estimation pro-

cess to identify the optimal rank r that can reconstruct a matrix to most closely match the orig-

inal matrix is time-consuming and could generate many singleton modules. Hence, we
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performed NMF using ten r values (r = 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100), and selected

one rank r based on the sum of the ratio of modules enriched in GO, KEGG, BioCarta, and

TF, and the ratio of cancer genes (M6). We define this rank r as the best rank.

In addition, we combined all modules generated by a set of the ten rank values using a

greedy approach (M7). First, we computed the overlap ratio between modules. Second, we

found two modules that represent the maximum overlap and merged them until no modules

with an overlapping ratio > 0.5 remained.

WGCNA: M8. WGCNA [16] can be used to construct modules of highly correlated

genes. First, a gene network is constructed based on the absolute values of correlation coeffi-

cients. Then, hierarchical clustering with the “Dynamic Tree Cut” algorithm is used for mod-

ule detection. To handle large datasets, all nodes are divided into large clusters called “blocks”,

and then hierarchical clustering is applied to each block and the resulting modules are merged,

whose eigengenes are highly correlated. As a result, WGCNA outputs modules of highly corre-

lated genes (M8). We performed the WGCNA algorithm using the “WGCNA” package in R.

Results

Comparison of BRCA gene expression data from microarray and

RNA-Seq

We compared the expression profiles of the 14,352 genes identified from the microarray and

RNA-Seq datasets. The result showed a broader range in the expression values from RNA-Seq

than those from the microarray (S1 Fig). In addition, we computed the absolute PCC values

among all gene pairs from both datasets. When comparing the absolute PCC values for gene

pairs using a pairwise t-test, RNA-Seq showed higher PCC values than microarray with a p-

value < 2.2e-16 (S2(A) Fig). In addition, we computed the difference in absolute PCC values

between the microarray and RNA-Seq data for the same gene pairs. The average of all differ-

ences was 0.06, implying that most of the relationships between genes were similarly repre-

sented in the two platforms (S2(B) Fig). However, some gene pairs showed a significant

difference (e.g., 43,339 pairs had a difference in PCC values> 0.5), implying that the relation-

ship between some genes might only be detectable in one platform. The average PCC value for

the same genes common to both microarray and RNA-Seq was 0.683, demonstrating the simi-

lar tendency of identifying expression changes in the two platforms (S3 Fig). Moreover, our

results showed that a gene network based on expression values measured using RNA-Seq has

higher density and variability, although the gene network from the microarray showed slightly

higher centralization than that from RNA-Seq. Details are described in the Supplementary

Information (S1 File).

Comparison of OVC gene and isoform expression from RNA-Seq

We next compared the gene and isoform expression profiles for the OVC dataset. We first

checked the range of expression values for 20,531 genes and 73,599 isoforms in 291 samples.

Considering the data distribution, we filtered 25% and 50% of the lowly expressed genes and

isoforms, respectively, based on average expression values that were close to zero, and addi-

tionally filtered genes or isoforms whose values were zero for more than half of the samples.

After filtering, we used 15,374 genes and 35,535 isoforms for the construction of FGMD mod-

ules. We also compared the distribution of PCC values for genes in validated GGI pairs using

gene expression and isoform expression data (S4(A) Fig). The result showed that the PCC val-

ues of the isoform expression levels were slightly higher than those of gene expression levels.

Of the 31,006 GGI pairs, 1,046 showed large differences in PCC values (> 0.3) (S4(B) Fig).
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This result demonstrates that although many studies regularly combine expression data for a

set of isoforms of a single gene, using the isoform expression itself can help to construct differ-

ent functional gene modules. Further details are described in the Supplementary Information

(S1 File).

Construction of BRCA FGMD modules

Extraction of seed pairs based on absolute PCC values. For the microarray, we set the

seed threshold and the module threshold as the default values: top 0.005% (0.828) and top 1%

(0.402) of the absolute PCC values, respectively. For each gene, we computed the degree of

genes, representing the number of linked genes, via the seed pair edges. For the two genes in

seed pairs, we restricted the degree of genes from 5 to 70 (0.1% of the degree of all genes). As a

result, 3,469 seed pairs consisting of 320 genes were extracted (Step 1). For RNA-Seq, we set

the seed threshold and the module threshold as the top 0.005% (0.842) and top 1% (0.456) of

the absolute PCC values, respectively. We then computed the degree of genes for each gene.

For the two genes in the seed pairs, we restricted the degree of genes from 5 to 73. As a result,

3,335 seed pairs consisting of 350 genes were extracted (Step 1).

Seed gene pairs expansion and construction of FGMD modules. As described in the

Methods section, we expanded seed gene pairs using the greedy approach and constructed

SPE modules. Then, we constructed large modules by combining similar modules based on

the overlap ratio among modules. For applying the Dynamic Tree Cut algorithm, we used

default parameters (maxTreeHeight = 1, deepSplit = TRUE, and minModuleSize = 50).

For the microarray data, the algorithm began with 3,469 seed gene pairs as the initial SPE

modules. Then, the SPE modules were expanded by determining the 10 genes with the highest

PCC values, which were added to the SPE modules. This process was repeated until no further

genes could be added. As a result, 3,469 SPE modules were constructed (185 genes per module,

Step 2). Second, we computed the overlap ratio matrix between the 3,469 SPE modules. Hier-

archical clustering was then performed, and nine large modules were constructed (361 genes

per module, Step 3). Similarly, for the RNA-Seq data, 3,335 seed gene pairs were first consid-

ered as the initial SPE modules, which were expanded to construct 3,335 SPE modules (209

genes per modules, Step 2). The combination of similar SPE modules resulted in the construc-

tion of 16 large modules (289 genes per module, Step 3).

We divided the large modules into functional gene modules. For the microarray data, we

performed hierarchical clustering with the absolute PCC matrix for each of the nine large

modules. As a result, 32 FGMD modules were constructed (Step 4). For the RNA-Seq data,

hierarchical clustering with the PCC matrix for each of the 16 large modules resulted in the

construction of 44 FGMD modules (Step 4).

Comparison of the performance of different algorithms for the BRCA

modules

We compared the modules generated by the existing methods (M1–M8) and the FGMD algo-

rithm (M9) using the BRCA data. The genes in modules identified with microarray and RNA-

seq are listed in S1 and S2 Tables, respectively. In addition, the highest rank r in NMF was

selected based on the results shown in S3 Table. As shown in Table 1, most of the modules

exhibited statistical significance in a permutation test. In particular, the NMF (M6 and M7)

and FGMD (M9) modules showed relatively high in-module PCC values for both the microar-

ray and RNA-Seq data, demonstrating that the expression levels of genes in these modules are

highly correlated. The number of genes can differ depending on the algorithm adopted, since

most algorithms generate only highly correlated clusters.
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We performed functional pathway enrichment tests using GO biological processes, and the

KEGG and BioCarta pathways to validate the functional relevance of the constructed modules.

Although the numbers of unique genes included in the modules differed depending on the

algorithm adopted, the q-value of each module in the enrichment test was calculated by the

hypergeometric test, where the background number of genes was set to the number of human

genes included in the datasets (14,352 and 20,531 genes for breast cancer and ovarian cancer,

respectively). We considered pathways with a q-value< 0.05 as statistically significant. The

results are shown in Table 2 for the KEGG pathways and S4 Table for GO biological processes

and the BioCarta pathways. The enriched pathways are listed in S5–S13 Tables for the microar-

ray data and in S14–S22 Tables for the RNA-Seq data. Module evaluation criteria included the

ratio of enriched modules and the number of enriched terms per module. Compared to the

existing algorithms, our FGMD algorithm showed the highest performance for all functional

pathway enrichment tests in the microarray data, and for all enrichment tests except for the

ratio of enriched modules in KEGG pathways for the BRCA RNA-Seq data.

We also performed a TF enrichment test to determine the modules co-regulated by TFs.

Table 2 shows the results of the TF enrichment tests for each method. Enriched TFs are listed

in S23 Table for the microarray data and in S24 Table for the RNA-Seq data. The module eval-

uation criteria for this test included the ratio of enriched modules and the number of enriched

TFs per module. Again, the FGMD modules showed the highest performance in the TF enrich-

ment test compared to the other methods.

In addition, we compared the ratio of BRCA genes identified with each algorithm (Table 2).

The details of BRCA genes in each module are provided in S25 and S26 Tables. For the micro-

array data, the FGMD modules provided a higher ratio of BRCA genes than the other

Table 1. Module statistics of BRCA modules using microarray and RNA-Seq data derived with different algorithms. “Mean of # of genes in modules”

represents the average of the number of genes in the modules. “# of unique genes” represents the number of genes for all modules without duplication. “Aver-

age occurrence of genes” indicates the number of modules in which a given gene is included. “Mean of in-module PCC values” represents the average of

PCC values among genes in the modules. “# of significant modules” represents the number of modules whose PCC value among genes is higher than that of

random modules based on the permutation test.

BRCA modules using microarray

Statistics M1 M2 M3 M4 M5 M6 M7 M8 M9

# of modules 311 305 86 90 206 10 40 37 32

Mean of # of genes in modules 43.52 42.59 63.69 79.94 112.41 100.4 73 57.05 88.01

# of unique genes 13,535 12,989 5,477 7,195 3,813 1,004 1,351 2,111 963

Ratio of module duplication 0 0 0 0 0.036 0 0.022 0 0.072

Average occurrence of genes 1 1 1 1 6.07 1 2.16 1 2.92

Mean of in-module PCC values 0.233 0.300 0.401 0.270 0.291 0.531 0.526 0.460 0.660

# of significant modules 219 269 85 90 193 10 40 37 32

BRCA modules using RNA-Seq

Statistics M1 M2 M3 M4 M5 M6 M7 M8 M9

# of modules 301 323 48 56 291 7 21 84 44

Mean of # of genes in modules 47.84 40.70 89.17 91.41 89.60 44.14 51.86 54.08 90

# of unique genes 13,196 13,147 4,280 5,119 4,094 309 580 4,543 1,172

Ratio of module duplication 0 0 0 0 0.025 0 0.030 0 0.070

Average occurrence of genes 1 1 1 1 6.37 1 1.88 1 3.37

Mean of in-module PCC values 0.292 0.353 0.363 0.317 0.237 0.643 0.707 0.467 0.694

# of significant modules 226 276 45 56 215 6 20 84 44

https://doi.org/10.1371/journal.pone.0188900.t001
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methods, except for the SAMBA modules (M5). However, this high ratio of BRCA genes using

SAMBA was due to a large number of overlaps among modules. Considering only the unique

genes of the FGMD modules and SAMBA modules to determine the ratio of BRCA genes for

the microarray data, the FGMD modules contained a higher ratio of BRCA genes (288 of 963,

29.9%) compared to those in the SAMBA module (1,032 of 3,813, 27.0%). Furthermore, for

the RNA-Seq data, the FGMD modules showed the highest ratio of BRCA genes compared to

the other methods, except for the NMF modules (M6 and M7). However, the numbers of

NMF modules were too small, consisting of only 309 genes for M6 and 580 genes for M7,

whereas the FGMD modules consisted of 1,172 genes. Therefore, although the ratio of BRCA

genes was slightly lower with the FGMD method, these results demonstrate the high potential

of FGMD to find novel BRCA genes or functional pathways.

Fig 3 illustrates a BRCA module (module 40) that contains 62 genes, representing a highly

correlated dense network. In this module, 20 genes (shown in pink) are likely to be BRCA-

related genes in the Breast Cancer Database (http://www.breastcancerdatabase.org). Thirteen

Table 2. KEGG pathway and TF enrichment tests for BRCA modules using microarray and RNA-Seq data derived with different algorithms. “# of

enriched modules” indicates the number of modules enriched with at least one KEGG pathway. “Ratio of enriched modules in KEGG” is computed by “# of

enriched modules in KEGG” divided by “# of modules.” “# of enriched KEGG terms per module” is computed by “# of enriched KEGG terms” divided by “# of

modules.” “# of enriched modules” indicates the number of modules enriched with at least one TF. “Ratio of enriched modules in TF” is computed by “# of

enriched modules in TF” divided by “# of modules.” “# of enriched TF per module” is computed by “# of enriched TF” divided by “# of modules”.

BRCA modules using microarray

Statistics M1 M2 M3 M4 M5 M6 M7 M8 M9

# of modules 311 305 86 90 206 10 40 37 32

# of enriched modules in KEGG 51 62 27 18 97 52 20 11 29

Ratio of enriched modules in KEGG 0.164 0.203 0.314 0.2 0.471 0.8 0.5 0.297 0.906

# of enriched KEGG terms 136 163 110 43 340 52 192 37 270

# of enriched KEGG terms per module 0.437 0.534 1.797 1.989 2.782 5.2 4.8 1.0 8.438

# of enriched modules in TFs 34 53 24 28 63 6 13 13 24

Ratio of enriched modules in TFs 0.109 0.174 0.279 0.311 0.306 0.600 0.325 0.351 0.75

# of enriched TFs 178 387 154 179 573 22 80 133 116

# of enriched TFs per module 0.572 1.269 1.797 1.989 2.782 2.200 2.000 3.594 3.625

Ratio of BRCA genes 0.182 0.180 0.280 0.147 0.371 0.224 0.185 0.231 0.295

Ratio of CGC genes 0.035 0.037 0.043 0.037 0.044 0.042 0.046 0.041 0.057

Ratio of Cancer genes 0.125 0.122 0.168 0.109 0.172 0.151 0.126 0.123 0.189

BRCA modules using RNA-Seq

Statistics M1 M2 M3 M4 M5 M6 M7 M8 M9

# of modules 301 323 48 56 291 7 21 84 44

# of enriched modules in KEGG 56 66 20 11 117 6 11 13 36

Ratio of enriched modules in KEGG 0.186 0.204 0.417 0.196 0.402 0.857 0.523 0.154 0.818

# of enriched KEGG terms 166 189 86 32 567 39 98 43 443

# of enriched KEGG terms per module 0.551 0.585 1.792 0.571 0.513 5.571 4.666 0.512 10.068

# of enriched modules in TFs 45 63 19 19 86 3 10 22 37

Ratio of enriched modules in TFs 0.15 0.206 0.396 0.339 0.296 0.429 0.476 0.261 0.84

# of enriched TFs 202 452 293 105 758 13 67 117 291

# of enriched TFs per module 0.67 1.474 6.104 1.875 2.605 1.857 3.19 1.392 6.614

Ratio of CGC genes 0.038 0.035 0.037 0.033 0.034 0.032 0.035 0.039 0.055

Ratio of BRCA genes 0.185 0.180 0.234 0.159 0.257 0.304 0.314 0.159 0.281

Ratio of Cancer genes 0.126 0.121 0.156 0.111 0.14 0.168 0.169 0.104 0.193

https://doi.org/10.1371/journal.pone.0188900.t002
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genes (in yellow) are listed as potentially BRCA-related genes in DigSee [29], with supporting

statements from the literature. In addition, three of the seven enriched KEGG pathways, T cell

receptor signaling pathway, chemokine signaling pathway, and cytokine–cytokine receptor

interaction, were represented in this module. These pathways have been previously related to

BRCA [30–32], and most of the genes involved in these pathways have been shown to be

BRCA-related genes. Thus, we expect that LYN and IL12RB1 are likely to be related to BRCA,

because they are highly correlated with BRCA-related genes and belong to the same pathways.

Indeed, there is support for an association of these two genes with BRCA in the literature [33,

34]. These observations support that the genes in modules interact with each other and play

critical roles in BRCA at the pathway level.

Our results demonstrated some key disadvantages of the NMF approach for detecting func-

tional gene modules. First, the performance is highly dependent on the rank r, and determin-

ing the optimal rank r or a set of rank R is time-consuming and optimal performance is not

guaranteed. Second, the NMF modules (M6) contained a small number of modules, with only

Fig 3. Network presentation of BRCA module 40 using RNA-Seq. In this network, nodes represent genes: pink nodes indicate BRCA genes

supported by the Breast Cancer Database (http://www.breastcancerdatabase.org), yellow nodes indicate BRCA genes supported by DigSee [29],

and purple nodes indicate cancer genes obtained from http://www.bushmanlab.org/links/genelists. A red line indicates that the PCC value between

genes is larger than 0.842 (the seed threshold) and a gray line indicates that the PCC value between genes is larger than 0.650 (0.1%). A purple line

indicates that the linked genes are enriched together with at least one function, and a dotted ellipse represents genes included in the enriched

pathway. For example, CD28, CD3E, LCK, CO3D, PIK3CD, and CD40 are enriched with at least one function together (T-cell receptor signaling

pathway).

https://doi.org/10.1371/journal.pone.0188900.g003
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one gene belonging to one module. In addition, because we selected the best rank r in R based

on the sum of the ratios of enriched modules in the GO processes, KEGG and BioCarta path-

ways, TF, and the ratio of BRCA genes, high performance is necessarily achieved. Although

the NMF modules (M6) have the main advantage of incorporating more information com-

pared to the other approaches, the performance of this method was not the best.

Construction of FGMD modules for OVC

Extraction of seed pairs based on absolute PCC values. For the OVC gene expression

data, we set the seed threshold and the module threshold as the top 0.005% (0.832) and top 1%

(0.365) of the absolute PCC values, respectively. For each gene, we computed the degree of

genes and restricted the degree of genes from 5 to 68 for the two genes in seed pairs. As a

result, 3,507 seed pairs consisting of 469 genes were extracted (Step 1).

For the OVC isoform expression data, we set the seed threshold and the module threshold

as the top 0.005% (0.756) and top 1% (0.347) of absolute PCC values, respectively. For each

gene, we computed the degree of isoforms. For the two isoforms in seed pairs, we restricted

the degree of isoforms from 5 to 130. As a result, 18,729 seed pairs consisting of 1,759 isoforms

were extracted (Step 1).

Seed pairs expansion and construction of FGMD modules. For the gene expression

data, 3,507 seed gene pairs were used as the initial SPE modules, and expansion of the SPE

modules resulted in the construction of 3,507 SPE modules (151 genes per module, Step 2).

Then, based on hierarchical clustering, 15 large modules (217 genes per module, Step 3) were

constructed. Similarly, for the isoform expression data, after starting with 18,729 seed pairs as

the initial SPE modules, 18,729 SPE modules (205 isoforms per module, Step 2) and 88 large

modules (306 isoforms per module, Step 3) were constructed.

Hierarchical clustering for each of the 15 and 88 large modules resulted in the construction

of 28 and 245 FGMD modules for the gene expression and isoform expression data, respec-

tively (Step 4).

Comparison of the performance of different algorithms for OVC modules

We compared the modules generated by the existing methods (M1–M8) and the FGMD algo-

rithm (M9) using the OVC data. As shown in Table 3, most of the modules exhibited signifi-

cance in the permutation test. The specific genes and isoforms in the modules for each method

are listed in S27 and S28 Tables, respectively. Note that the best rank r in NMF was selected

based on the results shown in S29 Table.

We performed the functional pathway enrichment test to validate the functional relevance

of the modules. Table 3 and S30 Table show the comparison results of the functional pathway

enrichment tests of gene and isoform expression data for each method. Enriched pathways are

listed in S31–S39 Tables for gene expression and in S40–S48 Tables for isoform expression.

The results showed that our FGMD algorithm had the highest performance for all functional

pathway enrichment tests for both the gene and isoform expression data.

Fig 4 illustrates OVC module 3 that contains 96 genes, representing a highly correlated

dense network. In this module, nine genes (in yellow) were identified as OVC-related genes in

DigSee [29], with supporting evidence from the literature. In addition, four of the five enriched

KEGG pathways, Toll-like receptor signaling pathway, chemokine signaling pathway,

JAK-STAT signaling pathway, and cytokine–cytokine receptor interaction, were represented

in the module. These pathways have been reported to be related to OVC [35–38]. Moreover,

most of the OVC genes were represented intensively in these pathways. In particular, the genes

enriched in these pathways show high potential to be OVC-related genes. Several studies have
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also supported that TNFRSF9, TNFRSF1B, PIK3R5, HCK, TLR7, and TLR8 were related to

OVC [35, 39–42]. Furthermore, genes in this module are highly correlated with each other,

and thus might play important roles in OVC.

We also performed the TF enrichment test to check modules that contain genes co-regu-

lated by TFs. Table 4 also shows the results of the TF enrichment test for each method.

Enriched TFs are listed in S49 Table for gene expression data and in S50 Table for isoform

expression data. Based on the module evaluation criteria of the ratio of enriched modules and

the number of enriched TF per modules, the FGMD modules showed the highest performance

in the TF enrichment test. On the other hand, the ratios of CGC genes and cancer genes were

not higher compared to those of some other methods. Thus, the overall rankings of all compar-

ing methods are evaluated in the Discussion section.

Comparison of BRCA FGMD modules using microarray and RNA-Seq

data

For BRCA, we compared modules based on the microarray and RNA-Seq data constructed by

the FGMD algorithm. Fig 5 shows the distribution of the number of modules according to the

absolute difference in the average of PCC values of the genes in the two platforms. For gene

pairs in a module identified by microarray, the PCC values of expression levels were calculated,

and then the PCC values of all gene pairs were averaged. For the same gene pairs, the average

PCC of expression levels obtained from the RNA-seq data was calculated. The difference

between the two average PCC values is shown in Fig 5(A). Similarly, using gene pairs in a mod-

ule identified by RNA-seq, the average PCC value was obtained. For the same gene pairs, the

average of the PCC values of expression levels obtained from the microarray was calculated.

Table 3. Module statistics of OVC modules using gene and isoform expression data with different algorithms. “Mean of # of genes (or isoforms) in

modules” represents the average of the number of genes (or isoforms) in the modules. “# of unique genes (or isoforms)” represents the number of genes (or

isoforms) for all modules without duplication. “Average occurrence of genes (or isoforms)” indicates the number of modules in which a given gene (or isoform)

is included. “Mean of in-module PCC values” represents the average of PCC values among genes (or isoforms) in the modules. “# of significant modules” rep-

resents the number of modules whose PCC value among genes (or isoforms) is higher than that of random modules based on the permutation test.

OVC modules using gene expression

Statistics M1 M2 M3 M4 M5 M6 M7 M8 M9

# of modules 327 336 24 115 94 32 166 105 28

Mean of # of genes in modules 43.98 41.41 63.83 91.41 180.94 29.44 32.48 50.10 91.57

# of unique genes 14,381 13,914 1,532 10,512 1,817 942 1,553 5,260 989

Ratio of module duplication 0 0 0 0 0.094 0 0.012 0 0.060

Average of occurrence of genes 1 1 1 1 9.36 1 3.471 1.0 2.592

Mean of in-module PCC values 0.176 0.343 0.296 0.251 0.094 0.368 0.261 0.459 0.653

# of significant modules 230 330 18 115 18 32 140 105 28

OVC modules using isoform expression

Statistics M1 M2 M3 M4 M5 M6 M7 M8 M9

# of modules 754 800 27 149 17 23 127 133 245

Mean of # of isoforms in modules 44.78 40.95 86.44 166.02 32.05 29.39 35.13 74.00 91.29

# of unique isoforms 33,763 32,756 2,334 24,737 451 676 1,722 9,842 4,822

Ratio of module duplication 0.170 0 0 0 0.017 0 0.013 0 0.022

Average of occurrence of isoforms 1 1 1 1 1.21 1 2.591 1 4.638

Mean of in-module PCC values 0.170 0.324 0.294 0.228 0.234 0.450 0.281 0.445 0.598

# of significant modules 485 781 26 149 13 23 112 133 245

https://doi.org/10.1371/journal.pone.0188900.t003
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The differences between the two average PCC values are shown in Fig 5(B). For most modules,

the same gene pairs showed high PCC values in the other platform (microarray or RNA-Seq);

however, some modules contained genes that were highly correlated only in one platform.

Among the modules obtained from the microarray, only module 2 showed large differences

with RNA-Seq and was not enriched with GO biological processes, or with KEGG and Bio-

Carta pathways. Among modules from RNA-Seq with large differences from those of the

microarray, modules 14, 12, 15, and 38 were not enriched in any pathway. The fact that 36 of

44 modules were enriched suggests that modules that are captured only in one platform might

not be functionally associated. This finding implies that the two platforms can be utilized as a

validation tool of modules constructed by one or the other platform.

Fig 4. Network presentation of OVC module 3 using gene expression data. In this network, nodes represent genes: yellow nodes indicate OVC

genes supported by DigSee [29], purple nodes indicate cancer genes obtained from http://www.bushmanlab.org/links/genelists, and green nodes

indicate the remaining genes. A red line indicates that the PCC value between genes is larger than 0.832 (the seed threshold) and a gray line

indicates that the PCC value between genes is larger than 0.579 (0.1%). A purple line indicates that the linked genes are enriched together with at

least one function, and a dotted ellipse includes genes enriched in the same pathway.

https://doi.org/10.1371/journal.pone.0188900.g004
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Comparison of OVC FGMD modules using gene and isoform expression

data

For OVC, we compared the modules generated from the gene and isoform expression levels

constructed by the FGMD algorithm. For most modules, those constructed according to gene

expression data could also be constructed using the isoform expression data, because gene

expression levels tend to be highly correlated with at least one of the isoforms of the gene. In

addition, isoforms of the same gene were frequently correlated, and were therefore included in

the same module. Furthermore, when computing the overlap ratio between modules con-

structed by gene and isoform expression data, genes in the modules constructed with the gene

expression data highly overlapped with at least one of the modules constructed by the isoform

expression data.

However, the isoform expression levels differed from the gene expression levels in several

modules. Fig 6(A) shows the distribution of the absolute differences in the average PCC values

between gene-level and isoform-level expression for genes in the isoform expression modules.

Fig 6(B) shows isoform modules with large and small differences compared to the gene-level

expression. Among the 10 modules with large differences, only one module was enriched in

Table 4. Comparison of KEGG pathway and TF enrichment tests for OVC modules using gene and isoform expression data. “# of enriched modules”

indicates the number of modules enriched with at least one KEGG pathway. “Ratio of enriched modules in KEGG” is computed by “# of enriched modules in

KEGG” divided by “# of modules.” “# of enriched KEGG terms per module” is computed by “# of enriched KEGG terms” divided by “# of modules.” “# of

enriched modules” indicates the number of modules enriched with at least one TF. “Ratio of enriched modules in TF” is computed by “# of enriched modules in

TF” divided by “# of modules.” “# of enriched TF per module” is computed by “# of enriched TF” divided by “# of modules”.

OVC modules using gene expression

Statistics M1 M2 M3 M4 M5 M6 M7 M8 M9

# of modules 327 336 24 115 94 32 166 105 28

# of enriched modules in KEGG 32 46 12 10 38 11 26 14 19

Ratio of enriched modules in KEGG 0.098 0.136 0.500 0.087 0.404 0.344 0.157 0.133 0.679

# of enriched KEGG terms 119 113 50 14 87 39 190 58 126

# of enriched KEGG terms per module 0.363 0.336 2.083 0.583 0.926 1.219 1.144 0.552 4.5

# of enriched modules in TF 36 46 7 17 35 8 36 28 19

Ratio of enriched modules in TF 0.110 0.136 0.291 0.147 0.372 0.25 0.157 0.266 0.679

# of enriched TF terms 126 113 97 150 313 77 408 295 81

# of enriched TF terms per module 0.385 0.336 4.04 1.304 3.329 2.438 2.458 2.810 2.892

Ratio of CGC genes 0.033 0.032 0.048 0.031 0.027 0.035 0.033 0.037 0.034

Ratio of cancer genes 0.122 0.117 0.154 0.106 0.139 0.157 0.158 0.101 0.128

OVC modules using isoform expression

Statistics M1 M2 M3 M4 M5 M6 M7 M8 M9

# of modules 754 800 27 149 17 23 127 133 245

# of enriched modules in KEGG 72 72 13 29 3 6 25 23 118

Ratio of enriched modules in KEGG 0.095 0.09 0.481 0.194 0.176 0.261 0.197 0.173 0.481

# of enriched KEGG terms 222 153 63 76 9 19 113 91 510

# of enriched KEGG terms per module 0.294 0.192 2.333 0.510 0.529 0.826 0.99 0.684 2.081

# of enriched modules in TF 117 72 11 55 0 9 29 55 118

Ratio of enriched modules in TF 0.155 0.09 0.407 0.369 0 0.391 0.197 0.414 0.481

# of enriched TF 521 153 250 761 0 103 604 761 510

# of enriched TF per module 0.691 0.192 9.259 5.107 0 4.478 4.7559 5.721 2.081

Ratio of CGC genes 0.038 0.041 0.054 0.038 0.074 0.062 0.041 0.04 0.037

Ratio of cancer genes 0.124 0.129 0.167 0.122 0.17 0.17 0.162 0.125 0.155

https://doi.org/10.1371/journal.pone.0188900.t004
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functional pathways, whereas among the 10 modules with small differences, seven modules

were enriched in functional pathways. This finding shows that although isoform expression

data can be used to construct modules that cannot be constructed with gene expression data,

most of these modules did not have functional relevance. However, some functionally related

modules could only be constructed based on isoform expression data, such as module 47 that

was enriched in the cellular component assembly and positive regulation of translation catego-

ries. Furthermore, we compared the PCC values from the gene and isoform expression data

for GGI pairs in the isoform modules. For most pairs, these were highly correlated, but some

gene pairs were captured only in the isoform expression data. Fig 6(C) shows the GGI pairs

that had large absolute differences in PCC values between the gene and isoform data.

Discussion

In this study, we developed a new functional gene module detection algorithm, FGMD, to

facilitate investigations of various regulatory mechanisms in cancer, and applied it to the

BRCA gene expression data from the microarray and RNA-Seq datasets and OVC gene and

isoform expression data from RNA-Seq datasets. Comparison of the BRCA gene expression

data from the microarray and RNA-Seq datasets showed that most genes had a similar ten-

dency of altered expression in breast cancer tissues in the two platforms, with high PCC values.

This implies that most of the relationships between genes can be similarly captured in the two

platforms. Comparison of the FGMD modules constructed using microarray and RNA-Seq

data showed 963 and 1,172 unique genes, respectively, and 674 genes were common between

Fig 5. Differences in the average of PCC values for BRCA genes in modules identified by microarray and RNA-Seq. Distribution of the absolute

differences in the average of PCC values between genes in microarray (A) and RNA-Seq (B) modules. In the table, “No” represents the identifier of a module

constructed using microarray (A) or RNA-Seq (B), “Microarray” represents the average of PCC values for genes in the module using expression data from the

microarray, “RNA-Seq” represents the average of PCC values for genes in the module using expression data from RNA-Seq, and “Diff” represents the

difference between the previous two values. “Enriched” indicates whether the module is enriched with GO terms, or KEGG or BioCarta pathways.

https://doi.org/10.1371/journal.pone.0188900.g005
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platforms, implying that the modules generated from the two platforms consisted of similar

genes, which are consequently enriched in the same pathways. However, some of the modules

from the microarray and RNA-Seq data also consisted of different genes. Thus, adoption of

both platforms could facilitate the discovery of novel cancer genes, functions, and pathways

that would otherwise only be detected in one platform.

Comparison of OVC gene and isoform expression data from RNA-Seq showed that the

same gene tended to show similar alterations in both datasets. Thus, most of the validated GGI

pairs could be captured, regardless of whether gene or isoform expression levels were consid-

ered. However, some of the GGI pairs were only captured by the isoform expression data. In

addition, compared with the FGMD modules constructed by gene and isoform expression

data, it was more difficult to construct some modules identified using isoform expression data

using gene expression data. This indicates that isoform expression analysis can be helpful to

best understand GGIs, because different isoforms of the same gene might interact with differ-

ent genes. Thus, isoform expression plays an important role in the discovery of novel cancer

genes, functions, and pathways, and for understanding the detailed molecular mechanisms of

cancer.

We compared the performance of the FGMD algorithm (M9) with that of other existing

algorithms (M1–M8). Because we used several evaluation criteria, we summarized the perfor-

mance of these methods by ranking these methods for each criterion (the ratios of enriched

modules in GO terms, KEGG pathways, BioCarta pathways, and TFs, and the ratios of cancer

genes, CGC genes, and BRCA genes). All ranking information is described in S51 Table. The

FGMD method had the highest average rank for the BRCA microarray, BRCA RNA-seq, and

OVC gene expression datasets, and had the second highest average rank for the OVC isoform

expression data. Note that the K-means clustering method (M3) had the highest average rank

for OVC isoform expression data and was ranked equivalently to the FGMD method for the

OVC gene expression data. However, the K-means clustering method ranked 5th and 4th for

the BRCA microarray and BRCA RNA-seq datasets, respectively. Considering all four datasets,

the performance of the FGMD method was the best on average. Hierarchical clustering (M1

and M2), CLICK clustering (M4), and WGCNA (M8) showed the lowest performances overall.

In addition, the SAMBA biclustering algorithm (M5) showed relatively higher performance.

The SAMBA algorithm outputs many modules enriched with several pathways, and conse-

quently shows good potential for finding novel cancer genes and functional pathways. How-

ever, depending on the method of normalization of the raw data, the generated modules may

have different performances. Thus, appropriate normalization methods should be selected

depending on the type and size of the dataset. Moreover, the sizes of the identified modules are

highly dependent on the size of the dataset. When the size of the dataset increases, the size of

the modules increases, generating large-sized modules. Indeed, when the SAMBA algorithm

was applied to the isoform expression data from the OVC RNA-Seq dataset, many modules

containing more than 1500 isoforms were generated. Although these modules might contain

many functional pathways, they often lack modularity, requiring adjustment of the size of the

Fig 6. Differences in the average of PCC values for genes in modules identified using gene and isoform expression levels for OVC.

Distribution of the absolute differences in the average of PCC values between gene and isoform expression data for isoform expression

modules (A). Modules with large and small differences are shown (B). Among the validated GGI pairs included in the isoform modules, some

GGI pairs were not highly correlated at the gene level. The GGI pairs with large differences at the isoform level and at the gene level are

shown in (C). In the table, “No” represents the identifier of a module, “Gene” represents the average of PCC values using gene expression,

“Isoform” represents the average of PCC values using isoform expression, and “Difference” represents the difference between the two

previous values.

https://doi.org/10.1371/journal.pone.0188900.g006
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data to construct reliable functional gene modules. The NMF algorithm (M6) showed slightly

higher performance than the SAMBA biclustering algorithm. However, it is challenging and

time-consuming to determine the optimal rank r using this method.

One disadvantage of the FGMD algorithm is that it takes a long time to expand the seed

pairs, especially with a high number of seed pairs. We measured the running time of each

method using the BRCA gene expression data from microarray and a comparison is shown in

S52 Table. The FGMD algorithm took longer than hierarchical clustering (M1 and M2),

CLICK clustering (M4), SAMBA biclustering (M5), and WGCNA (M8), but was faster than K-

means clustering (M3) and NMF (M6 and M7). Hence, more efficient seed selection and

expansion methods are required in future work to optimize this method.

When a large module was divided into small modules using the the Dynamic Tree Cut algo-

rithm, we used the default parameter values. Because a ‘minModuleSize’ parameter determin-

ing the size and number of small modules affects the performance of the FGMD algorithm, we

compared the performance using five parameter values: 20, 30, 50 (default), 70, and 100.

When the parameter value increased, the number of modules was reduced and the perfor-

mance increased. However, when the ‘minModuleSize’ value was greater than or equal to 50

(the default value), there was no difference in the ratio of enriched modules in GO terms and

KEGG pathways. Thus, we used the default parameters when we applied the FGMD algorithm

to the BRCA and OVC datasets. Details are described in S53 Table.

In the FGMD algorithm, although small modules belonging to different larger modules can

overlap, the small modules in the same large module do not overlap. This is because small

modules are generated using the hierarchical algorithm. To explore the possibilities of further

performance improvement, we developed another approach that allows for overlap among the

small modules generated from the same large module. First, for each small module mi in a

large module Mj, we attempt to select genes gk that are in the large module but not in the small

module mi (gk 2Mj and gk =2mi) and are highly correlated with genes in mi. We calculate the

average PCC value of gene expression levels between genes in mi and each gene gk (gk 2Mj and

gk =2mi). Then, we add a gene with the highest PCC value to the small module mi, and continue

to add genes with the next highest PCC values until adding more genes no longer improves the

average PCC value among genes in the small module mi. We applied this new approach to the

OVC and BRCA datasets, and the comparison results with and without overlaps of small mod-

ules are shown in S54 Table. Although the overlapping ratios increased more than doubled,

the performances were improved by allowing for overlaps among small modules. In particular,

the improvement in the OVC isoform expression dataset was notable because it outperformed

all other methods, including the K-means clustering algorithm (M3) that showed the best per-

formance in the OVC isoform expression dataset. The source codes of this modified approach

are also available at http://gcancer.org/FGMD, providing the choice between the overlap ratio

of modules and more functionally related modules. Note that even though gene duplication

between small modules is not allowed in the FGMD algorithm, gene duplication was neverthe-

less reflected through the overlapping of large modules. Highly related genes can be used to

construct the final modules when they belong to the same large modules. At the same time,

other large modules can increase the opportunity to construct final modules that overlap with

other final modules.

Conclusion

The FGMD algorithm represents a new framework for utilizing existing algorithms. Although

the FGMD algorithm is based on hierarchical clustering to combine similar modules and split

them, other clustering approaches can be used as an alternative with some modification at
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each step. In addition, our algorithm relies only on gene expression data to detect functional

gene modules without incorporating information on gene regulation or GGIs. Thus, applica-

tion of our proposed algorithm to other types of biological data such as miRNA expression,

copy number aberrations, TF-binding sites, gene–miRNA binding information, and GGIs

might enable the construction of gene-regulatory modules reflecting various biological pro-

cesses. In conclusion, the FGMD algorithm will contribute toward improving the detection of

functional gene modules, which can help to gain new insight into the underlying mechanisms

of cancer.
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represents expression values and the y-axis represents the number of points.

(TIF)

S2 Fig. Comparison of the absolute PCC values for all gene pairs for microarray and

RNA-Seq. (A) Distributions of the absolute PCC values of all gene pairs for microarray and

RNA-Seq. (B) Distributions of the difference in absolute PCC values between microarray and

RNA-Seq data for the same gene pairs.

(TIF)

S3 Fig. Relationship between two platforms and comparison of the network statistics. (A)

The distribution of PCC values between gene expression levels from microarray and RNA-Seq

for the same genes (14,352 genes). The x-axis shows PCC values and the y-axis shows the num-

ber of genes. (B) Boxplots of total node connectivity and coefficient of variations.

(TIF)

S4 Fig. Absolute PCC value differences between gene and isoform expression levels for the

GGI pairs. (A) Distribution of PCC values for GGI pairs. Red and green lines represent the

distributions of PCC values from gene and isoform expression levels, respectively. (B) Distri-

bution of the absolute differences in PCC values between gene and isoform expression for the

same gene pairs. (C) The top 20 GGI pairs showing large differences. In the table, “Microarray”

and “RNA-Seq” represent PCC values for a gene pair using expression data from microarray

and RNA-Seq, respectively, and “Difference” represents the difference in PCC values between

the previous two values. “Rank” represents the ranking of the GGI pairs sorted according to

the “Difference” values.

(TIF)

S1 File. Comparison of gene expression of microarray and RNA-Seq for BRCA and com-

parison of gene and isoform expression of RNA-Seq for OVC.

(PDF)
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