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Abstract

Multi-objective clustering has received widespread attention recently, as it can obtain more

accurate and reasonable solution. In this paper, an improved multi-objective clustering

framework using particle swarm optimization (IMCPSO) is proposed. Firstly, a novel particle

representation for clustering problem is designed to help PSO search clustering solutions in

continuous space. Secondly, the distribution of Pareto set is analyzed. The analysis results

are applied to the leader selection strategy, and make algorithm avoid trapping in local opti-

mum. Moreover, a clustering solution-improved method is proposed, which can increase the

efficiency in searching clustering solution greatly. In the experiments, 28 datasets are used

and nine state-of-the-art clustering algorithms are compared, the proposed method is supe-

rior to other approaches in the evaluation index ARI.

Introduction

Knowledge discovery is a process of analyzing data from different prospective and summariz-

ing it into useful information [1]. These methods include a number of technical approaches,

such as classification, data summarization, regression and clustering [2]. Technically, cluster-

ing is a process of grouping the data instances based on one or more features of the data[3]. As

a popular data analysis technique, clustering has attracted particular attention from researchers

in recent years because of the need to analyze and understand information hidden in the data-

sets coming from different sources. The applications of cluster analysis have been used in a

wide range of different areas such as face recognition [4], spatial database analysis [5] and traf-

fic incidents [6].

The most popular algorithms among various clustering techniques are K-means [7] and

hierarchical clustering [8,9]. For K-mean algorithm, it creates the partition of data set into k
number of clusters where k is predefined [10]. Hierarchical clustering is a method of cluster

analysis which seeks to build a hierarchy of clusters. In the clustering process, those methods

focus on obtaining groups by optimizing single objective. However, it is necessary to optimize

several objective functions simultaneously in some real-world problems[11].Furthermore,

those classical algorithms suffer from disadvantages of initial centroid selection, local optima,

low convergence rate [1].

To overcome the drawbacks of these algorithms, PSO-based clustering methods have been

studied by the academic community. Particle Swarm Optimization (PSO) is inspired by the
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social behavior of animals like fish schooling and bird flocking. It has become an efficient

method for searching approximate optimal solution due to its simplicity, few parameter con-

figuration and global exploration ability on some complex problems [12]. In addition, PSO is

well-suited for multi-objective optimization as their use of a population enables the whole

Pareto set to be approximated in a single algorithm run [3].

In the early years, researchers use PSO to perform single-objective optimization on cluster-

ing problems. An implementation of PSO for data clustering was introduced in [13]. In the

algorithm, standard gbest PSO is used to find the centroids of a specified number of clusters.

Shen et al. presented a mountain clustering based on improved particle swarm optimization

(MCBIPSO) algorithm [14]. The improved PSO algorithm is used to find all peaks of the

mountain function, and the calculation is easier and more efficient in deciding the clustering

centers of data samples. Single objective PSO-based methods have used in the document clus-

tering [15], image segmentation [16] and spatial datasets [17].

With the study of the multi-objective PSO algorithms, some of them are introduced to

solve the clustering problems. Yang et al. proposed a hybrid clustering algorithm based on

PSO and K-harmonic means (PSOKHM) in [18]. It shows that the PSOKHM algorithm

increases the convergence speed of PSO, and is also capable of escaping from local optima.

Abubaker et al. proposed a new automatic clustering algorithm based on multi-objective PSO

and Simulated Annealing (MOPSOSA) in [19]. This method simultaneously optimizes three

different objective functions, which are used as cluster validity indexes for finding the proper

number of clusters. Armano G et al. combined the combinatorial form of PSO and locus-

based adjacency genetic scheme in [20], the algorithm is robust and outperforms in the com-

prehensive experimental study.

However, previous studies have three limitations. Firstly, clustering problem is a combina-

torial problem and the curse of dimensionality may be encountered in large datasets, this will

lead to a dramatic deterioration in algorithm performance. Secondly, the distribution of Pareto

set in clustering problem has unique feature, which makes the selection of global leader harder.

Thirdly, particle representation in previous studies is in discrete space, but the PSO is more

suitable for optimization in continuous space[21].

The purpose of this paper is to address the limitations of previous work. Towards this goal, an

improved multi-objective clustering framework using particle swarm optimization (IMCPSO) is

proposed, which finds well-separated and compact clusters without the predefined number of

clusters. Threefold efforts have been made in this paper. Firstly, it attempts to improve the parti-

cles during the iterations, which can get better solution with less iteration and alleviate the curse

of dimensionality. Secondly, it analyzes the feature of clustering solutions distribution, which

helps enhance the performance in leader selection and decision maker. In addition to that, we

design a novel particle representation that helps PSO search the clustering solutions in continu-

ous space. It is discovered that IMCPSO is superior to other approaches in terms of accuracy.

The rest of this paper is organized as follows. Section 2 briefly describes the related work

about clustering algorithms and multi-objective PSO. Section 3 presents the IMCPSO

approach in detail. A comprehensive set of experimental results are provided in Section 4.

Finally, Section 5 reports the conclusions of obtained results and suggests some directions of

future work.

Related works

Clustering algorithms categorized by criterion optimized

Traditional classifications of clustering algorithms primarily distinguish between hierarchical,

partitioning, and density-based methods[22,23]. Partitional clustering is dynamic, where data
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points can move from one cluster to another, and the number of clusters k is usually required

in advance, e.g. K-means [7]. Hierarchical clustering consists of a sequence of partitions in a

hierarchical structure, and takes the form of either agglomerative or divisive method, e.g. aver-

age-link hierarchical clustering [8] and Ward method[24]. Density-based methods group data-

set into clusters based on density conditions. Clusters of dense regions are separated by

regions of low density, such as DBSCAN [25,26], Mean shift[27].

In addition, graph-theoretical technique is used in clustering, e.g. spectral clustering[28]

and BIRCH[29]. Since then, AP clustering[30] is proposed and uses the message between data

points to determine the center of cluster.

Multi-objective PSO

In PSO framework, each particle is represented as a potential solution, and the particle

achieves global optimization by moving its position in D-dimension search space. The velocity

vi and the position xi are updated as follows:

viðt þ 1Þ ¼ viðtÞ þ c1r1ðpbesti � xiÞ þ c2r2ðgbest � xiÞ ð1Þ

xiðt þ 1Þ ¼ xiðtÞ þ viðtÞ ð2Þ

where xi = (xi1,xi2,. . .,xiD) is the position of the ith particle, vi = (vi1,vi2,. . .,viD) is the velocity of

particle i, t represents the generation number, c1 and c2 are local and global learning factors

respectively, r1,r2 are random numbers between [0, 1], pbesti stands as the previous best posi-

tion for the particle i, gbest is the global best position found so far in the entire swarm. The par-

ticle position is updeted by Eq (2).

Added with a inertia weight factor w, the algorithm can have a better control over the search

scope, and can achieve better results in the application of certain issues[31], and the particle

velocity is adjusted to

viðt þ 1Þ ¼ w � viðtÞ þ c1r1ðpi � xiÞ þ c2r2ðg � xiÞ ð3Þ

The first multi-objective particle swarm optimization (MOPSO) is reported by Coello [32].

The MOPSO differs from PSO in that it contains the processes of construction and mainte-

nance of the external archive using the concept of Pareto optimality. Moreover, the mechanism

in terms of the selection on gbest and pbest is quiet different. Therefore, recent multi-objective

PSO works use the concept of Pareto optimality to select non-dominated particles as leaders,

in order to make solutions converge to the true Pareto set[33,34].

Proposed method

In this section, we describe the IMCPSO method in detail. As already pointed out, it is based

on the multi-objective PSO algorithm. IMCPSO consists of three main parts: objective func-

tions, optimization and decision-making. Firstly, two conflicting objective functions are

defined with the aim of obtaining compact and well-separated clusters. Secondly, we illustrate

the process of optimization from three parts: particle representation, selection of leader and

solution-improved process, because the optimization is the key work for searching good parti-

tions. Finally, decision maker is used to select the most suitable solution in Pareto set.

Objective functions

The clustering problem is defined as follows. Consider the dataset P = {p1, p2, . . ., pn}, where

pi = (pi1, pi2,. . ., pid) is a feature vector of d-dimensions and also referred to as the object, pij is
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the feature value of object i at dimension j, and n is the number of objects in P. The clustering

of P is the partitioning of P into k clusters {C1, C2,. . .,Ck} with the following properties:

(1)
Sk

i¼1
Ci ¼ P, (2)Ci \ Cj 6¼ ;, such that i,j 2 {1,2,� � �,k} and i 6¼ j.

Given a clustering solution of the data, numerous measures for estimating its quality exists

and the goal is to get most compact and well-separated clusters. Towards this goal, we intro-

duce two objective functions—overall deviation and mean space between clusters—to evaluate

the compactness and separability of clusters respectively.

(a) overall deviation

The overall deviation of a clustering solution reflects the overall intra-cluster size of the

data. The formula is as follows.

DevðCÞ ¼
P

Ck2C

P
i2Ck

dði;mkÞ ð4Þ

where C is the set of all clusters, i is the element of data, μk is the centroid of cluster Ck, δ(.,.) is

the distance function (e.g. Euclidean distance). As an objective, overall deviation should be

minimized.

(b) mean distance between clusters

This objective function reflects the difference between clusters. It is calculated by the mini-

mum distance of the cluster’s neighbors. In clustering analysis, neighbor is a local concept that

reflects the relation of two data points. In this paper, we use the Gabriel graph to obtain the

adjacency relation of all data points[35]. Gabriel graph is a subgraph of the Delaunay triangula-

tion, which connects two data points vi and vj for which there is no other point vk inside the

open ball with diameter [vivj]. The advantage of the Gabriel graph is that it can get the all-con-

nected graphs with appropriate distance[36]. After getting the Gabriel graph of all points, the

objective function is calculated as follows.

Mdc Cð Þ ¼
1

jCj
P

Ck2C
ðmini2Ck;j2Ni ;j=2Ck;

dði; jÞÞ ð5Þ

where Ni is the neighbors set of data i in Gabriel graph. As an objective function, Mdc should

be maximized. In order to minimized the objective as similar as Dev, this objective value could

be negated (-Mdc).

Particle representation

Generally speaking, the particle representation is important because each particle is repre-

sented as a potential solution in PSO framework. Therefore, we design a continuous particle

representation for clustering problem. In this scheme, shown in Fig 1, each particle is repre-

sented by a vector consisting of N+1 elements, where N is the number of data points. The first

element in particle vector is k value and reflects the clusters number of the particle. The k value

lies in the interval (1,kmax], where kmax is the maximum number of clusters. The other N ele-

ments in particle vector are the position values of N data points. Each of these elements takes a

value in the internal (0,1]. An example of particle representation is shown in Fig 1 (B).

When a particle is converted into a clustering solution, all the position value of N data

points is multiplied by the k value, then round up to obtain a clustering solution. A process of

conversion is shown in Fig 1 (C).

The advantages of the proposed particle representation are manifold. On one hand, it can

take full advantage of PSO searching in continuous space, since the PSO technique is suitable

for finding solutions in continuous non-linear optimization problems [37]. On the other, the

partitioning of different number of clusters can be represented, because the k value maintains

flexibility to change. In addition, it tends to preserve the similar parts and mutate the different

Improved multi-objective clustering algorithm using particle swarm optimization
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parts of pbest and gbest when the particle velocity is updated. This feature could help particles

find the global optimal solution with inheriting the advantages of the other solutions. An

example of iteration in IMCPSO is shown in Fig 2.

Leader selection strategy

The analogy of PSO with evolutionary algorithms makes evident the notion that using a Pareto

optimality scheme could be the straightforward way to extend the approach to handle multi-

objective optimization problems[38]. In general, a multi-objective problem of the type:

minimize f ðxÞ≔½f1ðxÞ; f2ðxÞ; � � � ; fkðxÞ� ð6Þ

subject to

giðxÞ � 0; i ¼ 1; 2; � � � ;m ð7Þ

hiðxÞ ¼ 0; i ¼ 1; 2; � � � ; p ð8Þ

where x = [x1,x2,. . .,xD]T is the vector of decision variables, fi : Rn� !R; i ¼ 1; . . . ; k are the

objective functions and gi; hj : RD� !R; i ¼ 1; . . . ;m; j ¼ 1; . . . ; p are the constraint functions

of the problem. Given two vectors x; y 2 Rk, we say that x dominates y if xi� yi for i = 1,. . .,k,

otherwise x is nondominated with y. We say that a vector of decision variables is Pareto-opti-

mal if it is nondominated with respect to F (F is the feasible region), and the Pareto Optimal

Set (or Pareto set) P� ¼ fx 2 F jx is Pareto � optimalg[39].

However, the PSO algorithm with Pareto optimality scheme will produce not only one but

a set of nondominated leaders and the selection of an “appropriate” leader becomes difficult,

because these nondominated solutions are equally good mathematically. The choosing of pbest
is relatively simple, which adopts non-dominated particle between current position and previ-

ous best position as pbest. If they do not dominate each other, then select them randomly[40].

The selection of gbest is relatively complicated, as a global leader, the location directly deter-

mines the search direction of particles. The main selection of global leader can be categorized

as follows: (a) stochastic selection in Pareto set; (b) selection based on crowding density[41].

The former method tends to raise a greater selection probability in regions where particles are

particle represent:

k value position value

0.18 0.21 0.17 0.83 0.77 0.71 0.42 0.563.20

position: 1 2 3 4 5 6 7 8

1 2
43 5

67
8

cluster 1

cluster 2
cluster 3

1 2
43 5

67
8

0.58 0.67 0.54 2.66 2.46 2.27 1.34 1.79converted position:

1 1 1 3 3 3 2 2cluster distribution:
round up

k    position value:

(a)

(b) (c)

(d)

0.18 0.21 0.17 0.83 0.77 0.71 0.42 0.563.20

Fig 1. The design of particle representation and conversion of clusters. (a) 8 data points to be clustered. (b) The particle representation,

where the vector consisting of nine elements. (c) The process of generating clustering solutions. (d) Clusters according to particle representation.

https://doi.org/10.1371/journal.pone.0188815.g001
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concentrated, which is not conducive to the distribution among Pareto set, and drops the

diversity of the population. The latter method also tends to lead the particles falls into the local

optimum, and the reason will be analyzed next.

Analysis of the Pareto set in clustering problem. In the clustering problem, the number

of clusters k plays an important role in getting good clustering solution. The two objective

functions, Dev and -Mdc, correspond to large k values (more compact) and smaller k values

(well separated) respectively. As a result, different k values have relative clear distinction in the

Pareto set. The cluster assigned of data points can only be taken in a limited category since the

clustering problem is a combinatorial problem. When a particular k
�

produces a good cluster-

ing solution, it will dominate the other solution with the same k
�

, so the Pareto set lies sparse

relatively around the k
�

.

Fig 3 illustrates Pareto set in a clustering problem, the distributions of the Pareto set would

be scattered in the clustering problem (ns1 and ns1 in Fig 3). For this reason, the selection

based on crowding density is likely to choose a non-dominated solution like ns2, but no other

non-dominated solution is near it, which makes the optimization algorithm falls into local

optimum. Furthermore, when the partitions in a better k, the clusters are well-separated

1 2

3
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10

pbest: 0.50 0.50 0.50 0.50 0.50 1.00 1.001.002.00 0.50 0.50

1 2

3
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9

10

gbest: 0.25 0.25 0.25 0.25 0.50 0.75 1.000.754.00 0.50 0.50

(a) (b)

(c) (d)

pbest gbest

v(t+1) -0.28 -0.26 -0.14 -0.20 -0.54 0.40 0.440.510.55 -0.55 -0.55

1 2

3
4

5

6
7

8

9
10

x(t): 0.50 0.50 0.50 0.50 1.00 0.50 0.500.502.00 1.00 1.00

x(t)
1 2

3
4

5

6
7

8

9

10

x(t+1): 0.22 0.24 0.36 0.30 0.46 0.90 0.941.002.55 0.45 0.45

x(t+1)

Velocity calculation

Velocity update

lation

Fig 2. Velocity update process of particles and preserve the similar parts in pbest and gbest. (a) pbest particle. (b) gbest particle.(c) particle x(t)

before iteration. (d) particle x(t) after iteration. The velocity v(t+1) is calculated by pbest and gbest. Notice that data 2 and 4 belong to the same cluster in

both pbest and gbest, and the value in pbest or gbest is the same(0.5 and 0.25 in pbest and gbest, respectively). The v(t+1) will make x(t) move to the same

position in the two dimenstion, so that the data 2 and 4 have a high probability of being assigned to the same cluster in the newly generated particle.

https://doi.org/10.1371/journal.pone.0188815.g002

Improved multi-objective clustering algorithm using particle swarm optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0188815 December 5, 2017 6 / 19

https://doi.org/10.1371/journal.pone.0188815.g002
https://doi.org/10.1371/journal.pone.0188815


(k = 2,3 in Fig 3) and the corresponding Pareto set is also very sparse. On the contrary, the

Pareto set will be dense (k = 4,5 in Fig 3) when the k is not well-separated.

Leader selection strategy of whole process. In order to avoid falling into local optimum,

we propose a "leader selection strategy of whole process". The "process particles" we called are

one set which contains the positions of the leftmost, middle and rightmost solutions of the

Pareto set, as shown in Fig 4. Obviously, the positions of the leftmost and rightmost particles

are easily determined. Before the middle particle is determined, all the Pareto solutions are

normalized using the following formula.

x0i;j ¼
xi;j � minðxjÞ

maxðxjÞ � minðxjÞ
ð9Þ

where xi,j is the value of the ith particle on the jth objective function, max(xj) and min(xj) are

the maximum and minimum of Pareto set on the jth objective function, respectively. x0i;j 2
½0; 1� is the objective function value after normalization. The magnitude of each objective func-

tion becomes uniform and the fitness of each Pareto solution can be obtained by summing

each objective function, as shown in the following formula, where m is the number of objective

functions.

fiti ¼
Pm

j¼1
x0i;j ð10Þ

Thus, the selection of middle particle is the Pareto solution with the minimum fiti. Obvi-

ously, the middle particle is a good trade-off solution of all objective function. After the process

particles are determined, the global leader is one of them, where selection probability of middle

(a) (b)

ns1

ns2

ns3

k=2 k=3

k=4, 5

-Mdc
De

v

Fig 3. (a) Data points to be clustered. (b) Pareto set of the clustering solutions, where k = 2,3,4,5 from top left to bottom right and ns is

nondominated solution. The clustering solutions ns1 and ns2 produced by k = 2, 3 are better than the other combinations of the same k, making

the region of pareto set is sparse when k = 2, 3.On the other hand, the clusters are not well separated when k = 4,5 and the number of

nondominated solutions increases with same k (see ns3).

https://doi.org/10.1371/journal.pone.0188815.g003
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particle should be higher (0.7, empirically), and the leftmost and rightmost particles are

assigned a lower probability (both 0.15, empirically).

The advantages of leader selection strategy of whole process are: (a) it can lead particles to

traverse all possible Pareto sets, and is not easy to fall into the local optimum; (b) no matter

clusters number is large (k>10) or small (k<3), it can be well adapted.

Clustering solution-improved method

As a search-based method, PSO methods are easy to suffer from the curse of dimensionality

with the increase of clustering dataset. As a result, the PSO technology is only to get a rough

clustering distribution in the search process, an example is shown in Fig 5 (A).The main rea-

son is that the PSO does not use any prior knowledge in the search process. To address this

issue, we hope to find some properties of clustering to improve the solutions. In clustering

problem, it is obvious that the probability of assigning to same group is higher where the data

points are more similar. This implies that we can use this feature to improve the rough solution

obtained by PSO. Fig 5 illustrate the solution-improved method, the steps are as follows.

Step 1 Each partition has a topological center, and the centers can be found by Gabriel graph.

First, calculate the C value of each partition in the clustering solution. C value is the number of

data point’s neighbors that are of the same cluster in Gabriel graph. Then, the data with the larg-

est C value is the topology center. If there are more than one topology center, take it randomly.

Step 2 For each topology center, agglomerative clustering is used. It starts from k clusters,

each containing one topology center and the other data points need to be reallocated. A series

process positions

-Mdc

De
v

Fig 4. The process particles in a Pareto set.

https://doi.org/10.1371/journal.pone.0188815.g004
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of nested merging is performed until all the data points are grouped into the k clusters. The

algorithm processes the Gabriel graph between the N data points, and agglomerates according

to their similarity or distance. Agglomerative clustering is based on a local connectivity crite-

rion. The run time is O(N2).

Step 3 The optimized clusters are converted into new particle vector. The k is placed in the

first element of vector, and then the grouping number corresponding to each data points are

divided by k and place them to other N elements. The converted particle vector is similar to

gbest and pbest in Fig 2.

The data points are rearranged to consistent with the characteristics of clustering by this

technology, while the previous rough distribution is kept as much as possible. In this way, a

better clustering solution can be obtained with acceptable computational cost even if the curse

of dimensionality exists. It enhance the convergence and quality of solution greatly. An exam-

ple is shown in Fig 6.

In the actual search process, the rough partitioning of the clustering problem is obtained by

PSO firstly. Then, the solution-improved method is used to get exact partitioning based on the

rough solution. It must be emphasized that the improved solutions will help PSO to get better

partitioning in the updating of particles. A real search process is shown in the Fig 7.

Decision making

Similar to the leader particle selection, decision making is also an important issue when faced

with many Pareto optimal solutions. In general, a decision maker is required to make a trade-

off while deciding which solution to choose in presence of a large finite number of Pareto set.

Here, we use the filter proposed in [42], which discards the solutions that are in the boundaries

of the Pareto set. Based on that, decision maker finds the suitable solution based on crowding

density in the remaining solution.

The use of the filter is controlled by two angles α1, α2, each controlling a ray passing

through the origin (-Mdc is negative and a small value is used as the coordinate of the origin).

Each region is described by one angle αi in regard to the corresponding objective axis and the

Pareto set belonging to the region is discarded. The angle αi is updated in every iteration, and

a quality evaluation function is used (please refer to [42] for details).The method can filter the

Pareto set that barely take into account more than a single objective.

However, it is hard to make decision in the remaining Pareto set because they all have

well trade-off between the two objective functions. According to the analysis of section 3.3.1,

bad distribution

topology center

clustering solution improved

(a) (b) (c)

step 1 step 2

Fig 5. The process of solution-improved method. (a) Black points are one partition and the white is another. Obviously, there is a bad clustering

solution. (b) Topology centers are found in Gabriel graph. (c) Improved solution is generated by agglomerative clustering method.

https://doi.org/10.1371/journal.pone.0188815.g005
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sparser Pareto solution has better k which makes the clusters well-separated. Therefore, we

use the sparse coefficient to choose the sparsest particle among the remaining Pareto set. The

sparse coefficient is defined as follows after all the Pareto solutions are normalized.

sci ¼ ðdl;i þ dr;iÞ=2 ð11Þ

where sci is the sparse coefficient of ith Pareto set, dl,i and dr,i are the Euclidean distance to

nearest left Pareto solution and nearest right Pareto set, respectively. The Pareto solution with

the largest sparse coefficient is taken as the decision solution, as shown in Fig 8.

In summary, the pseudo-code of IMCPSO presented in this paper is as follows.

solution
improved

(a) (b)
Fig 6. An example of clustering solution-improved method. (a) The original clustering distribution. (b) The improved clustering distribution.

https://doi.org/10.1371/journal.pone.0188815.g006

Algorithm 1 IMCPSO

Let itermax be the max iteration times

Let NonDom be the reposition of non-dominated set

Calculate the similarity matrix and Gabriel graph of dataset

Initialize swarm randomly // using particle represent

Improve every particle in swarm //using clustering solution-improved method

for each particle in swarm do

Evaluate objective functions for particle

end for

Improved multi-objective clustering algorithm using particle swarm optimization
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Experiments and discussion

This section analyzes the performance of the IMCPSO. Firstly, 14 real-world datasets and 14

artificial datasets are analyzed. Secondly, the parameters in IMCPSO are configured and the

results are calculated in each dataset. Finally, IMCPSO is compared with eight state-of-the-art

single-objective algorithms (four algorithms need clusters number k and others do not), and

one state-of-the-art multi-objective clustering algorithm. The above experiments are run on

the MATLAB R2014a, windows 7(x64), Core i5 (2.4G Hz), 4 GB RAM.

Datasets and comparison metrics

There are 28 datasets used in the experiments, where 14 datasets are artificial datasets and the

other 14 datasets are real-world datasets, which collected from the UCI Machine Learning Reposi-

tory[43] and KEEL[44]. The summary of datasets is shown in Table 1 and Fig 9 shows the shape of

all 2-dimension datasets. The compressed file package of all datasets used in this paper is S1 File.

The accuracy of each solution was quantified using the Adjusted Rand index (ARI)[45]

since the standard labels exist in each dataset. ARI measures the similarity between the

obtained clusters and the true ones and lies in the interval [–1,1]. This index has high value

when the obtained clusters are more similar to the true ones.

Configuration

The parameters of the proposed algorithm are similar to other multi-objective PSO, including

inertia weight w, learning parameters c1 and c2, maximum iteration number itermax, number of

particle Np and maximum number of clusters kmax. We carried out 20 independent experi-

ments with the different setting in five datasets and got the best configuration. The parameters

are set as follows: w = 0.85, c1 = c2 = 0.7, itermax = 500, Np = 20 and kmax = 20.

Experimental comparisons

The experimental comparison is divided into three parts. First, we compare it with the single-

objective clustering algorithms that can determine k automatically. Secondly, we compare it

Store non-dominated particles in NonDom

for iter in 1 to itermax do

Select gbest in NonDom //using leader selection strategy

Update particle, pbest

for each paricle in swarm do

Improve particle solution //using clustering solution-improved method

Evaluate objective functions for particle

end for

Store non-dominated particles in NonDom

end for

Select decision solution in NonDom //using decision-making method

Improved multi-objective clustering algorithm using particle swarm optimization
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with the single-objective clustering algorithms that needs k in advance, the correct k is pro-

vided for these algorithms to ensure the best performance. Finally, IMCPSO compares with

the state-of-the-art multi-objective clustering algorithm.

Comparison with automatic k-determination clustering methods. There are mainly

four clustering algorithms with automatic k-determination: AP clustering, Mean Shift, Ward

and DBSCAN. After multiple runs on datasets, the outputs of above algorithms are compared

with IMCPSO as shown in the Table 2, and the best result among five methods is shown in

bold.

Comparison with k-needed clustering methods. The performance of IMCPSO has been

compared with those K-means, spectral clustering, average-link and Birch, as those algorithms

have in common is that require the clusters number k in advance. The correct k is fed into

these algorithms to ensure the best performance while IMCPSO does not need k. The results

of comparison are shown in Table 3, and the best result among five methods is shown in bold.

Comparison with the multi-objective clustering method. The state-of-the-art multi-

objective clustering algorithm is the MCPSO proposed in [20]. The ARI index of same datasets

is compared since the author does not provide the source code of MCPSO, and results are

(a) (b)

(d) (c)
Fig 7. The change of gbest in a real search process.

https://doi.org/10.1371/journal.pone.0188815.g007
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shown in Table 4, the best result among two methods is shown in bold. In particular, the maxi-

mum number of iterations itermax is 1000 in MCPSO, while itermax is only 500 in IMCPSO.

Results analysis

In the shape clustering datasets, it can be seen that baseline clustering methods have better per-

formance than IMCPSO on only 2 datasets (Jain and D31) in terms of ARI index, because the

Discarded solutions

Decision solution

dl

dr

De
v

-Mdc
Fig 8. The process of making decision. At first, the Pareto sets of grey areas are discarded by filter. Then the decision

solution of rest Pareto sets has the largest sc.

https://doi.org/10.1371/journal.pone.0188815.g008

Table 1. Summary of the 14 real-world datasets (left block) and 14 artificial datasets (right block). The columns of each block are referred to the dimen-

sion of dataset (D), to the number of classes (K) and to the number of instances (N).

Dataset D K N Dataset D K N

flame 2 2 240 appendicitis 7 2 106

jain 2 2 373 dermatology 34 6 358

spiral 2 3 312 ecoli 7 8 336

pathbased 2 3 299 glass 9 7 214

D31 2 31 3100 haberman 3 2 306

R15 2 15 600 housevotes 16 2 232

compound 2 6 399 ionosphere 33 2 351

aggregation 2 6 788 iris 4 3 150

dim032 32 16 1024 segment 19 7 2310

dim064 64 16 1024 vehicle 18 4 846

dim128 128 16 1024 wdbc 30 2 569

dim256 256 16 1024 wine 13 3 178

dim512 512 16 1024 wisconsin 9 4 683

dim1024 1024 16 1024 zoo 16 7 101

https://doi.org/10.1371/journal.pone.0188815.t001
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IMCPSO shows a good performance dealing with arbitrary clusters. It is worth noted that clus-

ters number of D31 is 31, but the kmax in configuration of IMCPSO is 20, this is the reason

why the IMCPSO shows bad performance on this dataset.

The high dimension datasets are spherical Gaussian distribution, which can be assumed as

the most suitable for the AP clustering, Ward, Birch and K-means. In particular, K-means and

Birch with correct k shows high performance on those datasets. Nevertheless, the performance

of IMCPSO is still very well and overall ARI index is above 0.9. In addition, the IMCPSO has

best performance on 2 datasets (Dim032 and Dim256).

In the real-world datasets, the performance of k- needed clustering methods are better than

the automatic k-determination methods since the correct k is given. Nevertheless, the perfor-

mance of IMCPSO is better than the k-needed clustering algorithms in 7 datasets (Ecoli, Glass,

Haberman, Ionosphere, Iris, Segment, Vehicle). Moreover, the performance of IMCPSO is

better than the state-of-the-art multi-objective method (MCPSO) in 10 datasets of total 14

datasets with less iteration number.

To examine the performance in terms of the statistical differences between the proposed

algorithm and other contrastive algorithms, we performed the Wilcoxon Signed-Rank test

[46] on the mean ARI results of each datasets type. The Wilcoxon signed-rank test is a non-

parametric statistical hypothesis test and it is used to determine differences between groups of

paired data. Table 5 is listed with the results of signed-ranks test between IMCPSO and con-

trastive algorithms, N is the number of data and the statistically significant results are

highlighted in bold text.

Fig 9. Example of 2-dimensional datasets with different shapes.

https://doi.org/10.1371/journal.pone.0188815.g009
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For shape datasets, the differences between IMCPSO and other 7 methods are significant

with P<0.05(AP clustering, Mean Shift, Ward, DBSCAN, K-means, Average-link and Birch).

For high dimension datasets, there are 4 methods have significant differences between IMCPSO

and themselves (Mean Shift, DBSCAN, Average-link and Spectral clustering). There are 4 con-

trastive methods (AP clustering, Mean Shift, DBSCAN and Average-link) have significant dif-

ferences to IMCPSO in the real-world datasets. It is worth noted that no significant difference

between IMCPSO and MCPSO, but the p value is very small (0.078) in the shape datasets.

In summary, the performance of IMCPSO is superior to the other clustering methods in

the real-world and shape datasets. Especially, it has significant differences to most contrastive

algorithms in the shape datasets. In the high dimension datasets, the differences between

IMCPSO and other best algorithms are small, while the IMCPSO has less iteration and does

not need k.

Conclusion

In this study, a multi-objective clustering method (i.e., IMCPSO) is proposed. Particle repre-

sentation, leader selection and decision maker are taken into consideration, and clustering is

made automatically. The IMCPSO extends the multi-objective PSO to clustering problem,

Table 2. Mean of ARI on the outputs of IMCPSO (over 40 independent runs), AP clustering, Mean Shift, Ward and DBSCAN.

datasets type datasets IMCPSO AP clustering Mean Shift Ward DBSCAN

shape cluster datasets Flame 0.92 0.44 0.52 0.29 0.03

Jain 0.72 0.51 0.17 0.57 0.89

Spiral 0.98 0.01 0.06 0.13 0.43

Pathbased 0.89 0.40 0.40 0.46 0.66

D31 0.75 0.28 0.06 0.91 0.01

R15 0.96 0.19 0.24 0.94 0.93

Compound 0.82 0.46 0.72 0.50 0.81

Aggregation 0.86 0.68 0.62 0.70 0.33

high dimension datasets Dim032 0.99 0.95 0.01 0.96 0.12

Dim064 0.96 0.96 0.01 0.96 0.15

Dim128 0.86 0.98 0.01 0.96 0.15

Dim256 0.96 0.95 0.01 0.95 0.15

Dim512 0.89 0.96 0.01 0.98 0.15

Dim1024 0.92 0.98 0.01 0.96 0.15

real-world datasets Appendicitis 0.37 0.12 0.31 0.31 0.01

Dermatology 0.31 0.57 0.06 0.93 0.01

Ecoli 0.46 0.36 0.04 0.34 0.02

Glass 0.31 0.22 0.24 0.26 0.03

Haberman 0.18 0.03 0.07 0.05 0.01

Housevotes 0.33 0.08 0.01 0.61 0.11

Ionosphere 0.30 0.18 0.01 0.18 0.01

Iris 0.88 0.57 0.57 0.53 0.01

Segment 0.47 0.35 0.01 0.44 0.01

Vehicle 0.16 0.10 0.01 0.09 0.02

Wdbc 0.30 0.18 0.01 0.36 0.01

Wine 0.39 0.58 -0.01 0.75 0.01

Wisconsin 0.45 0.16 0.76 0.74 -0.07

Zoo 0.66 0.41 0.03 0.64 -0.02

https://doi.org/10.1371/journal.pone.0188815.t002
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Table 3. Mean of ARI measured on the outputs of IMCPSO (over 40 independent runs), K-means, spectral clustering, average-link and Birch.

datasets type datasets IMCPSO K-means Spectral clustering Average-link Birch

shape cluster datasets Flame 0.92 0.48 0.26 0.01 0.49

Jain 0.72 0.51 0.72 0.02 0.92

Spiral 0.98 0.01 0.46 0.49 0.01

Pathbased 0.89 0.48 0.50 0.39 0.47

D31 0.75 0.87 0.94 0.14 0.49

R15 0.96 0.93 0.82 0.48 0.58

Compound 0.82 0.50 0.49 0.58 0.78

Aggregation 0.86 0.64 0.78 0.81 0.75

high dimension datasets Dim032 0.99 0.99 0.09 0.92 0.99

Dim064 0.96 0.99 0.12 0.89 0.99

Dim128 0.86 0.99 0.08 0.83 0.99

Dim256 0.96 0.99 0.07 0.80 0.99

Dim512 0.89 0.99 0.10 0.79 0.99

Dim1024 0.92 0.99 0.08 0.72 0.99

real-world datasets Appendicitis 0.37 0.39 0.46 0.14 0.42

Dermatology 0.31 0.72 0.91 0.2 0.92

Ecoli 0.46 0.31 0.37 0.05 0.45

Glass 0.31 0.24 0.17 0.02 0.26

Haberman 0.18 0.02 -0.01 0.01 0.01

Housevotes 0.33 0.61 0.64 0.01 0.61

Ionosphere 0.30 0.15 -0.03 0.01 0.15

Iris 0.88 0.57 0.43 0.54 0.54

Segment 0.47 0.46 0.3 0.02 0.3

Vehicle 0.16 0.08 0.08 0.01 0.09

Wdbc 0.30 0.69 0.77 0.01 0.51

Wine 0.39 0.77 0.83 0.02 0.71

Wisconsin 0.45 0.75 0.52 0.02 0.73

Zoo 0.66 0.71 0.49 0.65 0.8

https://doi.org/10.1371/journal.pone.0188815.t003

Table 4. Mean of ARI measured on the outputs of IMCPSO and MCPSO (over 40 independent runs).

datasets IMCPSO MCPSO

Flame 0.92 0.73

Jain 0.72 0.66

Spiral 0.98 0.82

Pathbased 0.89 0.81

R15 0.96 0.88

Compound 0.82 0.86

Aggregation 0.86 0.87

Dim032 0.99 0.83

Dim064 0.96 0.85

Dim128 0.86 0.80

Dim256 0.96 0.72

Dim512 0.89 0.71

Glass 0.31 0.88

Wdbc 0.30 0.79

https://doi.org/10.1371/journal.pone.0188815.t004
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which greatly increases the efficiency in searching clustering solution and helps the algorithm

to avoid trapping in local optimum. The performance of IMCPSO has been studied in compar-

ison with eight single-objective clustering methods and a state-of-the-art multi-objective clus-

tering algorithm. The results, obtained over 28 benchmark datasets, show that the IMCPSO is

able to outperform the other algorithms in term of accuracy over the majority of datasets.

Moreover, IMCPSO does not need to provide the number of clusters in advance.

In our future research, more objective functions will be investigated, and we plan to

enhance the performance of IMCPSO to solve the real-world clustering problem. We have

already begun with it and found it is efficient in spatial clustering problems.

Supporting information

S1 File. The compressed file package of all datasets used in this paper.
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Table 5. The results of Wilcoxon signed-rank test of IMCPSO with other contrastive algorithms.

Contrastive

methods

Datasets type N Sum of ranks p value Contrastive methods Datasets type N Sum of ranks p value

AP clustering shape 8 36 0.008 Mean Shift shape 8 36 0.008

high dimension 6 3 0.313 high

dimension

6 21 0.031

real-world 14 85 0.042 real-world 14 96.5 0.003

Ward shape 8 32.5 0.047 DBSCAN shape 8 33 0.039

high dimension 6 3 0.313 high

dimension

6 21 0.031

real-world 14 52.5 0.998 real-world 14 105 0.001

K-means shape 8 34 0.023 Spectral clustering shape 8 25 0.078

high dimension 6 0 0.063 high

dimension

6 21 0.031

real-world 14 42 0.531 real-world 14 53.5 0.964

Average-link shape 8 36 0.008 Birch shape 8 33 0.039

high dimension 6 21 0.031 high

dimension

6 0 0.063

real-world 14 105 0.001 real-world 14 41.5 0.510

MCPSO shape 7 3 0.078

high dimension & real-

world

7 15 0.937

https://doi.org/10.1371/journal.pone.0188815.t005
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