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Abstract

In this work we extend a well-known model from arrested physical systems, and employ it in

order to efficiently depict different currency pairs of foreign exchange market price fluctua-

tion distributions. We consider the exchange rate price in the time range between 2010 and

2016 at yearly time intervals and resolved at one minute frequency. We then fit the experi-

mental datasets with this model, and find significant qualitative symmetry between price

fluctuation distributions from the currency market, and the ones belonging to colloidal parti-

cles position in arrested states. The main contribution of this paper is a well-known physical

model that does not necessarily assume the independent and identically distributed (i.i.d.)

restrictive condition.

Introduction

Since Fama [1] showed that the normal distribution does not fit the empirical distribution of

stock market returns, which is leptokurtic and has heavy tails, financial market distributions

have become a topic in financial literature. According to McDonald [2], the normal and the

log-normal distributions were widely used mainly for two reasons: the estimation of their

parameters becomes relatively simple and provides appropriate descriptive models in most

cases. Today it is not easy to summarize research papers proposing different distributions in

financial markets around the world. A distribution widely used in the literature has been the

Student one. This distribution seems to be helpful for two reasons: first, it is adequate in resolv-

ing distribution tails and second, when the number of degrees of freedom is greater than 30,

the Student distribution converges to a normal one.

Alternatively, Mandelbrot [3] proposed to replace the Brownian motion approach result-

ing from the normal distribution, by a model based on a symmetric stable Levy motion of

parameter α< 2. After Mandelbrot’s paper, the Levy distribution family became very popular

as they account for asymmetry and heavy tails. For example, Press [4] introduced an expo-

nential Levy process model with a non-stable distribution based in a superposition of Brown-

ian motion and an independent compound Poisson process with normally distributed jumps.

Madan and Seneta [5] proposed a Levy process with gamma variance distributed increments
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and Barndorff [6] used the family of generalized hyperbolic distributions. Later, Eberlein and

Keller [7] introduced an exponential hyperbolic Levy motion, Koponen [8] employed the

geometric stable laws, Kozubowski and Panorska [9] considered the multivariate geometric

stable distribution or Kozubowski and Podgorski [10] proposed the asymmetric Laplace one,

which is a subclass of geometric stable distributions. Note that such distributions allow for

asymmetry, they have finite moments of any order, their densities have explicit forms and the

estimation of their parameters is easy.

As final remark about the use of the stable family in finance, it must be mentioned that

Kim et al. [11] developed the modified tempered stable and Koponen [12], Boyarchenko and

Levendorskii [13], Carr et al. [14] introduced the classical tempered stable distribution.

The use of stable families in finance has been conditioned mainly due to the difficulty to

estimate the parameters which are well-known only in limiting cases. Another problem associ-

ated with this family of distributions is the overestimation of tail indices when samples are not

large enough, the infinite second moment and that they do not account for the peakedness

around the origin often seen in stock returns.

A different contribution was presented by Login [15] who proposed a Frechet distribution

to model extreme returns. Clark [16] and Epps and Epps [17] introduced in foreign exchange

markets the so-called mixture distribution hypothesis (MDH) by assuming the strong correla-

tion between trading volume and volatility of exchange rates. In this line, Tauchen and Pitts

[18] derived the joint distribution of daily price changes and transactions volumes from a

model of intraday equilibrium price changes and intraday volumes. Recent contributions are

due to Masoliver et al [19], where a stochastic model for high frequency data in the Standard

and Poor’s 500 cash index is presented, Masoliver and Montero [20] where the authors intro-

duce a continuous time random walk model to model the US dollar/Deutsche Mark future

and finally Masoliver and Perello [21] where an Exponential Ornstein-Uhlenbeck stochastic

volatility model is proposed, which is able to capture multi-scale behavior in the volatility

autocorrelation.

Most of the models developed so far propose different distributions considering stylized

facts in financial data. The advance in computation methods have allowed researchers to use

more complex distributions with more flexible parameters, thus better descriptions of empiri-

cal data have been achieved. However, a major problem still remains: estimations are not stable

enough in time and the independent and identically distributed (iid) hypothesis persists. In

fact, a single functional form is often not able to depict the whole distribution spectrum [22,

23]. In view of such scenario, it is often the case that a pieced functional form is considered in

order to quantitatively model financial distributions, where usually a Gaussian distribution is

taken when focusing on the central peak of the distribution, while Levy flights are the ones

employed in describing heavy distribution tails [24].

In our approach, we present a model which is characteristic to the dynamics of many differ-

ent physical particle systems, such as atomic glasses, undercooled fluids, granular matter,

polymer and colloidal gels, . . . [25]. All of these systems have in common that their global

dynamics is very slow, or even arrested; density fluctuations take very long time to relax, show-

ing viscoelastic behaviour. Microscopically, this is rationalized considering that particles are

caged by their own neighbors.

Recall that in fluids at high temperature or gasses, fluctuations in the density can relax very

fast because molecules are highly movable, whereas in solids, the motion of single molecules is

strongly hindered, disabling the relaxation of local stresses. In undercooled fluids, an interme-

diate situation is found. At short times, the rattling of the particles inside the cage results in

short time dynamics, which saturates when the cage is explored, while long time diffusion
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requires cooperativity of the neighbors to allow the escape of the particle. This is also inter-

preted physically by using a free energy hyper-surface, which, in supercooled fluids or glasses,

has multiple shallow minima: the vibrations within a single minimum correspond to the rat-

tling in the cage, and long time dynamics is described as jumps from one minimum to another

one.

Different models have been developed to describe the dynamics of these systems, and in

particular hopping models have been reported. However, please observe that the existing liter-

ature concerns models where important restrictions, such as restricted number of investors,

restricted market volume or restricted positions, must be considered [26]. Also, other models

do not provide a fundamental scope [27], such as the one proposed in this work. Here price

fluctuations from the currency exchange market are depicted through a physical model proven

valid for a wide variety of physical systems, for example atomic and molecular ones. Namely,

we have focused on a particular model proposed by Chaudri et al. [25], where two time scales

are considered for the jump from minimum to minimum, and it has been extended to the

study of currency exchange rates. We have found that such model is an excellent description

to financial distributions, such is the case to the Euro—US dolar [28], among other currencies

presented in this work. Noteworthly, this analysis does not assume the data to be independent

and identically distributed, i.i.d. Furthermore, the parameters that are employed in the model

keep physical significance and therefore, not only a single functional form describing the full

distribution range has been found, but even more, the physical understanding that underlies

the model allows us to rationalize financial markets.

Here it is important to remark that our approach is as well useful from an applied point of

view as it allows developing analysis and instruments aimed at market operations. Further-

more, it must be pointed out that the already mentioned combination of Gaussian and Levy

distributions are often used by hedge funds and investors in general in order to monitor mar-

ket activity and develop investing strategies. Within this regard, the model presented in this

manuscript can be very effective because a single description is proposed, where for example,

the probability of price changes and its range can be statistically determined. However, we

would like to emphasize that our main contribution is the extrapolation of a well known

model used for supercooled or arrested states in glassy physics to study the behaviour of for-

eign exchange rate markets.

This paper is structured as follows: section 2 introduces some of the most important find-

ings of financial literature of foreign exchange rate markets; section 3 describes our physical

model; section 4 shows the results of the fits in different currencies and finally section 5 con-

tains the main conclusions.

Foreign exchange markets: A market characterization

In this section we summarize from Sarno and Taylor [29] some characteristics of the micro-

structure of the foreign exchange market which are relevant to our model.

The foreign exchange market presents some special characteristics over other financial mar-

kets. It is a decentralized market in which not all dealer quotes are observable, since trades

need not be disclosed and transaction does not occur with just one institution, so different

prices can be transacted at the same time. This implies that order flow is not a reliable source

of data. Additionally, market makers are responsible for most of the trading volume and this

role is assumed mainly by commercial and investment banks. On the other hand, foreign

exchange markets are the clearest example of continuous market because it is open 24 hours a

day except weekends, and trading volume is the most extensive around the world. This feature

explains why the foreign exchange market is among the most efficient ones.

A model for foreign exchange markets based on glassy Brownian systems
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The role assumed by investment banks is for several authors [30–32] the reason why market

evolution is largely unexplained by movements from macroeconomic fundamentals. Many

works in the field also do not assume that only public information is relevant to exchange rates

[33].

Financial literature also shows (see [33–35]) that time aggregated order flow variables could

be more powerful than macroeconomic variables in explaining the exchange rate behavior.

A standard assumption in foreign exchange markets has been that expectations are ratio-

nal, but the literature provides evidence of risk premia and rejects the rational expectation

hypothesis. It seems clear by most of the authors that the formation process used by agents

in the foreign exchange market is likely to be more complex than other markets, and that

heterogeneity of expectations is crucial [36]. We would like to remark the work of Frankel

and Froot [37] which presents a formal model of agent expectations in the foreign exchange

market, where agents are classified as chartists, fundamentalists and portfolio managers.

They conclude that the value of a currency can then be driven by the decisions of portfolio

managers who consider a weighted average of the expectations of fundamentalists and char-

tists. Here we find another crucial point in exchange rate literature, namely, the role of

analysts.

The discrepancy between short and long run exchange rate expectations could be attribut-

able to market participants that use chartist analysis for short run whereas the technique used

for long run is fundamental analysis or conventional portfolio models. Evidences are given by

Allen and Taylor [38], Taylor [36], Menkhoff [39, 40] and Cheung and Wong [41, 42], Cheung

and Chinn [43]. All authors conclude that economic fundamentals will win in the long term

and that short term price movements may be dominated by chartist analysis.

Introducing the model

In Clara et al. [28], a model borrowed from physical glasses, that has proven successful when

describing data from experiments and simulations [25], is introduced to describe the fluctua-

tions of the euro—US dollar (EURUSD) currency pair. Here, we test such model with many

different currency pairs: Pound sterling—Japanese yen (GBPJPY), Australian dollar—Cana-

dian dollar (AUDCAD), New Zealand dollar—Singapur dollar (NZDSGD), US dollar—Mexi-

can peso (USDMXN), Euro—Swiss franc (EURCHF), Pound sterling—Polish zloty (GBPPLN),

US dollar—Chinese yuan (USDCNH), US dollar—Hong Kong dollar (USDHKD) and US dol-

lar—Turkish lira (USDTRY). We aim to resolve if the model can be applied to the currency

market in general and not only to the EURUSD case. Therefore, we have selected different cur-

rency pairs in order to test such approach. We use data with a frequency of 1 minute for periods

of one year, from 2010 to 2016 (depending on data availability).

We focus on price fluctuations in the currency pair, and study the distribution of the loga-

rithmic return (in short, log-return) for a given lag time τ, r(τ) = log(p(t0 + τ)/p(t0)). (Alterna-

tively, the log-return can be also defined as r(τ) = log(p(t0)/p(t0 − τ))). Probability distribution

functions (pdfs) from currency rates exhibit a symmetric profile with long tails, specially for

small values of τ. These pdfs are common to all the currencies under study and the overall pro-

file is about the same. Note that in [28] the bare price fluctuation is used, but in this work we

study the log-return instead, thus, we can compare among different pairs.

Typically, the study of financial log-return distribution (see the introduction) is modelled

by using a distribution that provides a good description of experimental data, but without any

other significant meaning. Other authors make strong assumptions about the number and the

kind of agents. The model we use is based on a model introduced to study particle displace-

ments in physical glasses, where every particle is ideally caged by its own neighbors, restricting

A model for foreign exchange markets based on glassy Brownian systems
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the structural relaxation of the whole system. Thermal fluctuations, however, allow particles to

jump from one cage to another, on a large time scale.

The model proposed here is based on the description of the free energy landscape of super-

cooled liquids as a hypersurface composed by many shallow minima, where the system is tran-

siently trapped before a jump is attempted to a different minimum (in contrast, in fluids, the

landscape is almost flat, whereas in crystalline solids, it has a deep absolute minimum, corre-

sponding the crystal structure) [44]. The extrapolation to financial markets proposed here

assumes that a given currency pair moves in a free energy with many shallow minima, as

shown schematically in Fig 1. Two different processes can be immediately identified: i) vibra-

tions within a single minimum, and ii) jumps to other minima. Even more, because the system

is expected to be trapped longer in deeper minima, it can be assumed that the first jump out of

this deep minimum has a longer waiting time, whereas subsequent jumps will occur faster, as

the system is exploring other minima. Our model takes into account all of these processes.

The vibrations inside a local minimum is described by an Ornstein-Uhlenbeck process,

given by

fvibðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=2pDð1 � e� 2atÞÞ

p
expf� ar2=2Dð1 � e� 2atÞg ð1Þ

with r the logarithm of the return, as defined previously, D the diffusion coefficient and

α = D/l2, with l the size of the cage [45–47]. This process depicted originally a particle

Fig 1. Schematic representation of the energy landscape. Schematic representation of the energy landscape as a function of the price.

https://doi.org/10.1371/journal.pone.0188814.g001
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describing Brownian motion with a linear central force pulling it towards its origin, and has

been adapted to a one-dimensional motion.

Long range jumps are possible on a larger time scale, according to a Gaussian distribution:

fjumpðrÞ ¼ ð2pd2Þ
� 3=2expð� r2=2d2Þ ð2Þ

where d is the typical size of the jumps. As mentioned previously, different waiting times are

considered for the first and all other subsequent jumps. Both probabilities are drawn from an

exponential distribution. For the first jump, �1ðtÞ ¼ t� 1
1

expð� t=t1Þ has a typical time τ1, while

subsequent jumps occur faster according to �2ðtÞ ¼ t� 1
2

expð� t=t2Þ, with a time scale τ2 < τ1.

The overall log-return distribution, G(r, t) depicts the probability of a log-return r, at time

span t, and it is calculated in the Fourier-Laplace domain, G(q, s). G(r, t) is recovered by back

transforming to the log-return–time domain as:

Gðr; tÞ ¼ t1fvibðrÞf1ðtÞ þ FT � 1½~f vibðqÞ~f ðqÞt2 �

�
expfð~f ðqÞ � 1Þt=t2g � expð� t=t1Þ

t2 � t1 þ
~f ðqÞt1

� ð3Þ

Here ~f ðqÞ ¼ ~f vibðqÞ~f jumpðqÞ, ~f ðqÞ is the Fourier transform of function f(r), q is the conjugate

variable of log-return r in the Fourier space and FT−1 denotes the Inverse Fourier Transform.

In physical glasses, this model allows the identification of systems with fast or slow dynam-

ics—high or low temperature fluid, respectively [25]. In a high temperature fluid, the relaxa-

tion of local fluctuations is fast because the molecules or particles are highly mobile, whereas

in a supercooled fluid this relaxation is much slower. In the model, the former is identified by

τ1� τ2 and l� d, whereas for low temperature fluids, τ1� τ2 and d� l. Within the picture of

the energy landscape, the former indicates that there are no independent basins, and move-

ment of the system through this hypersurface is rather smooth and continuous. On the other

hand, τ1� τ2 and d� l signal the presence of independent minima, with a highly restricted

motion. For very long lag times (τ� τ1), the theoretical pdf indeed crosses over to a Gaussian

distribution, because the price has experienced many jumps with time scale τ2, and the contri-

bution from the initial jump can be neglected. This is indeed observed in the experimental pdf

[28].

To estimate the parameters of the model, we use the absolute moments as follows: we try to

optimize an objective function f(params) = ∑o2O fm(o), where O is a set with the selected order

of the moment, in our case O = {0.1,1,2,3,4} and fm(o) is the difference in the absolute moment

of order o between the empirical data and the theoretical distribution corresponding to the

given parameters and for a wide range of lag times: fm(o) = ∑t2T|log(mome(t))−log(momt(t))|/o,

where mome(t) =< |ri(t)|o>, momt(t) = E(|r(t)|o), with ri(t) the empirical log-return with lag t
and r(t) the theoretical log-return with lag t for the given parameters, and T is a selection of

time lags, in our case {[ez]: z = 0, 0.5, 1.0, 1.5. . .,7}.

Since moments of low (high) order give weight to the maximum (tails) of the distribution,

our selection of moments for the fitting is aimed to obtain a good fitting in all regions of the

pdf, including the mean (o = 1) and variance (o = 2). Note that we use the absolute moment of

order 0.1 to improve the fit around the mode, since the empirical distribution is quite peaked.

On the other hand, for some pairs we found few extreme values of the distribution that we do

not consider when fitting the parameters, since these values affect too much the absolute

moment while are not so representative of the overall distribution. Additionally, by fitting

these moments, we ensure to capture the most relevant features of the experimental pdf, such

as its skewness (given by the third moment), or the kurtosis (fourth moment).

A model for foreign exchange markets based on glassy Brownian systems
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The final goodness of the fitting is tested by the maximum difference between the experi-

mental and theoretical cumulative distribution function (CDF), calculated as

Er ¼ supfjgðxÞ � gexpðxÞj : x 2� � 1;1½g ð4Þ

where gðxÞ ¼
R x
� 1

drGðrÞ and gexpðxÞ ¼
R x
� 1

drGexpðrÞ, with r the log-return, are the CDF.

Because the pdf is normalized, g(x) grows monotonically from 0 to 1. In most cases, the maxi-

mum difference is below 0.05, showing the good quality of the fitting; particular cases are dis-

cussed below.

A typical fitting is analyzed in Fig 2 by presenting the absolute moments of order 0.1, 1, 2,

3, 4 of the AUDCAD currency pair for the year 2010 (taken as an example), as well as the

Fig 2. Absolute moments. Absolute moments of order 0.1, 1, 2, 3, 4 (from top to bottom) of AUDCAD for the year 2010.

https://doi.org/10.1371/journal.pone.0188814.g002
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absolute moment of the fitted model. The fitting is very good for all moments, in particular for

the moment of order 0.1. This guarantees that the distribution calculated from the model

reproduces the experimental one, as shown below (see Fig 3).

Results

The fitted probability density functions for lag times of 10, 30, 100 and 250 minutes are shown

for the AUDCAD currency pair in Fig 3. As expected from the comparison of the moments,

the experimental distributions can be fitted by our model with good quality. In particular, the

Fig 3. Pdf of AUDCAD. Pdf of AUDCAD with lag times 10, 30, 100 and 250 minutes, for the year 2010. The lines are the pdfs obtained from

the moment fittings shown in Fig 2.

https://doi.org/10.1371/journal.pone.0188814.g003
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different trends of the pdf for short and large log-returns are correctly captured for all lag

times. The maximum distance between the experimental and theoretical CDF is in this case

below 2% in all cases, confirming the validity of the model to reproduce the experimental pdf.

Recall that the same set of parameters {D, l, d, τ1, and τ2} is used for all the pdfs shown in the

figure, demonstrating the capability of the model presented here.

The fitting parameters are given in Table 1 (top row), with the parameters for all other fit-

tings discussed below. Note that τ1 and τ2 are very similar, which, within the model, indicates

that the dynamics is very fast, similar to a fluid at high temperature (in any case, recall that

τ1� τ2, as imposed by the model). The parameters l and d indicate the size of the cage and

length of jumps, as previously explained. For 2010, the model interprets the AUDCAD

exchange rate as vibrating in the range ca. 0.14% and jumps out of this “cage”, within a time

scale of two hours approximately, to a value 0.115% apart. The similarity of l and d confirms

that the dynamics of this system is fast, i.e. there are no independent minima in the energy

landscape (in systems with slower dynamics, it is expected that the separation between the

minima is larger than the average size of the basins, l� d).

Fittings of similar accuracy are obtained for all other years of this pair, as illustrated in Fig

4, corresponding to the pdf of the year 2014. The parameters for all years considered here are

indicated in the Table 1 (first block). Note that the time scales from all years, τ1 ≳ τ2, which, as

Table 1. Fitting parameters of the model for different currency pairs and years.

Pair year l d τ1 (min.) τ2 (min.) D (min.−1)

AUDCAD 2010 0.001378 0.001150 123.66 119.67 1.070e-08

AUDCAD 2011 0.001025 0.000911 73.60 72.42 0.928e-08

AUDCAD 2012 0.000515 0.000555 58.00 50.61 0.375e-08

AUDCAD 2013 0.001197 0.001008 167.74 112.56 0.683e-08

AUDCAD 2014 0.001244 0.001173 197.17 166.64 0.533e-08

AUDCAD 2015 0.001432 0.001379 159.00 137.61 0.857e-08

AUDCAD 2016 0.001451 0.001168 187.02 167.97 0.805e-08

GBPJPY 2010 0.002530 0.002147 228.19 182.45 2.200e-08

GBPJPY 2011 0.004408 0.002613 1011.87 1011.87 1.390e-08

GBPJPY 2012 0.001171 0.000891 106.88 75.45 0.866e-08

GBPJPY 2013 0.001578 0.001279 122.47 117.17 1.150e-08

GBPJPY 2014 0.001022 0.001067 190.11 112.26 0.541e-08

GBPJPY 2015 0.001232 0.001119 145.45 99.30 0.793e-08

GBPJPY 2016 0.034523 0.002854 174.55 174.55 0.807e-08

EURUSD 2010 0.001131 0.001019 79.86 51.84 1.13e-08

EURUSD 2011 0.002063 0.001382 205.50 144.19 1.24e-08

EURUSD 2012 0.000772 0.000865 96.15 60.43 0.55e-08

EURUSD 2013 0.000705 0.001126 163.32 112.11 0.40e-08

EURUSD 2014 0.000271 0.000738 71.81 71.81 0.10e-08

EURUSD 2015 0.000853 0.001394 93.25 85.68 0.80e-08

EURUSD 2016 0.001119 0.001506 243.88 243.88 0.52e-08

NZDSGD 2010 0.001295 0.001532 109.99 109.99 2.110e-08

NZDSGD 2011 0.001172 0.001769 154.61 154.61 2.370e-08

NZDSGD 2012 0.000623 0.000587 47.91 44.46 0.692e-08

NZDSGD 2013 0.000757 0.000867 55.04 46.91 0.927e-08

NZDSGD 2014 0.000500 0.000753 49.58 49.58 0.737e-08

NZDSGD 2015 0.002569 0.002075 396.99 396.70 1.240e-08

NZDSGD 2016 0.000934 0.001166 84.01 84.01 1.060e-08

https://doi.org/10.1371/journal.pone.0188814.t001
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discussed previously, indicates that AUDCAD currency pair displays fast dynamics, similar to

a fluid at high temperature. The time scale, however, varies from the initial magnitude of two

hours within a range of one hour in these years. The length scales, for the cage and jumps,

evolve also in this period but stay within the range of [0.05%,0.15%]. For all these years and lag

times, the maximum separation between the experimental and theoretical CDF is below

Er = 0.04. Note that to the AUDCAD currency pair and as well to all other currencies pre-

sented in this work (see Tables 1 and 2), τ1 and τ2 are of about one to three hours. Such hall-

mark can be qualitatively understood. Short term investors and traders operate in a time range

Fig 4. Pdf of AUDCAD. Pdf of AUDCAD with lag times 10, 30, 100 and 250 minutes, for the year 2014.

https://doi.org/10.1371/journal.pone.0188814.g004
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of few hours, and thus determine the short-time dynamics of currency markets. Also, they act

synchronized with other financial markets and floors (as operations are not restricted to one

market), in particular the NYSE, even by following their schedules related to low (night) and

high (morning) activity. Therefore, these agents place operations according to a daily schedule,

at particular moments, which impacts market dynamics and the location of stronger or weaker

price fluctuations in time, thus setting the magnitude of τ1 and τ2.

Such currency pair, the AUDCAD one, is particularly interesting, as according to the Euro-

pean Central Bank report [48], since the beginning of the financial crisis in 2007, the involve-

ment of non-traditional foreign currencies in international reserves has been tripled. This

tendency has been lead by the Canadian dollar (CAD) and Australian dollar (AUD), which

represents approximately 25 percent of the non-traditional world reserves. This tendency is

consequence of, in one hand, the increase of risk perception in traditional currencies and in

the other one, the vigour of the economy from both countries.

Let us focus next on the EURUSD pair, exemplified in Fig 5 showing the pdfs for the year

2015. The fittings of the model are also very satisfactory to all years, capturing again the tails at

large variations of the exchange (either positive or negative). The parameters for these fittings

Table 2. Fitting parameters of the model for different currency pairs and years.

Pair year l d τ1 (min.) τ2 (min.) D (min.−1)

USDMXN 2010 0.001443 0.001761 168.82 168.82 1.50e-08

USDMXN 2011 0.001040 0.001116 157.03 157.01 0.94e-08

USDMXN 2012 0.000875 0.001042 71.28 56.64 0.93e-08

USDMXN 2013 0.001193 0.001383 135.10 95.71 0.81e-08

USDMXN 2014 0.000414 0.000959 82.88 82.78 0.41e-08

USDMXN 2015 0.000590 0.001122 54.74 53.71 0.66e-08

USDMXN 2016 0.001422 0.002411 153.06 153.06 1.66e-08

EURCHF 2011 0.000812 0.002228 168.33 167.51 0.876e-08

EURCHF 2012 0.000060 0.000393 165.16 165.16 1.660e-08

EURCHF 2013 0.000453 0.000749 159.42 159.41 0.193e-08

EURCHF 2014 0.000227 0.000373 213.54 213.54 0.044e-08

EURCHF 2015 0.000546 0.001123 97.98 97.98 0.739e-08

EURCHF 2016 0.000441 0.000829 159.70 159.69 0.269e-08

GBPPLN 2015 0.001070 0.001243 94.18 93.47 0.99E-08

GBPPLN 2016 0.000948 0.001681 108.66 108.66 1.25E-08

USDCNH 2015 0.000480 0.000603 174.72 174.70 0.132E-08

USDCNH 2016 0.000261 0.000474 108.46 108.46 0.090E-08

USDHKD 2010 0.000019 0.000095 79.49 79.49 0.213E-08

USDHKD 2011 0.000020 0.000103 73.30 73.30 0.395E-08

USDHKD 2012 0.000017 0.000066 173.99 173.99 0.153E-08

USDHKD 2013 0.000024 0.000046 168.15 168.14 0.163E-08

USDHKD 2014 0.000021 0.000091 362.77 362.77 0.004E-08

USDHKD 2015 0.000020 0.000102 408.48 405.39 0.002E-11

USDHKD 2016 0.000039 0.000189 165.46 165.41 0.011E-10

USDTRY 2011 0.000525 0.001325 51.71 51.40 2.710E-08

USDTRY 2012 0.000389 0.000930 72.93 72.93 0.605E-09

USDTRY 2013 0.000396 0.001174 76.95 76.95 0.422E-08

USDTRY 2014 0.000904 0.001993 179.11 178.93 0.424E-08

USDTRY 2015 0.001185 0.001747 121.99 103.07 1.030E-08

USDTRY 2016 0.000851 0.001733 136.17 136.17 0.683E-08

https://doi.org/10.1371/journal.pone.0188814.t002
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are presented in Table 1, second block. Different from the previous case, the time scales for

the EURUSD exchange rates show a clear trend, with τ1 > τ2 for the period 2010–2013, while

τ1 = τ2 for 2014–2016, and concomitantly d≳ l. This indicates that the dynamics of the EUR-

USD is more hindered in the former period than in the latter, coincident with the debt crisis in

the Eurozone. Interestingly, the maximum distance between the experimental and theoretical

CDF is found for the year 2014, where it goes up to Er = 5.5%—for all other years, the differ-

ence is below Er = 3%.

Fig 5. Pdf of EURUSD. Pdf of EURUSD with lag times 10, 30, 100 and 250 minutes, for the year 2015.

https://doi.org/10.1371/journal.pone.0188814.g005
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We now study other currency pairs, as introduced above. Fig 6 shows the GBPJPY rates

during 2011. A particularly interesting feature is the large time scales for this year 2011 (Fig 6),

τ1 = τ2� 1000 minutes, as the pdf is narrower in this year, although other parameters do not

show any specific behavior. The maximum difference is again below Er = 4% for all years and

lag times. The pdfs belonging to the change pair of the New Zeland and Singapur dollars

(NZDSGD) are studied in Fig 7 for 2014. The fittings are also quite satisfactory (the maximum

distance below Er = 4% for all years and lag times) and the parameters, indicated in Table 1,

are again consistent with τ1� τ2. This pair is also considered not conventional and it is formed

Fig 6. Pdf of GBPJPY. Pdf of GBPJPY with lag times 10, 30, 100 and 250 minutes, for the year 2011.

https://doi.org/10.1371/journal.pone.0188814.g006
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by the currencies of two countries that belong to the P4 free trade agreement signed in 2005

and that is avoiding 90% of duties gradually.

The US dollar—Mexican peso (USDMXN) currency pair is studied as indicated in Fig 8 for

the year 2015. The model describes the experimental data with excellent agreement (the maxi-

mum distance between experimental and theoretical CDF is below Er = 5%), as shown previ-

ously for other pairs, with parameters detailed in Table 2, first block. Again, τ1� τ2, due to the

intense commercial relation between Mexico and the US.

Fig 7. Pdf of NZDSGD. Pdf of NZDSGD with lag times 10, 30, 100 and 250 minutes, for the year 2014.

https://doi.org/10.1371/journal.pone.0188814.g007
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Finally, we study the exchange rate between the US dollar and the Hong Kong dollar,

depicted in Fig 9 for the year 2016. This particular year is chosen as an example of an imperfect
overall fitting, according to our criterion: Er = 8.3%, 5.7%, 5% and 10.6% for lag times τ = 10,

30, 100 and 250 min., respectively. Still, the fitting is quite satisfactory, and the main features

of the distribution are captured. The parameters, given as well in Table 2, yield again τ1� τ2.

Interestingly, the pdfs are narrower in this case than in the previous ones. This is captured in

our model by the smallness of parameters l and d, but in all cases d is much larger than l, indi-

cating that the exchange pair is bracketed in a narrow range, and in a time scale τ1� τ2 it

Fig 8. Pdf of USDMXN. Pdf of USDMXN with lags 10, 30, 100 and 250 minutes for the year 2015.

https://doi.org/10.1371/journal.pone.0188814.g008
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jumps out to a different value. Other currency pairs have been studied, with the corresponding

parameters presented in Table 2.

Tables 1 and 2 compile the fitting parameters for all studied currency pairs. Whereas the

values of l and d are non-dimensional parameters, because the log-return is used, the time

scales are all measured in the same units, allowing a straightforward comparison between dif-

ferent pairs. Note that both τ1 and τ2 are typically in the range of one to three hours, for all

pairs. Given the very different currencies studied, this indicates a common origin for the

dynamics of the foreign exchange market, irrespective of the particular pair studied. One can

Fig 9. Pdf of USDHKD. Pdf of USDHKD with lags 10, 30, 100 and 250 minutes for the year 2016.

https://doi.org/10.1371/journal.pone.0188814.g009
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think of market makers and short time traders producing the caging process, since they go in

and out in their positions, while larger time investors provide transactions on only one side

(up or down) of the market. In this context, our analysis indicates that long time investors

enter in the market with a time scale of a few hours.

Looking at particular currency pairs, some of them are more stable than other ones. It is

interesting to remark the results obtained for the AUDCAD exchange rate, which clearly is the

most stable among the years. As mentioned above, this is probably due to both currencies

being considered commodity currencies. Other pairs, such as the NZDSGD or the USDHKD,

present particular years with different behavior.

As the proposed model successfully resolves the experimental pdfs from currency pairs, we

study next the experimental data to notice that there is some autocorrelation in the signal, i.e.

r(τ) is not the same as τ × r(1), see Fig 10. This implies that independently identically distrib-

uted pdfs with heavy tails cannot be used to model the log-return distribution of a currency

pair. In Fig 10, we can see that the empirical distribution of log-returns with lag times of 10

and 30 minutes is not the same as the distribution of an iid process, featured by log-returns

with a lag time of one minute. This is in agreement with Hsieh [49], who concluded that obser-

vations for the exchange rate of the US dollar were not independently drawn from a heavy tail

distribution that remains fixed over time, but from distributions whose parameters change

over time. In particular, in this case, the mean and variance change over time and an ARCH

model is able to capture most of the nonlinear stochastic dependencies of the data. Following

Hsieh’s finding, other works [50–52] obtained similar results. GARCH formulations by [53–

55] went in the same line. With our model, however, we can account for some kind of autocor-

relation without the use of additional models.

It can also be noticed in Fig 10 that the empirical distributions are more peaked than the iid

process, and that these have heavier tails. This is in agreement with our model, since the Orn-

stein-Uhlenbeck process, which cages the price, produces a more peaked distribution, while

the jump component explains the larger tails. In terms of the market, we can think of market

makers and short time traders producing the caged process, since they keep in and out trading

positions, while larger time investors provide transactions on only one side (up or down) of

the market, accounting for the jump component.

Indeed, as we pointed out in previous sections, foreign exchange markets present some

characteristics that make them different from other financial markets, of which the more

important ones are that major trading volume is given by market makers, as well as decentrali-

zation. Market makers play a fundamental role in prices formation, and considering that these

market operators have the obligation of trading at published prices, over which a margin has

been fixed, it seems logical to think that they necessarily contribute to engage market price. On

the other hand, as [37] showed, it is proved that short term operators and long term ones trade

over the base of different expectations. In foreign exchange markets, long term operators,

global banks as well as multinational companies, basically make coverture operations for their

commercial transactions. Short term traders, on the other hand, play a similar role to market

makers since they use stop loss and profit mechanisms based on chartist analysis. Summariz-

ing, as well as [33–35] showed, we think that depending whence the large market trade is com-

ing, from short term or long term traders, the price formation is engaged or not.

Conclusions

We have proposed a model, derived initially to describe the dynamics of undercooled physical

systems, that is able to describe currency pairs with a single functional form, and a single set of

parameters for all time lags. More importantly, the parameters can can be physically
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interpreted, making the model more useful. In particular, the ratio of the two time scales

involved in the model, τ1 and τ2, indicates if the dynamics of the model corresponds to a high

temperature fluid (fast long-time dynamics), or an undercooled system (slow long-time

dynamics). We have shown that the model correctly fits many different currency pairs with

τ1� τ2, for most cases; the time scales for jumps are in the range of one to four hours, pointing

to a common origin in all cases. In agreement with Hsieh [49, 53, 54], Milhoj [52], Diebold

Fig 10. Comparison of the experimental pdf vs iid one. Comparison of the experimental pdf (circle) vs iid one (triangles) for EURUSD in

the year 2010 for a lag time of 10 minutes (left panel) and 30 minutes (right panel). The solid line is a Gaussian fit to the iid process.

https://doi.org/10.1371/journal.pone.0188814.g010
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[50], Diebold and Nerlove [51], McCurdy and Morgan [56] and Kugler and Lenz [55], our

model does not assume the iid restricted condition.

The arrested dynamics found by the model, as well as jumps, could be explained by the pre-

vious mentioned heterogeneity of expectations pointed out by classic foreign exchange mar-

kets literature (see [32, 36–38, 57–61]). It is suggested that such heterogeneity of expectations

is the consequence of the different analysis techniques used by market participants. Traders

use information in a different way than portfolio managers and fundamentalists and, in

foreign exchange market, one cannot neglect currency coverture operations carried out by

international companies. The model presented here does not break the market efficiency

hypothesis, but clearly shows how market dynamics transits from arrested, in short term, to

diffusive in long term, and we propose, as Engle et al. [62] pointed out, that such behavior is

attributed to flow of market information and how market agents process it.

It is interesting to see how not conventional currencies such as AUDCAD and NZDSGD

present fits with very stable parameters among the years. In both cases we consider that this is

because trade of these currencies is more associated to investments than to speculation.
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21. Masoliver J, Perelló J. Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility

model. Quantitative Finance 2005; 6 (5):423–433. https://doi.org/10.1080/14697680600727547

22. Bouchaud JP, Potters M. Theory of Financial Risks. Cambridge University Press, 2000.

23. Mandelbrot B, Hudson R. The Misbehavior of Markets. Basic Books, 2006.

24. Mantegna RN, Stanley HE. Introduction to econophysics: correlations and complexity in finance. Cam-

bridge University Press, 2007.

25. Chaudhuri P, Berthier L, Kob W. Universal nature of particle displacements close to glass and jamming

transitions. Physical Review Letters 2007; 99(6): 060604. https://doi.org/10.1103/PhysRevLett.99.

060604 PMID: 17930812

A model for foreign exchange markets based on glassy Brownian systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0188814 December 5, 2017 20 / 22

https://doi.org/10.1086/294743
https://doi.org/10.1086/294743
https://doi.org/10.1086/294632
https://doi.org/10.1086/294980
https://doi.org/10.1111/1467-9469.t01-1-00045
https://doi.org/10.2307/3318481
https://doi.org/10.2307/3318481
https://doi.org/10.1016/S0895-7177(99)00107-7
https://doi.org/10.1016/S0895-7177(99)00094-1
https://doi.org/10.1016/S0895-7177(99)00094-1
https://doi.org/10.1016/S0895-7177(01)00114-5
https://doi.org/10.1016/S0895-7177(01)00114-5
https://doi.org/10.1016/j.jbankfin.2007.11.004
https://doi.org/10.1016/j.jbankfin.2007.11.004
https://doi.org/10.1103/PhysRevE.52.1197
https://doi.org/10.1103/PhysRevE.52.1197
https://doi.org/10.1142/S0219024900000541
https://doi.org/10.1086/338705
https://doi.org/10.1086/209695
https://doi.org/10.2307/1913889
https://doi.org/10.2307/1912726
https://doi.org/10.2307/1912726
https://doi.org/10.2307/1912002
https://doi.org/10.1016/S0378-4371(00)00117-5
https://doi.org/10.1016/S0378-4371(00)00117-5
https://doi.org/10.1103/PhysRevE.67.021112
https://doi.org/10.1080/14697680600727547
https://doi.org/10.1103/PhysRevLett.99.060604
https://doi.org/10.1103/PhysRevLett.99.060604
http://www.ncbi.nlm.nih.gov/pubmed/17930812
https://doi.org/10.1371/journal.pone.0188814


26. Cont R, Bouchaud JP. Herd behavior and aggregate fluctuations in Financial Markets. Macroeconomic

Dynamics 2000; 4 (2):170–196. https://doi.org/10.1017/S1365100500015029

27. Cont R, Tankov P. Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathe-

matics Series, 2004.

28. Clara-Rahola J, Puertas AM, Sánchez-Granero MA, Trinidad Segovia JE, de las Nieves FJ. Diffusive

and arrestedlike dynamics in currency exchange markets. Physical Review Letters 2017; 118: 068301.

https://doi.org/10.1103/PhysRevLett.118.068301 PMID: 28234526

29. Sarno L, Taylor MP. The microstructure of foreign exchange markets: a selective survey of the litera-

ture. Princeton Studies in International Economics, No. 89; 2001.

30. Flood RP, Taylor MP. Exchange Rate Economics: What’s Wrong with the Conventional Macro

Approach? In: Frankel, Galli, and Giovannini, eds., The Microstructure of Foreign Exchange Markets,

1996, pp. 261–301.

31. Frankel JA, Rose AK. Chapter 33 Empirical research on nominal exchange rates. In: Handbook of Inter-

national Economics, 3, 1995, pp. 1689–1729.

32. Taylor MP. The Economics of Exchange Rates. Journal of Economic Literature 1995; 83 (1):13–47.

33. Lyons RK. The Microstructure approach to Exchange Rate. Cambridge, Mass. MIT Press; 2001.

34. Martin D, Evans D, Lyons RK. Order Flow and Exchange Rate Dynamics. Journal of Political Economy

2002; 110 (1):170–180. https://doi.org/10.1086/324391

35. Martin D, Evans D, Lyons RK. How is macro news transmitted to exchange rates? Journal of Financial

Economics 2008; 88 (1):26–50. https://doi.org/10.1016/j.jfineco.2007.06.001

36. Taylor MP, Allen H. The Use of Technical Analysis in the Foreign Exchange Market. Journal of Interna-

tional Money and Finance 1992; 11 (3):304–314. https://doi.org/10.1016/0261-5606(92)90048-3

37. Frankel JA, Froot KA. Using Survey Data to Test Standard Propositions Regarding Exchange Rate

Expectations. American Economic Review 1987; 77 (1):133–153.

38. Allen H, Taylor MP. Charts, Noise and Fundamentals in the London Foreign Exchange Market. Eco-

nomic Journal 1990; 100 (400):49–59. https://doi.org/10.2307/2234183

39. Menkhoff L. Examining the Use of Technical Currency Analysis. International Journal of Finance and

Economics 1997; 2 (4):307–318. https://doi.org/10.1002/(SICI)1099-1158(199710)2:4%3C307::AID-

JFE54%3E3.0.CO;2-8

40. Menkhoff L. The Noise Trading Approach-Questionnaire Evidence from Foreign Exchange. Journal of

International Money and Finance 1998; 17 (3):547–564. https://doi.org/10.1016/S0261-5606(98)

00016-3

41. Cheung YW, Wong CY. Foreign Exchange Traders in Hong Kong, Tokyo and Singapore: A Survey

Study. Advances in Pacific Basin Financial Markets 1999; 5 (1):111–134.

42. Cheung YW, Wong CY. A Survey of Market Practitioners: Views on Exchange Rate Dynamics. Journal

of International Economics 2000; 51 (2):401–419. https://doi.org/10.1016/S0022-1996(99)00009-4

43. Cheung YW, Chinn MD. Macroeconomic Implications of the Beliefs and Behavior of Foreign Exchange

Traders. No. w7417. National Bureau of Economic Research; 1999.

44. Goldstein M. Viscous liquids and the glass transition: a potential energy barrier picture. The Journal of

Chemical Physics 1969; 51(9):3728–3739. https://doi.org/10.1063/1.1672587

45. Uhlenbeck GE, Ornstein LS. On the theory of the Brownian motion. Physical review 1930; 36(5):823.

https://doi.org/10.1103/PhysRev.36.823

46. Gillespie DT. Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Physical

review E 1996; 54(2):2084. https://doi.org/10.1103/PhysRevE.54.2084

47. Risken H. The Fokker Planck Equation: Method of Solution and Applications. Springer Berlin Heidel-

berg; 1989.

48. European Central Bank. The International Role of the Euro. Report of the European Central Bank; July

2013.

49. Hsieh D.A. The Statistical Properties of Daily Foreign Exchange Rates: 1974–1983. Journal of Interna-

tional Economics 1988; 24 (1–2):129–145. https://doi.org/10.1016/0022-1996(88)90025-6

50. Diebold FX. Serial Correlation and the Combination of Forecasts. Journal of Business and Economic

Statistics 1988; 6 (1):105–111. https://doi.org/10.2307/1391423

51. Diebold FX, Nerlove M. The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor ARCH

Model. Journal of Applied Econometrics 1989; 4 (1):1–21. https://doi.org/10.1002/jae.3950040102

52. Milhoj A. A Conditional Variance Model for Daily Deviations of an Exchange Rate. Journal of Business

and Economic Statistics 1987; 5 (1):99–103. https://doi.org/10.2307/1391219

A model for foreign exchange markets based on glassy Brownian systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0188814 December 5, 2017 21 / 22

https://doi.org/10.1017/S1365100500015029
https://doi.org/10.1103/PhysRevLett.118.068301
http://www.ncbi.nlm.nih.gov/pubmed/28234526
https://doi.org/10.1086/324391
https://doi.org/10.1016/j.jfineco.2007.06.001
https://doi.org/10.1016/0261-5606(92)90048-3
https://doi.org/10.2307/2234183
https://doi.org/10.1002/(SICI)1099-1158(199710)2:4%3C307::AID-JFE54%3E3.0.CO;2-8
https://doi.org/10.1002/(SICI)1099-1158(199710)2:4%3C307::AID-JFE54%3E3.0.CO;2-8
https://doi.org/10.1016/S0261-5606(98)00016-3
https://doi.org/10.1016/S0261-5606(98)00016-3
https://doi.org/10.1016/S0022-1996(99)00009-4
https://doi.org/10.1063/1.1672587
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRevE.54.2084
https://doi.org/10.1016/0022-1996(88)90025-6
https://doi.org/10.2307/1391423
https://doi.org/10.1002/jae.3950040102
https://doi.org/10.2307/1391219
https://doi.org/10.1371/journal.pone.0188814


53. Hsieh DA. Modeling Heteroscedasticity in Daily Foreign-Exchange Rates. Journal of Business and Eco-

nomic Statistics 1989; 7 (3):307–317. https://doi.org/10.1080/07350015.1989.10509740

54. Hsieh DA. Testing for Nonlinear Dependence in Daily Foreign Exchange Rates. Journal of Business

1989; 62 (3):339–368. https://doi.org/10.1086/296466

55. Kugler P, Lenz C. Are Exchange Rate Fluctuations Random or Chaotic? Schweizerische Zeitschrift für

Volkswirtschaft und Statistik 1990; 126 (2):113–128.

56. McCurdy TH, Morgan LG. Testing the Martingale Hypothesis in Deutsche Mark Futures with Models

Specifying the Form of Heteroscedasticity. Journal of Applied Econometrics 1988; 3 (3):187–202.

https://doi.org/10.1002/jae.3950030303

57. Frankel JA, Froot KA. Understanding the U.S. Dollar in the Eighties: The Expectations of Chartists and

Fundamentalists. Economic Record 1986; 62 (1):24–38.

58. Frankel JA, Froot KA. Chartists, Fundamentalists, and Trading in the Foreign Exchange Market. Ameri-

can Economic Review 1990; 80 (2):181–185.

59. Frankel JA, Froot KA. Chartists, Fundamentalists and the Demand for Dollars. In Courakis Anthony and

Taylor Mark P., eds. Private Behaviour and Government Policy in Interdependent Economies. Oxford,

Clarendon, 1990, pp. 73–126.

60. Ito T. Foreign Exchange Rate Expectations: Micro Survey Data. American Economic Review 1990; 80

(3):434–449.

61. Takagi S. Exchange Rate Expectations: A Survey of Survey Studies. International Monetary Fund Staff

Papers 1991; 38 (1):156–183. https://doi.org/10.2307/3867039

62. Engle RF, Ito T, Lin WL. Meteor Showers or Heat Waves? Heteroskedastic Intra-Daily Volatility in the

Foreign Exchange Market. Econometrica 1990; 58 (3):525–542. https://doi.org/10.2307/2938189

A model for foreign exchange markets based on glassy Brownian systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0188814 December 5, 2017 22 / 22

https://doi.org/10.1080/07350015.1989.10509740
https://doi.org/10.1086/296466
https://doi.org/10.1002/jae.3950030303
https://doi.org/10.2307/3867039
https://doi.org/10.2307/2938189
https://doi.org/10.1371/journal.pone.0188814

