
RESEARCH ARTICLE

Particle swarm optimization-based automatic

parameter selection for deep neural networks

and its applications in large-scale and high-

dimensional data

Fei Ye*

School of information science and technology, Southwest Jiaotong University, ChengDu, China

* 122404504@qq.com

Abstract

In this paper, we propose a new automatic hyperparameter selection approach for determin-

ing the optimal network configuration (network structure and hyperparameters) for deep

neural networks using particle swarm optimization (PSO) in combination with a steepest

gradient descent algorithm. In the proposed approach, network configurations were coded

as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the

search procedure. During the search procedure, the PSO algorithm is employed to search

for optimal network configurations via the particles moving in a finite search space, and the

steepest gradient descent algorithm is used to train the DNN classifier with a few training

epochs (to find a local optimal solution) during the population evaluation of PSO. After

the optimization scheme, the steepest gradient descent algorithm is performed with more

epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensem-

ble model and individual DNN classifiers, respectively. The local search ability of the stee-

pest gradient descent algorithm and the global search capabilities of the PSO algorithm

are exploited to determine an optimal solution that is close to the global optimum. We con-

structed several experiments on hand-written characters and biological activity prediction

datasets to show that the DNN classifiers trained by the network configurations expressed

by the final solutions of the PSO algorithm, employed to construct an ensemble model and

individual classifier, outperform the random approach in terms of the generalization perfor-

mance. Therefore, the proposed approach can be regarded an alternative tool for automatic

network structure and parameter selection for deep neural networks.

1. Introduction

The current growth in Internet information and computational hardware development, such

as Facebook and other well-known business websites, is enabling a wide range of researchers

to utilize various advanced techniques, such as machine learning tools, to capture available

and important information and analyze this processed information to provide better business

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 1 / 36

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ye F (2017) Particle swarm optimization-

based automatic parameter selection for deep

neural networks and its applications in large-scale

and high-dimensional data. PLoS ONE 12(12):

e0188746. https://doi.org/10.1371/journal.

pone.0188746

Editor: Wen-Bo Du, Beihang University, CHINA

Received: April 2, 2017

Accepted: October 2, 2017

Published: December 13, 2017

Copyright: © 2017 Fei Ye. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: Data are available

from figshare at the following link: https://doi.org/

10.6084/m9.figshare.5624797.v1.

Funding: The author(s) received no specific

funding for this work

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0188746
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188746&domain=pdf&date_stamp=2017-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188746&domain=pdf&date_stamp=2017-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188746&domain=pdf&date_stamp=2017-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188746&domain=pdf&date_stamp=2017-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188746&domain=pdf&date_stamp=2017-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188746&domain=pdf&date_stamp=2017-12-13
https://doi.org/10.1371/journal.pone.0188746
https://doi.org/10.1371/journal.pone.0188746
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.5624797.v1
https://doi.org/10.6084/m9.figshare.5624797.v1


decisions for the government and industry. A critical challenge in the development of

advanced techniques and application of them to process more complicated problems is how to

select more appropriate models that fit the specific data collected from real-world applications

well. Although machine learning approaches has been successfully applied in a wide range of

pattern recognition and prediction tasks, limitations of these techniques in processing large-

scale and high-dimensional data still exist. Typically, in most pattern recognition tasks, the

data is usually collected from a group of digital images or action videos, and each image

of these data contains a high-dimensional pixel vector. Convolution machine learning

approaches, such as support vector machine (SVM), have difficulty processing such data due

to their shallow structures, which fail to capture the high-level abstract feature representation

from the high-dimensional row data. The above difficulties and challenges have inspired most

research groups and companies to find and develop more advanced techniques to address

such issues. Deep learning techniques are among the most popular and representative methods

of these advanced techniques. In recent years, deep learning techniques have been widely

developed and applied in many real-world applications due to their excellent performance on

large-scale and high-dimensional datasets. Deep learning techniques have been successfully

applied in domains such as human action recognition [1–8], text processing and applications

[9–14], medical image processing [15–26], and computational biology [27–36].

Conventional machine learning algorithms usually have some limitations in their ability to

address natural data due to the complex structure of their raw form. For decades, constructing

a classification model or pattern recognition system usually required careful investigation and

considerable background information regarding the optimization problem to design a feature

representation tool that transformed the input data (original data, such as the words of one

review) into another data representation that is suitable for classifiers to process it and discover

the classification pattern between the inputs and outputs. Feature reduction and feature learn-

ing are always important issues in the machine learning domain and are usually employed in

combination with other machine learning algorithms, such as support vector machine, to pro-

vide a significant improvement in performance on recognition tasks compared to the standard

machine learning algorithms. In addition, deep learning techniques can be seen as specific fea-

ture learning or feature reduction tools with multiple processing layers that abstract the high-

level feature representation. A deep learning architecture usually contains one input layer, two

or more processing layers, and one output layer. The degree of feature abstraction of the deep

learning architecture is dependent on the depth of its neural network and the number of hid-

den neurons. However, although a more high-level network structure employed to construct a

deep learning architecture may provide more powerful capabilities in feature representation,

this is not suitable for only a few samples with low-dimensional attributes, and the choice of

depth of neural networks is a trade-off between generalization capability and computational

complexity.

In many forms of machine learning, shallow or deep, supervised machine learning is

the most popular and frequently used method to construct a classification model or pattern

recognition system. The main idea of supervised learning is to update the adjustable network

parameters, i.e., weights and biases, by receiving a huge number of real-world samples, such as

a car, a pet, a house or a person. To train a network using the supervised learning method, the

first step is to collect a large volume of data from appropriate real-world domains, and each

sample (instance) must be labeled with its category. During the training phase, these collected

data are employed as input data for the classifier and then transformed into outputs through

the many non-linear modules that connect the multiple processing layers of a deep network.

Generally, we want an instance or a sample that is fed into a classifier to yield the desired

output. However, this usually does not occur before training. Training a network requires

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 2 / 36

https://doi.org/10.1371/journal.pone.0188746


modifying its adjustable parameters (weights and biases) so that the error between the pre-

dicted outputs and the desired outputs is as small as possible. The objective function, which is

also called the loss function and is used to measure the training error, usually adopts the square

loss measure for regression problems and the log-likelihood loss measure for classification

problems. In a typical higher-level neural network using the supervised learning approach,

there may be many processing layers with hundreds of millions of these tuning parameters

(weights and biases), which are trained with hundreds of millions of samples with genuine

labels.

Unsupervised learning is one type of machine learning method and can employ the

“Deep Learn” concept to construct a higher-level neural network with more powerful capa-

bility for feature representation and abstraction. In many unsupervised learning methods, a

deep belief network (DBN) is a more representative approach among these unsupervised

learning. A DBN usually consists of many processing layers, and each processing layer con-

tains multiple parameterized non-linear modules. DNB has a range of advantageous proper-

ties that can allow it to efficiently process large-scale and high-dimensional datasets. The

main goal of a DBN is to learn a higher-level feature abstract representation that provides

good classification performance. Actually, after network training is complete, the DBN even-

tually derives a set of vectors of parameters (optimal weights and biases) that are employed

as initialization values of the network parameters of the multilayer perceptron to train a final

model. These optimal parameters determined by the DBN, employed to initialize a deeper

network, may result in a training network via which the model has more opportunities for

finding the global optimal solution and avoiding the case in which the algorithm procedure

becomes trapped in a local minimum. In addition to the original DBN algorithm, some

improved algorithms have been developed [37–38]. The creation of an autoencoder is also a

well-known unsupervised learning approach that can form a deeper network structure by

stacking a group of independent autoencoders. Training a deep autoencoder is similar to a

DBN in that a layer-by-layer search procedure is performed with hundreds of millions of

unlabeled samples.

Using machine learning or deep learning approaches to solve a pattern recognition or time

series prediction task usually requires constructing a more appropriate network structure

based on the properties of the dataset and the data representation type. The network structure

design requires considering the depth of the neural network and the number of hidden neu-

rons. These network configurations are very influential factors on the performance of the

network. In addition, training a deep learning architecture may be affected by the choice of

hyperparameter configuration using the steepest gradient descent algorithm. Generally, proper

adjustment of the weight depends on the gradient vectors calculated by the learning algorithm

and the learning rate that controls the variation amplitude of the parameters. Therefore, select-

ing a more appropriate learning rate and other hyperparameters plays an important role in the

network training phase and final constructed model. These hyperparameter configurations

cannot be optimized by the steepest gradient descent algorithm. In addition, finding an opti-

mal set of values for the hyperparameter configuration is a challenging task due to the large

number of optimization variables and the complexity of the problem. However, in recent

years, researchers have constructed a huge number of experiments to find various rules of

thumb for the choice of hyperparameter configurations. These useful tricks can help improve

the performance of deep learning approaches. For more details, see [39–42], which provide a

variety of practical tricks for selecting the appropriate hyperparameter configuration. There

are several other crucial hyperparameters that can produce effects on network training: drop-

out rate, momentum, decay, and the number of hidden neurons. In addition, weight initializa-

tion is always given by a randomly generated real-number vector that is small enough around

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 3 / 36

https://doi.org/10.1371/journal.pone.0188746


the zero to yield the largest gradients during the early training phase. The learning rate is typi-

cally a hot topic and has been discussed in the machine learning community. The main reason

is because it plays a more important role in network training compared to other hyperpara-

meters. To find a more appropriate learning rate, there is a simple solution for choosing a

fixed learning rate, that is, we can simply use a grid search approach in combination with a

network training procedure using steepest gradient descent algorithms to determine an opti-

mal learning rate from several candidate log-spaced values (10−1, 10−2, . . ..), based on the train-

ing error. In addition, a classical MLP classifier using the traditional steepest gradient descent

algorithms, such as a back-propagation algorithm for training a deep learning architecture, has

several limitations, i.e., the algorithm cannot find the global optimum solutions and its search

procedure is easily trapped in local optima. Therefore, to solve these difficulties in using stee-

pest gradient algorithms to train a higher-level neural network, the Stochastic Gradient

Descent (SGD) algorithm has recently been proposed [43–48]. The SGD algorithm has several

advanced advantages and therefore provides an efficient and practical solution for training a

deep learning architecture. The properties of the SGD algorithm allow it only to optimize an

objective function based on gradient information, and it is not able to process the hyperpara-

meter configuration of deep neural networks. To solve the parameter estimation, many popu-

lation-based stochastic search algorithms have been employed, including genetic algorithms

(GAs) [49], particle swarm optimization (PSO) [50], differential evolution (DE) [51], fruit fly

optimization (FOA) [52], and ant colony (AC) optimization [53]. Particle swarm optimization

(PSO) is a typical swarm optimization algorithm and has shown impressive search perfor-

mance for parameter optimization on a broad range of real-world applications. For example,

Gaing Z L et al. [54] employed particle swarm optimization to determine the optimal propor-

tional-integral-derivative (PID) controller parameters of an automatic voltage regulator

(AVR) system. In this work, the PSO algorithm has been demonstrated as a more efficient and

robust tool for improving the step response of an AVR system. Park J B et al. [55] presented a

new approach based on the PSO algorithm for solving economic dispatch (ED) problems with

nonsmooth cost functions; in this work, a modified PSO mechanism was proposed to address

ED problems, and the experimental results demonstrated the superiority of the modified PSO

algorithm compared to other evolutionary algorithms. Esmin A et al. [56] employed the PSO

algorithm for a loss reduction study; in this work, the PSO algorithm was demonstrated to

have promising results when applied to an IEEE-118-bus system. Ting T et al. [57] proposed a

new hybrid particle swarm optimization (HPSO) for solving the unit commitment (UC) prob-

lem. The proposed hybrid algorithm used binary PSO and real-coded PSO to respectively pro-

cess the UC problem and the economic load dispatch problem simultaneously. Ishaque K et al.

[58] developed an improved maximum power point tracking (MPPT) approach based on a

modified PSO algorithm for photovoltaic (PV) systems; this method can reduce the steady-

state oscillation once the maximum power point (MPP) is located, which shows promising

results compared with other existing methods. As shown by the above PSO-related work, the

PSO algorithm has been successfully applied in a wide range of domains, such as the parameter

estimation of control systems, economic problems, and other real-world applications. In this

study, the PSO algorithm is presented as an ideal option for finding the hyperparameter con-

figurations of deep learning architectures since its properties allow the particles to preserve the

best previous experiences (important information regarding hyperparameter configurations)

over generations. In this work, we propose an efficient approach using particle swarm optimi-

zation (PSO) in combination with the steepest gradient descent algorithm (gradient descent

algorithm) to determine the optimal network structure and hyperparameter configuration

before training the final model. The main contributions of this study are summarized as the

five aspects below:

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 4 / 36

https://doi.org/10.1371/journal.pone.0188746


1. In this study, we propose an efficient approach that utilizes the advantages of the global and

local exploration capabilities of the PSO algorithm and steepest gradient descent algorithm

to automatically discover a more appropriate network structure with a better hyperpara-

meter configuration for final neural network training.

2. In the proposed approach, the four crucial hyperparameters (learning rate, dropout rate,

momentum, and weight decay) and the number of neurons of each hidden layers are con-

sidered for optimization. We design a simple parameter representation that encodes the net-

work configuration (network structure and hyperparameters) as a real-number vector as the

individuals of PSO in the search process such that real numbers can be efficiently processed.

3. The proposed approach can provide a flexible method to construct an ensemble model and

a well-performing DNN classifier by using the final solutions of the PSO algorithm to ini-

tialize DNN classifiers and train them with their corresponding hyperparameter configura-

tions on the entire training data. Specifically, the local best (pbest) and global best (gbest)
solutions of the PSO algorithm are employed to construct the ensemble model and the indi-

vidual DNN classifier, which maximize the generalization capability and efficiency, respec-

tively. In addition, the flexibility of the proposed approach allows for any number of

classifiers to be combined to form an ensemble based on their scores, which are the last

training accuracies during the training phase. This process directly chooses a certain num-

ber of DNN classifiers with the highest scores from the candidate classifiers trained by the

network configurations expressed by the solutions (pbest) of the PSO algorithm without

training any new DNN classifiers.

4. In this study, we have evaluated the performance of the ensemble model and the individual

DNN classifier that are generated by the proposed approach. The empirical results demon-

strate that the proposed approach of using PSO in combination with steepest gradient

descent algorithms can maximize their local and global exploration capabilities and find

optimal solutions that lead to better performance for both network training and the final

models.

5. This study has investigated the influence of various ensemble models with different num-

bers of classifiers and depths of the neural networks.

The rest of this paper is organized as follows. A brief introduction to artificial neural net-

works is presented in section 2. A detailed description of our proposed approach using PSO in

combination with steepest gradient algorithms to optimize deep learning architectures is pre-

sented in section 3. The detailed experimental results of using the proposed approach with var-

ious parameter configurations are reported in section 4, and we also investigate the effects of

the ensemble model with different network depths and different numbers of combined classifi-

ers. Finally, the conclusions are illustrated in section 5, and we also discuss future directions.

2. Background materials

In this section, we provide the details of the deep learning architectures and hyperparameter

configuration. The contents of this section are organized as follows. Subsection 2.1 presents a

brief overview of deep learning architectures. Subsection 2.2 describes the details of the Sto-

chastic Gradient Descent (SGD) algorithm and network training.

2.1 A brief overview of deep learning architectures

In this subsection, we will describe the MLP classifier in detail. MLP is one of the most popular

and classical machine learning approaches and is inspired by the neurotransmissions of the

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 5 / 36

https://doi.org/10.1371/journal.pone.0188746


human brain. MLP can be regarded as a combined model associated with an artificial neural

network (ANN) with many hidden layers and neurons, which has been successfully applied in

computer vision and other real-world applications. A classical ANN classifier is generally com-

prised of three connected layers (one input layer, one hidden layer, and one output layer). The

number of neurons of the input layer is fixed according to the size of the actual input data, and

the number of neurons in the output layer matches the size of the actual outputs. Many hidden

layers with hidden neurons can construct a flexible neural network, and a more complicated

network with a huge number of hidden layers and many neurons usually requires a huge num-

ber of training samples and more computational energy and time for training. When a new

sample is fed into a network, the input layer first receives the original data and makes a sum of

activations with respect to a hidden neuron; the sum is then converted to a hidden neuron’s

output activation by a nonlinear function, which is defined as follows:

O ¼ ðIi �Wij þ bjÞ

fjðIiÞ ¼
eo � e� o

eo þ e� o

ð1Þ

In Eq (1), where o denotes the sum of the input data with respect to the weights and biases

of the j-th neuron, fj (.) is the hyperbolic tangent function that calculates the activation value

of the j-th neuron, Ii = (I1, I2, . . ., In) is the input data of a single sample, and Wij = (W1j,

W2j, . . ., Wnj) is a weight vector of the j-th neuron of the hidden layer. A simple MLP learning

architecture generally consists of three connected layers, including one input layer, one or

more hidden layers, and one output layer. To address the regression problem using the MLP

classifier, the most popular performance criterion (also called cost) is the mean square error

(MSE), which is defined as follows:

MSEðY;Y 0Þ ¼
1

n

Xn

i¼1

ðYi � Y 0i Þ � ðYi � Y 0i Þ ð2Þ

where Y and Y denote the actual output value and the predicted output value, respectively,

and n denotes the number of instances. To train an MLP classifier, the frequently used learning

technique is the back-propagation algorithm, which dynamically updates the parameters

(weights and biases) in the direction that the gradient descent aims to find the optimal parame-

ters. To address a classification problem using an MLP classifier, the common performance

criterion is the mean squared error, which is shown as follows:

E ¼
1

2

Xn

i¼1

ðYi � Y 0i Þ � ðYi � Y 0i Þ ð3Þ

where E is the cost measure between the actual labels and the outputs, which is employed to

calculate the gradient; Yi and Yi denote the actual label and the predicted label of the i-th

instance, respectively; and n is the number of instances.

2.2 A brief overview of SGD and network training

In most cases, the learning architectures used in training are mostly used to solve classification

problems. During the training phase with the supervised learning method, a DNN classifier

generally requires an objective function to evaluate the training error. The common function

is zero-one loss, which minimizes the number of errors on training samples. It has a simple

form: gloss ¼
Xn

i¼0

I f ðxiÞ 6¼ yið Þ, where I is ‘1’ if f(xi) 6¼ yi and ‘0’ otherwise. Because the zero-one

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 6 / 36

https://doi.org/10.1371/journal.pone.0188746


loss function is not differentiable, optimizing it is prohibitively expensive when a large model

with a huge number of parameters (weights and biases) is being trained. Therefore, the original

formula can use the log-likelihood form as follows: gloss ¼
Xn

i¼0

logPðY 6¼ yijxi; yÞ. Generally,

we aim to solve the minimization of a loss function instead of maximization. We use the nega-

tive log-likelihood as a loss function in the training of a deep learning architecture. The nega-

tive log-likelihood function in the classifier is differentiable. This means that the gradient of

the loss function over the training data can be used as a signal in supervised learning of a DNN

classifier. During the training phase, some gradient descent algorithms are employed to adjust

the parameters by making small steps to minimize the error of a loss function. The ordinary

gradient descent algorithm generally has a simple form, but it usually provides significant

performance when training a neural network. The stochastic gradient descent (SGD) algo-

rithm is similar to the principles of the original gradient descent, but it gains more benefits

by calculating the gradient from just a few samples at a time instead of the entire training data.

In addition, the variant in the stochastic gradient descent algorithm is the adoption of the

“minibatches” concept. SGD using the mini-batch method is similar to the original SGD. The

difference is that the mini-batch technique used in SGD can help to reduce the variance in the

estimate of the gradient and can work better in the hierarchical memory organization of pow-

erful computers. In addition, when we train a deep neural network, the training processing

may overfit the training data. The regularization concept is used to combat overfitting, and

server techniques have been proposed. L1 and L2 regularization are common approaches that

add an extra term in the loss function for the purpose of penalizing certain parameter configu-

rations. The other approach is called “Early stopping,” which is employed to address overfit-

ting by observing the classifier’s performance on an independent validation set.

3. Methodology

In this study, we present a new deep learning approach that automatically determines one or

better hyperparameter configurations of the neural network to further improve the classifica-

tion performance and generalization capabilities on various pattern recognition and regression

tasks. Because network structure (different numbers of processing layers and neurons) and

hyperparameter configuration play important roles in the training phase of deep learning

architectures, various network structures and hyperparameter configurations employed to

train a network may result in the derivation of a set of models that generally have different per-

formances on pattern recognition tasks. Finding an appropriate network structure and hyper-

parameter configuration for a deep learning architecture is a difficult challenge due to the

complexity of deeper networks and the high-dimensional optimization parameters. In addi-

tion, an individual classifier (network) employed to predict results on a large-scale and high-

dimensional dataset has several limitations, including weak generalization ability and instabil-

ity in the training phase. To solve the above issues and further improve the performance of

deep learning architectures in pattern recognition and regression tasks, the proposed approach

mainly aims to construct a robust and efficient model by using a more appropriate network

structure and optimal hyperparameter configuration determined by an efficient optimization

scheme using particle swarm optimization (PSO) and steepest gradient descent algorithms.

During the optimization scheme, the advantages of the global and local search capabilities of

PSO and steepest gradient descent algorithms can provide a powerful and efficient search pro-

cess for finding the best network structure and hyperparameter configuration. Fig 1 shows the

basic framework of the proposed approach. As shown in the graph, the framework consists of

three independent modules. The first module is called the basic element model and defines the

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 7 / 36

https://doi.org/10.1371/journal.pone.0188746


various network structures and optimization parameters with their search domains. The sec-

ond module is called the generator and is mainly responsible for generating various deep

learning architectures depending on different network configurations (numbers of processing

layers and neurons and network type). The third module is called the optimization scheme

and implements the cyclic process to determine the final model by using PSO in combination

with steepest gradient descent algorithms determining the best solution (best network struc-

ture and hyperparameter configuration). The remainder of this section is organized as follows.

Subsection 3.1 presents the detailed basic element model and generator. Subsection 3.2 pro-

vides a brief overview of the PSO algorithm, and we also provide a coding design for hyper-

parameter representation. Subsection 3.3 describes the details of the ensemble model with

multiple combined classifiers. Subsection 3.4 presents an efficient and robust optimization

scheme using PSO and steepest gradient descent algorithms.

3.1 The basic element model and generator

The basic network configuration comprises a neural network structure and a hyperparameter

configuration. In the proposed approach, the basic deep learning architecture adopts the classi-

cal multilayer perception (MLP), which generally consists of one input layer, two or more pro-

cessing layers, and one output layer, where neurons in the input layers are equal to the size of

Fig 1. The basic framework of the proposed approach.

https://doi.org/10.1371/journal.pone.0188746.g001

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 8 / 36

https://doi.org/10.1371/journal.pone.0188746.g001
https://doi.org/10.1371/journal.pone.0188746


the input features, neurons in the processing layers generally can be any number, and neurons

in the output layer are equal to the number of categories for the classification model and equal

to 1 for the regression model. The proposed approach can provide a flexible way to initialize

the network for classification and regression problems. In addition, the prediction perfor-

mance of the generated deep learning architecture extremely depends on the network training

using the hyperparameter configuration. The choice of hyperparameter configuration directly

influences the performance of the steepest gradient descent algorithm in the training phase of

the neural network, which is a very important issue in our study. The difference between train-

ing a deep learning architecture and a shallow learning architecture is that a deep learning

architecture requires the initialization of more hyperparameters before training. The neural

network structure and hyperparameter configuration are usually not fixed because these con-

figurations depend on the properties of the datasets. We can select more hyperparameters as

optimization parameters to be searched using optimization algorithms to derive a well-gener-

alized model, but the complexity of the parameter searching process is considerable. Selection

of a few hyperparameters as optimization parameters may result in the derivation of a model

that only yields slight improvements in performance compared to the normal method. There-

fore, the proposed approach only selects several crucial hyperparameters as optimization

parameters due to their impacts on network training. These important optimization parame-

ters are learning rate, dropout rate, decay, momentum, and the numbers of processing layers

and neurons, which play an important role in the training phase. In addition, searching for

these optimization parameters employed to construct a deep learning architecture requires an

appropriate search range for each optimization parameter, which aims to avoid the occurrence

of wrong numbers and ensure that each searched parameter is always reasonable and correct.

Moreover, the search ranges for optimization parameters can also help to reduce the computa-

tional time of the search procedure because we can set a small search range for each optimiza-

tion parameter so that the PSO algorithm only requires a few search iterations to determine

the optimal solution. The values of these search ranges of optimization parameters are depen-

dent on the properties of the dataset (the size of input features and number of training sam-

ples) and optimization tasks (classification or regression problems).

The generator is employed to generate a network configuration containing a network struc-

ture and a hyperparameter configuration in a random manner. In this generated model, each

of its hyperparameters is given by a random value corresponding to the parameter domain.

3.2 A brief overview of PSO and its coding design for hyperparameter

representation

In this section, we present a brief overview of the particle swarm optimization algorithm and a

simple coding design for a representation of the network structure and hyperparameter con-

figuration. In recent years, a variety of population-based intelligent algorithms inspired by

biological mechanisms have been developed to solve a variety of complex problems and suc-

cessfully applied in real application tasks, including medicine, engineering, computer science,

and finance problems. Among most intelligent algorithms, swarm intelligence can be consid-

ered one type of artificial intelligence concept or technique that was inspired by the natural

phenomenon of a flock of birds searching for food sources by changing their locations based

on their former position and swarm position. Particle swarm optimization (PSO) is one of

these swarm techniques and was first introduced by Kennedy J, Eberhart R in 1995 [1][59].

Particle swarm optimization is similar to other population-based meta-heuristic optimization

techniques in that it first initializes a group of individuals as a population and then updates the

information (state) of these individuals by an evolution process. The advantages of the PSO

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 9 / 36

https://doi.org/10.1371/journal.pone.0188746


algorithm compared with other swarm intelligence algorithms is that the PSO algorithm gen-

erally contains a simple and efficient search process, is easy to implement, and can efficiently

find global optimal solutions that are closest to the actual solutions.

Particle swarm optimization employs particles as population members, and each particle

(individual) is expressed by an m-dimensional real-number vector. During the evolution pro-

cess of the PSO algorithm, each particle of a particle swarm (population) is considered to be a

representation of a possible solution in a finite search space (m-dimensional search space).

PSO first initializes a group of particles as a population in a random manner. After the initiali-

zation of the PSO population, an evolution procedure is performed with a certain number of

generations, and during each generation, each particle (individual) finds a possible optimal

solution by changing its direction depending on the two crucial factors of position and velocity

of the individual best previous experience (pbest) and the best previous experience of all indi-

viduals/swarm particles (gbest). The details of the velocity and position update of an individual

can be seen in Eqs (4) and (5), where t and t + 1 denote the generations (iterations), d denotes

the number of dimensions of the particle, Xt(i) denotes the position in the i-th dimension of

the particle at generation t, and Vt(i) denotes the velocity of the i-th dimension of the particle

at generation t + 1. R1 and R2 are randomly generated values in the domain of [0, 1]. W denotes

an inertia weight that was first proposed by Shi and Eberhart [1][57]. C1 and C2 are positive

acceleration coefficients, which are also called cognitive and social parameters due to their role

in the algorithm evolution procedure. In fact, these two important parameters are mainly

employed to control the balance of an individual’s self-learning versus learning from the entire

PSO population.

VtðiÞ ¼W � Vtþ1ðiÞ þ C1 � R1 �
�
pbesttðiÞ � XtðiÞ

�
þ C2 � R2 �

�
gbesttðiÞ � XtðiÞ

�
; i ¼ 1; 2;‥;m ð4Þ

Xtþ1ðiÞ ¼ pbesttðiÞ þ Vtþ1ðiÞ; i ¼ 1; 2; . . . :m ð5Þ

To further improve and balance the relationship between the local exploitation and global

exploitation, we use the time-varying acceleration coefficients (TVAC) [60, 61] and time-vary-

ing inertial weight (TVIW) [60, 61, 62]; the effectiveness of using TVAC and TVIW techniques

on the acceleration coefficients and inertial weight have been verified. These two approaches

dynamically update the acceleration coefficients and inertial weight during the iterations and

can help the original PSO algorithm perform better in determining the region of the global

solution and avoiding the case of the algorithm search procedure becoming trapped in local

minima [60, 61, 62].

When using the TVAC approach, the acceleration coefficients C1 and C2 are adjusted based

on the initial values of the acceleration coefficients C1i and C1f and the current iteration. The

details of the acceleration coefficient update process are shown in Eq (6), where t and tmax

denote the current generation (iteration) and the maximum number of generations, respec-

tively. In addition, the TVIW approach is employed to change the inertial weight during the

evolution process. The details of the inertial weight W update are seen in Eq (7), where Wmax

and Wmin denote the maximum and minimum values of the inertial weight. The TVIW

approach can efficiently balance the global exploitation and local exploitation of the PSO algo-

rithm, that is, a large inertial weight W may allow the PSO algorithm to exhibit better global

search capability at the beginning of the algorithm procedure, and the local search ability of

PSO algorithm is gradually increased by gradually decreasing the inertial weight W in a linear

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 10 / 36

https://doi.org/10.1371/journal.pone.0188746


manner during the algorithm evolution procedure.

C1 ¼ C1i þ
t

tmax
ðC1f � C1iÞ ð6Þ

C2¼C2i þ
t

tmax
ðC2f � C2iÞ ð7Þ

W ¼Wmax �
t

tmax
ðWmax � WminÞ ð8Þ

From these above equations, the initial values of the inertial weight Wmax and Wmin Wmax

are usually constant values. The initial values of the acceleration coefficients C1i, C1f, C2i, C2f

are set to constant values.

3.3 Combining the evidence of multiple classifiers

In this subsection, we present an efficient and configurable ensemble model whose members

(sub-classifiers) can be constructed by any deep learning architecture. Because combining

the evidence of multiple DNN classifiers may provide better generalization performance

than an individual DNN classifier but requires more computational times to implement all

of the training processes, we propose an efficient and flexible approach to build an ensemble

model that aims to minimize the model complexity and does not deteriorate the generaliza-

tion capability. To construct such an ensemble model, we directly choose a certain number

of DNN classifiers with the best scores (training accuracies calculated on an independent val-

idation dataset using the trained DNN classifiers) from the entire set of DNN classifiers that

are initialized and trained by the final solutions (pbest) of the PSO algorithm without training

any new DNN classifiers. Let C = {C1, C2, C3, . . ..} be a set of DNN classifiers that were

trained with the optimal hyperparameter configurations using the steepest gradient descent

algorithm on the entire training dataset. Let S = {s1, s2, s3, . . ..} be a set of scores correspond-

ing to the set of DNN classifiers C. Let E = {e1, e2, e3, . . ., eh} be a subset of C and its members

be selected based on their scores. h is a threshold value employed to control the number of

members of an ensemble model. After an ensemble is generated, a fusion function with a

majority vote rule is employed to calculate a final output. The detailed calculation is pre-

sented as follows. Let O ¼ foi
1
; oi

2
; oi

3
; . . . ; oi

cg be a binary decoded for an output of the i-th

sample of a DNN classifier; then, the classifier was trained with (oi
t ¼ 1 and oi

j ¼ 0 for j 6¼ t,
1� j� a) for an observation of class t, where a denotes the number of categories. During

the prediction phase, an observation will be classified as category t when oi
t > oi

j, for all j 6¼ t,
1� j� a. To predict an output using the ensemble model, the combination of evidence

over all classifiers uses a fusion function with a majority vote rule that calculates the

outputs based on the decision made by most of the members. Then, we defined a function

fj ¼ maxfoj
1; o

j
2; . . . :; oj

ag to calculate an output of the j-th classifier. An observation will

be classified into category t when ft> fj, for all j 6¼ t and 1� j� a. Combining evidence

from multiple DNN classifiers would generally result in construction of a well-performing

model for which some misclassified observations are ignored by most correctly labeled

observations.

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 11 / 36

https://doi.org/10.1371/journal.pone.0188746


3.4 The optimization scheme using PSO and steepest gradient descent

algorithms

In the previous subsections, we have described the details of the search procedure and coding

design of the hyperparameter configuration of the PSO algorithm. In this subsection, we pres-

ent an efficient and robust optimization scheme based on a hybrid search approach using PSO

and steepest gradient decent algorithms. The optimization goal of the proposed scheme is to

automatically determine one or better network configurations (network structures and hyper-

parameter configurations) before using the deep learning architecture in applications. Because

the performance and generalization capability of a deep learning architecture extremely

depend on the network structure and hyperparameter configuration during the training

phase, the choices of network structures and hyperparameter configurations employed to train

a deeper network play an important role in our proposed approach. In addition, our proposed

approach provides a configurable and flexible method for implementing a parameter-search-

ing process. Any optimization algorithms can be fitted in these interfaces to implement their

population initialization, population evaluation, and location updating. Fig 2 displays the

details of this parameter-searching process, and as shown in the graph, the entire search pro-

cess is comprised of 3 independent interfaces. These implemented interfaces are the parameter

initialization interface responsible for population or parameter initialization of algorithms; the

update interface provides a notice for the state or location update of algorithms after the evalu-

ation interface has been utilized; the evaluation interface is mainly responsible for calculating

the scores of multiple network configurations. In this manner, the particle swarm (individuals)

of the PSO algorithm can convert their information to network configurations to obtain the

scores that are employed to evaluate the population; finally, these operating interfaces are

designed to correspond to the primary procedure of the optimization algorithm, and a main

search process is performed in which these operating interfaces are performed in a sequence

until termination of the procedure. Therefore, we can use other advanced population-based

stochastic search algorithms to implement this optimization algorithm. The main reasons for

using the PSO algorithm without other optimization algorithms are its powerful search capa-

bility for determining the global optimum and its convenient representation of continuous

variables. Furthermore, the advantages of the global and local search capabilities can be

explored by a hybrid approach using PSO in combination with steepest gradient descent algo-

rithms. The main idea of the hybrid approach is that the PSO algorithm is employed to search

for a neural network and hyperparameter configuration by adjusting the locations of the parti-

cle swarm, and then each particle (individual) representing a prototype is converted into a net-

work configuration to initialize a classifier after performing a training procedure with a small

step of mini-batch learning using the steepest gradient descent algorithm. After the network

training, the last training loss value or training accuracy, depending on the independent vali-

dation set, is employed as the score (fitness value) for the individual. The basic process of the

optimization scheme using PSO and the steepest gradient descent algorithm is summarized by

five independent steps as follows:

(1) Initializing parameters for PSO and the optimization scheme:

Similar to the other population-based stochastic search algorithms, the PSO algorithm

requires initialization of the population size, the maximum number of iterations, the accel-

eration coefficients C1i, C1f, C2i, C2f, and the inertial weight Wmin, Wmax. To initialize

parameters for the optimization scheme, the domains of the optimization parameters must

be initialized. These optimization parameters are learning rate, dropout rate, momentum,

decay, and the numbers of neurons of all processing layers. The lower and upper bounds

are used to define the domain for each optimization parameter, which can ensure that each

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 12 / 36

https://doi.org/10.1371/journal.pone.0188746


Fig 2. The basic framework of the optimization scheme using PSO in combination with stochastic gradient descent

algorithms.

https://doi.org/10.1371/journal.pone.0188746.g002

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 13 / 36

https://doi.org/10.1371/journal.pone.0188746.g002
https://doi.org/10.1371/journal.pone.0188746


optimization parameter is searched for in its corresponding search range. In addition, the

epochs for the validation phase and final training phase usually set small and large values to

reduce the computational time spent evaluating the PSO individuals (particle swarm) repre-

senting classifiers and ensure that the deep learning architecture fits the training samples

before using them for any pattern recognition tasks. The next step is population initializa-

tion of the PSO algorithm.

(2) Population initialization of the PSO algorithm:

In the proposed optimization scheme, each particle (individual) of the PSO algorithm is

used to represent a deep learning architecture with a hyperparameter configuration. To ini-

tialize the population of the PSO algorithm, each dimension of a particle denotes an indi-

vidual optimization parameter of the network configuration and is generated by a random

real number in its corresponding parameter domain. After the population is initialized, we

can obtain a set of candidate network structures and their corresponding hyperparameter

configurations, which are expressed by population. Therefore, we can evaluate the popula-

tion of the PSO algorithm by training these deep learning architectures with their corre-

sponding hyperparameters and then validating them on the independent validation set.

The details of these training and validating processes are presented as follows:

(3) Population evaluation using the steepest gradient descent algorithm:

This step is mainly responsible for evaluating the population of the PSO algorithm by train-

ing and validating the neural networks using the steepest gradient descent algorithm. In the

evaluation phase, each particle (individual) can be viewed as a representation of a potential

solution and thus is transformed into a network configuration. Then, the generator initial-

izes a deep neural network according to the network configuration. After all the neural

networks are initialized, these DNN classifiers are then trained using the steepest gradient

descent algorithm with a few steps of mini-batch learning processes on an independent

training subset that is randomly collected from the entire training dataset according to a

predefined threshold value. After all DNN classifiers are trained, the scores of the individu-

als are calculated by evaluating these trained DNN classifiers by predicting the output on an

independent validation dataset. The details of the training and validating processes using

the steepest gradient descent algorithm are displayed in Fig 3 and can be described as fol-

lows. Let D denote the entire training dataset and be randomly divided into two indepen-

dent sets D = {Tr, Te} by a threshold λ, where Tr and Te denote the independent training

and validation sets, respectively, and λ is employed to control the size of the training set and

is usually set to 0.8. Let P = (P1, P2, . . .. . ., Pn) denote the population of the PSO algorithm

and Pi = (C1, C2, . . .. . ., Cm) denote the i-th particle (individual) consisting of m optimiza-

tion parameters. After initializing the population, each particle Pi is employed to construct

a deep learning architecture and its corresponding hyperparameter configuration, which

are denoted as Pi = {Net, C}, where Net and C denote the deep learning architecture and

hyperparameter configuration, respectively. Then, the deep learning architecture Net is

trained with the mini-batch learning method using the training parameters C on the inde-

pendent training set Tr several times. After network training, we can calculate the training

accuracy based on the independent set Te or the last loss value after network training as a

score (fitness value) for the individual Pi of the PSO algorithm. After calculating the scores

for individuals, the local best experience (score and location) of the individual can be deter-

mined by comparing the current score of the individual Pi and the best score from its previ-

ous experiences in past generations and replacing the previous local best experience by the

current best if the current score is large than the previous local best score. Similar to the

local best experience, the global best experience is determined by comparing the current

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 14 / 36

https://doi.org/10.1371/journal.pone.0188746


score of the individual Pi and the best score from the previous experiences of all individuals

in past generations and replacing the previous global best experience with the current best

if the current score is large than the previous global best score. After determining the local

and global best experiences (scores and locations), Eqs (2) and (3) are employed to update

the velocities and locations of the particle swarm of the PSO algorithm. The next step is

checking the algorithm termination as follows:

(4) Checking algorithm termination:

This step is mainly responsible for checking the algorithm termination (if the number of

iterations has reached the maximum iteration). If the condition is satisfied, then the algo-

rithm stops and we go to step (6); otherwise, we continue to step (5).

(5) Training a final model and evaluation:

After the algorithm search procedure, we can obtain a set of local solutions (pbest) and the

global best solution (gbest), and we then use them to initialize a set of optimal classifiers and

an individual classifier, respectively. Then, each classifier is trained by a training procedure

with a certain number of mini-batch learning iterations on all of the training samples. Dur-

ing the training phase, the classifier has a corresponding hyperparameter configuration that

is employed in the steepest gradient descent algorithm to adjust the network parameters

Fig 3. The parameter representation design for the individuals of the PSO algorithm.

https://doi.org/10.1371/journal.pone.0188746.g003

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 15 / 36

https://doi.org/10.1371/journal.pone.0188746.g003
https://doi.org/10.1371/journal.pone.0188746


(weights and biases) to determine the best solution that allows the training error or loss

value between the input pattern and output pattern to be as small as possible. After all clas-

sifiers have been trained, we can obtain an individual trained classifier that is initialized by

the global best solution (gbest) of the PSO algorithm and a set of optimal trained classifiers

that are initialized by the global best solution of the PSO algorithm. In the performance

evaluation phase, we evaluate the performance of the proposed approach by predicting all

testing samples using a combined model (ensemble model) of multi-classifiers with a

majority vote strategy and an individual classifier. In addition, the proposed approach pro-

vides a flexible way to construct an ensemble model for a given number. The main idea

of using a certain number of classifiers to form an ensemble model in our approach is to

directly select classifiers from the generated classifiers that have been initialized by the local

best solutions (pbest) and trained on all of the training samples, without training new classi-

fiers. As a result, a light ensemble model with a small number of classifiers can be con-

structed by selecting a few optimal classifiers whose final training loss values or training

accuracies, depending on the independent validation set, are superior to the remaining

classifiers. In this manner, a light ensemble model can reduce the computational time in

predicting a huge number of samples and may maintain the original classification perfor-

mance and generalization ability. In the following experiments, we have also performed

several tests using these ensemble models with different numbers of sub-classifiers to inves-

tigate the relationship between the performance metrics (prediction and generalization per-

formance) and the number of classifiers.

4. Experimental studies

In this section, we constructed several experiments to evaluate the performance of the pro-

posed approach and investigate the influences on performance when changing the deep learn-

ing architecture and hyperparameter configuration. More specific experimental contents are

organized as follows. The details of the experimental dataset, experimental setting, and data

pretreatment are described in subsection 4.1. The experimental results for a classification

problem using the MNIST dataset are reported in subsection 4.2. The experimental results for

a regression problem using the biological activity datasets are reported in subsection 4.3. The

investigation of the influence of the use of a deeper network structure is presented in subsec-

tion 4.4. The influences of the use of various PSO algorithm parameter configurations are

investigated in subsection 4.5.

4.1 The datasets, experimental setting, and data pretreatment

In this subsection, we provide the details of the datasets, experimental setting, and data pre-

treatment. The proposed approach mainly solves classification and regression problems. To

evaluate the performance of the proposed approach on a classification problem, the MNIST

dataset [63] is used. The MNIST dataset is the most popular and frequently used dataset

employed to evaluate the performance of various machine-learning algorithms. The main goal

of the use of the MNIST dataset is to recognize the handwritten characters from the digital

images. The MNIST dataset is also a well-known standard benchmark used to evaluate the

performance of machine learning approaches. Each digital image of the MNIST dataset is

expressed by a real-number matrix comprised of image pixels (28 rows and 2 columns) varying

from 0 to 255. The numbers of training samples and testing samples are 60000 and 10000,

respectively. To evaluate the performance of the proposed approach on a regression problem,

the kaggle competition dataset (KCD) is used. The KCD dataset is downloadable from

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 16 / 36

https://doi.org/10.1371/journal.pone.0188746


www.kaggle.com and was held by merck sponsor (2012). To solve the regression problem in

this study, all 15 targets of the KCD datasets are chosen as experimental datasets. Each target

of the KCD datasets contains many numbers of molecules (samples) and descriptors (features),

and their values are real numbers. The main goal of the use of the KCD datasets is to predict

the biological activity values based on the descriptors. More details of the KCD datasets are

illustrated in Table 1. The proposed approach is implemented based on the keras and theano

libraries using Python 2.72. All experiments are performed on a personal computer with an

Intel Core i5 CPU running at 2.53 GHZ, 8 GB of RAM, and the Windows 10 operating system.

The experimental environment is constructed in 64-bit Python, version 2.72. The computa-

tional times in the training and testing phases are recorded for further analysis. Before any pro-

cessing of image datasets, to improve the classification accuracy and convenience of numerical

calculation, the data pretreatment is used to scale the data into the interval [0, 1] or [−1, 1]. In

general, we can obtain a processed image for which each feature (pixel) is scaled into the inter-

val [0, 1] by dividing the feature value by the constant 255.

4.2 Results and analysis for the MNIST dataset

In this section, we evaluate the classification performance and generalization ability of the

proposed approach in solving the recognition of handwritten characters. In this experiment,

two different methods were used to construct the final classification models. One approach

is called “DNN-NONPSO” and randomly generates a group of network configurations (net-

work structures and hyperparameter configurations) from the domains of the parameters and

uses them to directly train a set of final deep learning architectures with their corresponding

hyperparameter configurations on all of the training samples. The second approach is called

“DNN-PSO” and first implements an optimization scheme in which the network configura-

tion is decoded into a real-number vector and employed as a particle (individual) of the PSO

algorithm so that the algorithm search procedure can efficiently process these optimization

parameters. In addition, after once updating the particle swarm information, a particle (indi-

vidual) of the PSO algorithm is converted into a network configuration and employed to ini-

tialize a deep learning architecture and train the network with a few steps of mini-batch

Table 1. The details of fifteen different biological activity datasets.

Index of the dataset Dataset name Number of molecules Number of descriptors

1 3A4 50000 9491

2 CB1 11640 5877

3 DPP4 8277 5203

4 HIVINT 2421 4306

5 HIVPROT 4311 6274

6 LOGO 50000 8921

7 METAB 2002 4595

8 NK1 13482 5803

9 OX1 7135 4730

10 OX2 14875 5790

11 PGP 8603 5135

12 PPB 11622 5470

13 BAT_F 7621 5698

14 TDI 5559 5945

15 THROMBIN 6924 5552

https://doi.org/10.1371/journal.pone.0188746.t001

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 17 / 36

http://www.kaggle.com
https://doi.org/10.1371/journal.pone.0188746.t001
https://doi.org/10.1371/journal.pone.0188746


learning to obtain the final training loss value as the score of the individual. Finally, the deter-

mined optimum solutions are employed to construct the final models. The detailed parameter

configurations for the PSO algorithm and optimization scheme are presented as follows. The

population size is set to 20, and the maximum number of iterations of PSO is set to 30. The

acceleration coefficients C1i, C1f, C2i, C2f, are set to 2.5, 0.5, 0.5, and 2.5, respectively, and the

inertial weights Wmin, Wmax are set to 0.4 and 0.9, respectively, according to the recommenda-

tions. The domains of the network structure and hyperparameter configuration are set as fol-

lows. The search ranges of the learning rate, decay, momentum, and dropout rate are set to

[0.01 0.9], [0.0001 0.0001], [0.1 0.9], and [0.1 0.9], respectively. Due to only two processing lay-

ers being employed to construct the deep learning architecture in the first experiment, the

search ranges of the numbers of neurons of the two processing layers are set to the same range:

[90, 150]. During the network training phase, the epochs for population evaluation of the PSO

algorithm and training of the final model are set to a small number and a large number of

epochs (5 and 20), respectively. A batch size of 100 is set for network training using mini-batch

learning.

To evaluate the performance of the proposed approach on the MNIST dataset, the k-fold

cross-validation technique is used. The k-fold cross-validation technique is the most popular

and frequently used method and is mainly employed to evaluate the performance of different

algorithms in an unbiased manner. The main purpose of using k-fold cross-validation in this

experiment is that the k-fold cross-validation technique has been widely applied in most stud-

ies and hence provides a standard benchmark for evaluating our approach. Additionally, it can

also ensure that the experimental results that are not affected by other factors. The main idea

of k-fold cross-validation is to randomly split the original dataset into k independent subsets.

These k subsets share the same information with all categories and contain the same number

of instances. The entire procedure of k-fold cross-validation requires k independent algorithm

runs, and in each k-fold cross-validation run, one of the k subsets is selected as a test set for

classifier evaluation, and the remaining k-1 independent subsets are employed as a training set

to model a classifier. During all k runs of k-fold cross-validation, each subset has a chance to

be selected as the validation set, with the remaining k-1 subsets being employed as the training

set. After all k-fold cross-validation runs, the achieved results are averaged. In the handwritten

recognition experiment, 5-fold cross-validation is adopted to randomly split the MNIST data-

set, which originally consists of 6000 training samples and 10000 testing samples, into 5 inde-

pendent subsets such that each subset is comprised of 14000 samples and shares information

with ten categories. In each 5-fold cross-validation run, one of the 5 independent subsets is

selected as the test set, and the remaining 4 independent subsets are employed as the training

set. After all 5-fold cross-validation runs, we can obtain the average and standard deviation of

the achieved results from the five instances of 5-fold cross-validation.

Table 2 shows the classification accuracy of candidate classifiers generated by solutions

(network configurations) from the proposed approach using the PSO algorithm and random

manner for five runs of 5-fold cross-validation on the MNIST dataset. As shown in the

achieved results in rows 1–20 of the table, we can observe that the use of different candidate

solutions (network configurations) for training of the deep learning architectures usually

derives a different classification model with different generalization performance. In addition,

to compare the performance of the DNN classifiers generated by solutions of DNN-PSO and

DNN-NONPSO, the solutions generated by DNN-PSO, which are converted into network

configurations to train DNN classifiers, are superiority to the solutions generated by

DNN-NONPSO. This indicates that the PSO algorithm in combination with the steepest gra-

dient descent algorithms, which results in the combination of their two advantages of global

and local global exploration abilities, can usually determine a more appropriate network

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 18 / 36

https://doi.org/10.1371/journal.pone.0188746


structure and hyperparameters for the individual DNN classifier. These determined optimal

network configurations usually perform better in DNN network training, and the DNN classi-

fiers trained by these hyperparameters would provide better generalization ability than the

random method. The last two lines display the average and standard deviation of the classifica-

tion accuracies and support the above conclusion.

Table 3 displays the prediction results of the final classification models (the ensemble

model and the individual DNN classifier) constructed by the proposed approach respectively

Table 2. The prediction results of candidate classifiers generated from the final PSO (pbest) solutions and randomly generated solutions on the

testing dataset using neural network classifiers with two processing layers for the 5-fold cross-validation on the MNIST dataset. (Here, Avg

denotes the average prediction result across all candidate classifiers, and N of c denotes the number of combined classifiers).

DNN-PSO DNN-NONPSO

N of c Fold-1 Fold-2 Fold-3 Fold-5 Fod-5 Fold-1 Fold-2 Fold-3 Fold-4 Fold-4

1 0.9785 0.9801 0.9770 0.9746 0.9808 0.9774 0.9708 0.9738 0.9750 0.1121

2 0.9698 0.9804 0.9788 0.9705 0.9775 0.9714 0.9674 0.9779 0.9733 0.9754

3 0.9774 0.9791 0.9807 0.9726 0.9791 0.9797 0.9348 0.9764 0.9764 0.9786

4 0.9816 0.9794 0.9764 0.9779 0.9831 0.9755 0.9787 0.9769 0.9741 0.9798

5 0.9795 0.9797 0.9781 0.9764 0.9779 0.9809 0.9768 0.9790 0.9720 0.9761

6 0.9791 0.9802 0.9736 0.9775 0.9784 0.9794 0.9754 0.9776 0.9745 0.9768

7 0.9799 0.9761 0.9784 0.9728 0.9786 0.9782 0.9766 0.9768 0.9663 0.9823

8 0.9807 0.9762 0.9692 0.9692 0.9804 0.9759 0.9771 0.9761 0.9551 0.9776

9 0.9795 0.9776 0.9756 0.9736 0.9809 0.9816 0.9769 0.9731 0.9652 0.9794

10 0.9759 0.9804 0.9776 0.9781 0.9785 0.9776 0.9792 0.9768 0.9741 0.9771

11 0.9805 0.9801 0.9779 0.9740 0.9792 0.9802 0.9761 0.9735 0.9735 0.9814

12 0.9751 0.9801 0.9756 0.9732 0.9763 0.9767 0.9816 0.9754 0.9755 0.9784

13 0.9817 0.9789 0.9761 0.9758 0.9739 0.9784 0.9774 0.9773 0.9741 0.9790

14 0.9745 0.9781 0.9781 0.9759 0.9809 0.9711 0.9735 0.9719 0.9721 0.9787

15 0.9797 0.9798 0.9776 0.9761 0.9826 0.9784 0.9797 0.9660 0.9755 0.9783

16 0.9789 0.9782 0.9769 0.9748 0.9821 0.9747 0.9797 0.9651 0.9731 0.9797

17 0.9761 0.9801 0.9786 0.9741 0.9815 0.9744 0.9531 0.9781 0.9749 0.9376

18 0.9751 0.9772 0.9787 0.9729 0.9789 0.9795 0.9739 0.9779 0.9685 0.9802

19 0.9792 0.9794 0.9774 0.9767 0.9807 0.9774 0.9766 0.9749 0.9749 0.9577

20 0.9765 0.9782 0.9763 0.9726 0.9749 0.9791 0.9664 0.9601 0.9734 0.9784

Avg 0.9780 0.9790 0.9769 0.9745 0.9793 0.9774 0.9726 0.9742 0.9721 0.9322

Std 0.0029 0.0013 0.0023 0.0023 0.0024 0.0029 0.0110 0.0050 0.0050 0.1933

https://doi.org/10.1371/journal.pone.0188746.t002

Table 3. The prediction results of the final classification models (ensemble model and individual DNN classifier) of the proposed approach using

the PSO algorithm and random method for the 5-fold cross-validation runs on the MNIST Dataset. (Here, Avg and Std denote the average and stan-

dard deviation of the prediction results, and Ensemble and Individual denote the prediction results achieved by the ensemble model and the individual DNN

classifier, respectively. Time 1 and Time 2 denote the computational times of the training phases of the ensemble model and the individual DNN classifier,

respectively.)

The proposed approach using PSO The proposed approach without PSO

Folds Ensemble Individual Time1 Time2 Ensemble Individual Time1 Time2

Fold-1 0.9861 0.9821 1016.4460 54.0736 0.9848 0.9787 940.4149 36.31399

Fold-2 0.9855 0.9781 856.5165 38.7264 0.9840 0.9777 1124.966 51.72183

Fold-3 0.9842 0.9793 892.0217 41.3456 0.9826 0.9774 945.8587 48.6305

Fold-4 0.9820 0.9775 859.5301 34.9860 0.9796 0.9737 892.9707 37.32175

Fold-5 0.9870 0.9805 937.8662 58.9434 0.9852 0.9796 1070.725 31.24267

Avg 0.9850 0.9795 912.4761 45.6150 0.9832 0.9774 994.9871 41.04615

Std 0.0019 0.0019 59.6783 9.2504 0.0020 0.0020 87.66965 7.795707

https://doi.org/10.1371/journal.pone.0188746.t003

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 19 / 36

https://doi.org/10.1371/journal.pone.0188746.t002
https://doi.org/10.1371/journal.pone.0188746.t003
https://doi.org/10.1371/journal.pone.0188746


using the PSO algorithm and random method for five runs of 5-fold cross-validation on the

MNIST dataset. As shown in the table, an ensemble model and individual DNN classifiers con-

structed by the solutions (pbest) and solution (gbest) of the PSO algorithm have achieved the

best classification accuracies of 0.9849 and 0.9795, respectively. The above achieved results

show that the ensemble model can provide better generalization capability than the individual

DNN classifier. In addition, although the individual DNN classifier is constructed by the best

solution (gbest) of the PSO algorithm, the classification accuracy achieved by the ensemble

model combining 20 individual DNN classifiers is still superior to the best individual classifier.

The main reason may be because combining evidence across multiple DNN classifiers of the

ensemble model may result in the construction of a classification model in which some poorly

performing DNN classifiers would be ignored by most of the well-performing DNN classifiers

during the prediction phase. The more specific case can be seen in the ensemble without using

the PSO-based optimization scheme. Table 3 also shows the average and standard deviation of

the classification accuracy of the ensemble model and the individual classifier, and the results

clearly confirm the superiority of the ensemble model compared to the individual DNN classi-

fier. In addition, the computational times required to train an ensemble model and an individ-

ual DNN classifier using the PSO-based approach and random method are displayed in the

last columns of Table 3. It can be seen that training of an ensemble model needs to almost

speed computational resources 20 times than the individual DNN classifier. More DNN classi-

fiers are trained to form an ensemble model that would require more computational resources.

Moreover, it can also be seen that training an ensemble model and an individual DNN classi-

fier using a PSO-based approach requires less computational time for training the final models

than the DNN-NONPSO approach. This may be because a more appropriate network struc-

ture with a better hyperparameter configuration not only derives a well-performed DNN clas-

sifier with better generalization capability but also accelerates the convergence of the training

phase.

Table 4 presents the detailed experimental results of the ensemble models when combining

different numbers of DNN classifiers for five runs of 5-fold cross-validation on the MNIST

dataset. The table presents results achieved by the ensemble models, which are constructed by

directly choosing a certain number of DNN classifiers from the 20 independent DNN classifi-

ers that have been initialized and trained by the solutions representing network configurations

generated by using DNN-PSO and DNN-NONPSO approaches, respectively, without training

new neural networks. The achieved results indicate that combining evidence from n trained

Table 4. The prediction results when using ensemble models with different numbers of classifiers.

Ensemble model using PSO Ensemble model without PSO

N of c Fold-1 Fold-2 Fold-3 Fold-5 Fold-5 Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

2 0.9749 0.9791 0.9765 0.9764 0.9759 0.9770 0.9690 0.9776 0.9709 0.3046

4 0.9821 0.9831 0.9804 0.9796 0.9820 0.9814 0.9775 0.9796 0.9777 0.9801

6 0.9832 0.9844 0.9821 0.9808 0.9844 0.9834 0.9798 0.9793 0.9794 0.9838

8 0.9851 0.9847 0.9834 0.9814 0.9849 0.9836 0.9818 0.9805 0.9803 0.9844

10 0.9859 0.9851 0.9837 0.9813 0.9862 0.9843 0.9832 0.9814 0.9802 0.9850

12 0.9856 0.9854 0.9836 0.9816 0.9869 0.9851 0.9837 0.9817 0.9798 0.9853

14 0.9861 0.9853 0.9836 0.9813 0.9868 0.9856 0.9842 0.9821 0.9796 0.9857

16 0.9861 0.9854 0.9838 0.9819 0.9871 0.9849 0.9843 0.9826 0.9794 0.9857

18 0.9864 0.9856 0.9841 0.9814 0.9874 0.9846 0.9843 0.9828 0.9796 0.9856

Avg 0.9839 0.9842 0.9824 0.9806 0.9840 0.9833 0.9809 0.9808 0.9785 0.9089

Std 0.0037 0.0021 0.0025 0.0017 0.0037 0.0027 0.0050 0.0017 0.0030 0.2266

https://doi.org/10.1371/journal.pone.0188746.t004

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 20 / 36

https://doi.org/10.1371/journal.pone.0188746.t004
https://doi.org/10.1371/journal.pone.0188746


DNN classifiers may derive a different ensemble model with different generalization capabili-

ties when varying n from 2 to n. In addition, the prediction accuracy of the ensemble model is

increased when the number of members (trained DNN classifiers) is increasing. The above

results show that, the more DNN classifiers that are selected from the trained classifiers,

employed to construct an ensemble model may provide better generalization capability than a

few DNN classifiers combined. However, the table presented results that also show that the

prediction accuracy of the ensemble model with a certain number of DNN classifiers has

almost achieved the highest accuracy or has provided only a slight improvement when the

number of DNN classifiers is increased. The computational times for training and testing of an

ensemble model are considerable when choosing more DNN classifiers.

Fig 4 displays the fitness values generated by the PSO algorithm during the evolutionary

procedure. As shown in these graphs, in all five-fold runs, the fitness curves increase with

increasing generations until a certain number, demonstrating that the PSO algorithm is able to

find better solutions by its evolutionary procedure.

Fig 5 displays the training errors (training loss values) generated by the individual DNN

classifier initialized by the solution of the PSO-based optimization scheme and random

method, respectively. As shown in these graphs, all training loss values generated by five runs

of 5-fold cross-validation indicate that the individual classifier initialized by the best solution

(gbest) of the PSO algorithm and then trained with the solution (gbest) corresponding to the

hyperparameter configuration can produce a decreasing curve during the 20 epochs. In addi-

tion, the training loss values generated by the individual classifier initialized and trained by the

solution (gbest) of the PSO algorithm not only achieved the lowest loss value at each epoch

compared with the random solution but also obtained the lowest loss value on the latest train-

ing phase. The observed results also indicate that a more appropriate network structure with a

better hyperparameter configuration can improve the performance in the network training

phase and of the final achieved model, and the PSO algorithm in combination with the steepest

gradient descent algorithm can utilize their global and local exploration capabilities to auto-

matically discover the optimal network configuration without any prior knowledge.

4.3 Results and analysis on the KCD dataset

In this subsection, we evaluate the prediction performance of the proposed approach in solving

the regression problem. To solve the regression problem, the prediction of biological activity is

an important issue in computational biology fields and helps researchers to improve their

Fig 4. The training accuracy (fitness value) of the PSO algorithm at each generation across all

generations for the 5-fold cross-validation runs on the MNIST dataset. (The horizontal axis and the

vertical axis represent the number of generations of the PSO algorithm and training accuracy, respectively.)

https://doi.org/10.1371/journal.pone.0188746.g004

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 21 / 36

https://doi.org/10.1371/journal.pone.0188746.g004
https://doi.org/10.1371/journal.pone.0188746


work on drug discovery. In this experiment, KCD datasets are suitable for evaluating perfor-

mance of various algorithms and investigating the effectiveness of the proposed approaches

on predicting biological activity. Before performing any training procedures on KCD datasets,

we need to preprocess the data. The details of the above process are illustrated as follows. The

high-dimensional descriptors (features) that exist in each sample are difficult for training of

a deep learning architecture, and hence this study uses the Principal Component Analysis

(PCA) technique to reduce the number of descriptors to an appropriate amount so that the

deep learning architecture can efficiently process them. All 15 targets of the KDD datasets

were processed with PCA for feature reduction. After the above process, the remaining

descriptors of 15 targets of the KCD datasets are scaled into the range of (0, 1). For this regres-

sion experiment, all parameter domains were set as follows. The number of processing layers

was two, and each processing layer’s neurons were initialized by a randomly generated number

in the range of (100, 150). The sigmoid function was employed to compute the activation value

of the neuron. The number of epochs for population evaluation (performing small epochs of

mini-batch learning to evaluate classifiers generated by the population of the PSO algorithm)

was set to 30 and for final network training was set to 100. The batch size was set to 100. The

domains of the learning rate, momentum, decay, dropout rate were set to the ranges (0.01,

0.1), (0.1, 0.9), (0.00001, 0.0001), and (0.1, 0.9), respectively. For evaluating the performance

of the proposed approach on each biological dataset, a distribution ratio is used to randomly

divide all of the samples of each dataset into two subsets, where 80% of the samples were

employed to train a final network and the remaining samples were employed as a testing set

for evaluation.

The performance of the 20 independent DNN classifiers generated by the solutions (pbest)
of the PSO algorithm and random solutions for 15 datasets is presented in Tables 5, 6 and 7,

providing the detailed experimental results for datasets 1–5, 6–10, and 11–15, respectively. It

can be observed that DNN classifiers whose network structures with hyperparameters are

determined using the PSO algorithm and trained using the steepest gradient descent algorithm

yield better performance than the random approach. In addition, as shown in these tables,

the DNN classifiers that were initialized and trained by the solutions generated by the PSO

Fig 5. The training error values (loss values) of the network training with 20 epochs of the individual

classifier using the PSO algorithm and random method for five runs of 5-fold cross-validation on the

MNIST dataset.

https://doi.org/10.1371/journal.pone.0188746.g005

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 22 / 36

https://doi.org/10.1371/journal.pone.0188746.g005
https://doi.org/10.1371/journal.pone.0188746


algorithm almost achieved the best prediction results in terms of the MAPE for each biological

activation dataset. The last two rows of these tables show not only that the proposed approach

using the PSO algorithm gives the best DNN classifiers with good classification performance

but also that these DNN classifiers yielded the lowest standard deviation. Based on the above

results, it is also shown that the use of PSO in combination with steepest gradient descent

algorithms can determine more appropriate network configurations (network structure and

hyperparameter configuration) for initializing and training the final model with good generali-

zation performance to solve regression problems.

Table 8 shows the prediction results of the ensemble model with different numbers of s

using DNN-PSO and DNN-NONPSO approaches for 15 KCD datasets. As shown in the table,

in most cases, combining more DNN classifiers may provide better prediction performance.

In addition, selecting the 18 DNN classifiers as the members of an ensemble model may result

in a prediction phase in which the outcomes generated by the ensemble model are only slight

improvements compared with the rest of the models. Table 9 shows the prediction results of

the ensemble model and the individual DNN classifier generated by the solutions (pbest) and

(gbest) of the PSO algorithm and random approach, respectively, for 15 KCD datasets. The last

two rows of the table present the average and standard deviation of accuracies generated by

the two different approaches on 15 KCD datasets, respectively. We can observe that the ensem-

ble model and the individual DN classifiers constructed by the PSO-based optimization

scheme not only achieved better average prediction results but also yielded the lowest standard

deviation of accuracy. In addition, using the solutions of the PSO algorithm to initialize the

ensemble model and individual DNN classifier and then train these neural networks with their

Table 5. The prediction results of candidate DNN classifiers generated by the solutions (pbest) and solutions of the DNN-PSO and DNN-NONPSO

approaches, respectively, for one run of the 1–5 biological activity datasets.

DNN-PSO DNN-NONPSO

N of c 3A4 CB1 DPP4 HIVINT HIVPROT 3A4 CB1 DPP4 HIVINT HIVPROT

1 0.2005 1.2965 1.5144 0.2405 3.4386 0.3381 1.3691 1.4583 0.2414 3.9081

2 0.3376 1.4552 1.4763 0.1172 1.4011 0.3399 1.4359 1.5188 0.2223 3.8855

3 0.2206 1.5383 1.4856 0.1674 3.9444 0.3371 1.4346 1.6042 0.1756 3.5860

4 0.3395 1.3436 1.5052 0.2972 3.4178 0.3348 0.6966 1.4594 0.1975 3.7107

5 0.2049 1.7389 1.4795 0.1119 3.5055 0.2191 1.3310 1.4972 0.1910 3.5011

6 0.3382 1.3303 1.4629 0.1120 3.4979 0.3464 1.3935 1.7628 0.1625 4.3691

7 0.1970 1.3033 1.4558 0.1191 3.4594 0.3348 1.4196 1.4600 0.1252 3.3564

8 0.2094 1.4704 1.4585 0.1123 3.4970 0.3383 1.3324 2.3290 0.1923 3.3019

9 0.3360 1.3613 1.6974 0.1137 3.5384 0.3419 1.5481 1.4730 0.1786 3.7017

10 0.3404 1.3693 2.1176 0.1153 4.0036 0.3424 1.3394 1.5663 0.1658 3.4862

11 0.2335 1.3537 1.6197 0.2206 3.3211 0.3349 1.6895 2.3901 0.1220 3.4698

12 0.3359 1.4235 1.7801 0.2091 3.5891 0.3369 1.3740 1.4571 0.2185 1.2337

13 0.3348 1.3573 1.5798 0.1160 3.8871 0.3357 1.3112 1.4908 0.2015 4.5231

14 0.1983 1.3684 1.4993 0.2281 3.3522 0.3415 1.3111 1.4570 0.1643 3.9276

15 0.2201 1.7648 1.9797 0.1112 3.5857 0.3543 1.3444 1.6175 0.2001 3.4792

16 0.3348 1.3097 1.4814 0.2679 3.4605 0.3358 1.4377 1.4901 0.1152 3.7925

17 0.1984 1.2908 1.4541 0.2122 3.7491 0.3499 1.2944 1.5022 0.1787 3.4836

18 0.3365 1.3842 1.4541 0.1173 3.8058 0.3417 1.4933 1.5069 0.2047 3.4937

19 0.1989 1.5187 1.4591 0.1230 3.6477 0.3377 1.3387 1.4607 0.1745 3.4273

20 0.2194 1.5273 1.4542 0.2543 3.6890 0.3487 1.5820 1.4989 0.2167 3.5062

Avg 0.2667 1.4253 1.5707 0.1683 3.4895 0.3345 1.3738 1.6000 0.1824 3.5572

Std 0.0659 0.1355 0.1870 0.0649 0.5282 0.0277 0.1894 0.2704 0.0338 0.6331

https://doi.org/10.1371/journal.pone.0188746.t005

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 23 / 36

https://doi.org/10.1371/journal.pone.0188746.t005
https://doi.org/10.1371/journal.pone.0188746


corresponding hyperparameter configurations requires less computational time to implement

the final models compared to the random approach. Based on the above results, it is shown

that the optimal network configurations can simultaneously improve the classification perfor-

mance and training efficiency compared with randomly selected configurations.

Figs 6, 7 and 8 respectively display the training errors of the individual classifier generated

by the solution (gbest) of the PSO algorithm and random configuration for 15 KCD datasets.

As shown in these graphs, gbest is employed to initialize a DNN classifier and then train the

classifier with its corresponding hyperparameter configuration, which generates lower training

curves than the random configuration. In addition, not only did the individual classifier using

the DNN-PSO approach generate the lowest training curves, but it also obtained the lowest

final training error in the last training phase.

4.4 The investigation of deeper networks using the proposed approach

In this subsection, we investigate the influence of the use of the PSO-based optimization

scheme for deeper neural networks and evaluate the effectiveness of these trained DNN classi-

fiers on the MNIST dataset. For the experimental parameter setting, the search ranges for the

optimization parameters, and the parameter configurations for the PSO algorithm and final

network training adopt the same settings as in the previous experiment. In addition, we

adopted three hidden layers to construct a deep neural network, and the number of hidden

neurons of each hidden layer was searched for in the same domain. The five runs of the 5-fold

cross-validation procedure with mini-batch learning are performed to train DNN classifiers

Table 6. The prediction results of candidate DNN classifiers generated by the solutions (pbest) and solutions of the DNN-PSO and DNN-NONPSO

approaches, respectively, for one run of the 6–10 biological activity datasets.

DNN-PSO DNN-NONPSO

N of c LOGD METAB NK1 OX1 OX2 LOGD METAB NK1 OX1 OX2

1 1.2482 1.2736 1.6554 1.0266 1.0777 1.2497 3.8073 0.9765 1.1638 1.9109

2 1.2408 1.2771 1.3910 1.0542 1.7795 1.2632 3.4689 0.4729 1.0406 1.9322

3 1.2406 1.2518 1.8322 1.0686 1.7323 1.2810 3.7857 1.7560 1.0377 1.8696

4 1.2675 0.4726 1.3428 1.0271 1.6467 1.2491 3.8208 0.9928 1.1308 1.0476

5 1.2496 0.4648 1.4885 1.5774 1.6804 1.2649 3.7294 0.5834 1.0956 1.0860

6 1.3532 1.2502 1.1518 1.0415 2.0970 1.2406 4.4178 1.4813 1.1960 1.1095

7 1.2599 0.4203 1.2815 1.2564 2.0083 1.2411 3.5244 2.1845 1.0281 1.6198

8 1.2498 0.4264 0.8911 1.1450 1.7527 1.2991 3.4270 1.4342 1.1475 2.0238

9 1.2447 1.2408 1.3539 1.1338 2.1255 1.3345 3.5422 1.6333 1.0672 2.0282

10 1.2424 0.7727 1.6205 1.0674 1.7241 1.2406 3.4181 0.5948 1.0979 1.9676

11 1.2470 0.4374 2.6143 1.0499 1.6180 1.2406 3.7073 1.5808 1.2062 1.7595

12 1.2463 1.2726 1.5508 1.2470 1.9858 1.3086 3.3049 2.1852 1.0790 1.0359

13 1.2604 1.2421 1.6819 1.2966 1.7688 1.2433 4.0172 1.6795 1.0230 1.8745

14 1.2424 1.2422 1.8027 1.0646 1.6546 0.4445 3.4941 0.7625 1.0265 1.8699

15 1.2441 1.2919 1.4408 1.0655 2.0290 1.2555 3.6298 1.1430 0.5670 1.8007

16 1.2475 1.2968 1.3721 1.0256 1.8031 1.3056 3.7405 1.7333 1.0231 1.8184

17 1.2788 1.2584 1.5148 1.0316 2.0049 1.2460 3.8127 1.4720 1.2042 1.5613

18 1.2440 1.2425 1.4503 1.0870 1.7276 1.2429 3.9439 1.5463 1.0480 1.8485

19 1.2465 0.4372 1.7415 0.5934 1.8387 1.2741 3.4115 0.5149 1.0456 1.8577

20 1.2448 1.2542 1.2924 1.0756 1.6917 1.2778 4.2795 1.6047 1.0486 1.8503

Avg 1.2549 0.9913 1.5235 1.0967 1.7873 1.2251 3.7142 1.3166 1.0638 1.6936

Std 0.0251 0.3841 0.3425 0.1787 0.2305 0.1858 0.2907 0.5305 0.1330 0.3391

https://doi.org/10.1371/journal.pone.0188746.t006

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 24 / 36

https://doi.org/10.1371/journal.pone.0188746.t006
https://doi.org/10.1371/journal.pone.0188746


and evaluate them. After five runs, we can obtain the final results by calculating the average

and standard deviation of these achieved results. Table 10 shows the detailed classification

results of 20 independent DNN classifiers with three hidden layers generated by the solutions

(pbest) of the PSO algorithm and random approach, respectively, for five runs of 5-fold cross-

validation on the MNIST dataset. The same phenomenon can be seen in this table: use of the

optimal network configurations that were expressed by solutions of the PSO algorithm to con-

struct DNN classifiers outperforms the classifiers trained using randomly generated configura-

tions. The last two rows of the table show the average and standard deviation of these results

within the table. To compare the classification accuracies generated by DNN classifiers with

three and two hidden layers, the DNN classifiers perform better when using two hidden layers.

This may be because a deeper-level neural network generally has a huge number of adjustable

parameters (weights and biases), requiring more training time or computational resources to

allow the model to fit the training data. In. The same training parameters (epochs and batch

size) that have been employed in the training network with two hidden layers in the previous

experiments are now used to train the network with three hidden layers. As a result, this train-

ing phase may be insufficient, and more epochs for network training may allow the deeper

neural network to reach or exceed the classification performance of the shallow architecture.

Table 11 shows the prediction results of the ensemble model and the individual DNN classi-

fier generated by the two different approaches for five runs of 5-fold cross-validation on the

MNIST dataset. As shown in the table, the solutions achieved by the PSO algorithm employed

to construct an ensemble model and individual DNN classifier gave the best classification

accuracies of 0.9845 and 0.9777, respectively. These trained ensemble model and individual

Table 7. The prediction results of candidate DNN classifiers generated by the solutions (pbest) and solutions of the DNN-PSO and DNN-NONPSO

approaches, respectively, for one run of the 11–15 biological activity datasets.

DNN-PSO DNN-NONPSO

N of c PGP PPB RAT_F TDI THROMBIN PGP PPB RAT_F TDI THROMBIN

1 0.2738 0.6853 0.2775 0.1747 4.8488 1.9109 0.3755 0.6063 0.2070 4.4219

2 0.2026 0.6042 0.2617 0.2301 4.5214 1.9322 0.2415 0.6051 0.2007 4.9896

3 0.2548 0.6371 0.2490 0.2383 4.4301 1.8696 0.5443 0.8732 0.2080 5.1188

4 0.3912 0.6024 0.2765 0.2142 5.3115 1.0476 0.3589 0.2847 0.2006 4.4378

5 0.4672 0.6152 0.2611 0.2064 4.4291 1.0860 0.3687 0.6669 0.2038 4.8855

6 0.3548 0.7352 0.3050 0.2138 4.4711 1.1095 0.3824 0.6020 0.2038 4.4236

7 0.3662 0.6631 0.2636 0.2021 4.4412 1.6198 0.3546 0.6051 0.2193 4.4287

8 0.2736 0.7228 0.2732 0.1745 4.4608 2.0238 0.3676 0.6366 0.2133 4.5431

9 0.3885 0.6282 0.2411 0.2003 4.4354 2.0282 0.3931 0.6122 0.2045 4.7623

10 0.2923 0.6109 0.3150 0.1782 4.4451 1.9676 0.3778 0.6919 0.2032 4.4858

11 0.2338 0.9068 0.4149 0.2031 4.5070 1.7595 0.3622 0.7988 0.2012 4.7073

12 0.3790 0.6176 0.2659 0.2067 4.4281 1.0359 0.4280 0.7561 0.2013 4.6890

13 0.2250 0.7066 0.2566 0.1786 4.4405 1.8745 0.2856 0.6019 0.2774 4.4220

14 0.2303 0.6918 0.2814 0.2016 4.5464 1.8699 0.3579 0.7507 0.2004 4.4267

15 0.2309 0.7135 0.2739 0.2313 4.4768 1.8007 0.3809 0.8010 0.2135 4.5384

16 0.3664 0.6614 0.2837 0.1537 5.1392 1.8184 0.3588 0.6276 0.2097 4.4223

17 0.3545 0.7798 0.2711 0.2041 4.4594 1.5613 0.3576 0.7625 0.2038 4.4722

18 0.3587 0.8724 0.2446 0.1763 4.8130 1.8485 0.3548 0.6245 0.2551 1.7893

19 0.1974 0.6896 0.2973 0.2006 4.4302 1.8577 0.3575 0.8291 0.2297 4.8561

20 0.2872 0.6082 0.2640 0.2426 4.4240 1.8503 0.3548 0.6249 0.2032 4.4759

Avg 0.3064 0.6876 0.2789 0.2016 4.5730 1.6936 0.3681 0.6680 0.2130 4.4648

Std 0.0764 0.0856 0.0371 0.0236 0.2542 0.3391 0.0561 0.1265 0.0200 0.6654

https://doi.org/10.1371/journal.pone.0188746.t007

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 25 / 36

https://doi.org/10.1371/journal.pone.0188746.t007
https://doi.org/10.1371/journal.pone.0188746


DNN classifier also yielded the lowest standard deviation for accuracy. For the computation

times in the training phase, the DNN-PSO is superiority than DNN-NONPSO. Based on the

above results, we can conclude that the proposed approach using the PSO algorithm in combi-

nation with the steepest gradient descent algorithm can also determine the optimal solutions

for the deeper neural network that achieved the significant results. In addition, to compare the

results achieved by DNN classifiers with two and three hidden layers, the difference between

them is smaller. This may be because the optimal network configuration can overcome the

training of a deeper neural network using less training time.

Table 12 shows the classification accuracies of the ensemble models with different numbers

of DNN classifiers generated by the DNN-PSO and DNN-NONPSO approaches for five runs

of 5-fold cross-validation on the MNIST datasets. As shown in the table, higher classification

performance is achieved by increasing the DNN classifiers. This demonstrates the advantages

of combining evidence across multiple independent classifiers for generalization performance.

In addition, to compare the classification accuracies between the networks with two and three

hidden layers, the DNN classifiers generated by the solutions (pbest) of the PSO algorithm

Table 8. The classification accuracy of the ensemble models with different number of DNN classifiers generated using the PSO-based optimiza-

tion scheme and random approach, respectively, for 15 targets of the KCD datasets.

Ensemble model using PSO Ensemble model without PSO

N of c 3A4 CB1 DPP4 HIVINT HIVPROT 3A4 CB1 DPP4 HIVINT HIVPROT

2 0.2408 1.3271 1.4697 0.2821 3.5933 0.3349 1.4240 1.4757 0.2217 3.6719

4 0.2805 1.3082 1.4546 0.2238 3.5899 0.3368 1.3600 1.4850 0.1641 3.6451

6 0.2977 1.3529 1.4744 0.2312 3.5361 0.3393 1.3473 1.4558 0.1677 3.6530

8 0.3065 1.3609 1.4720 0.2283 3.5781 0.3375 1.3447 1.4541 0.1770 3.2536

10 0.3118 1.3609 1.4544 0.2037 3.5703 0.3358 1.3642 1.4711 0.1596 3.2910

12 0.2827 1.3682 1.4547 0.1748 3.5611 0.3362 1.3720 1.4545 0.1634 3.2988

14 0.2683 1.3587 1.4542 0.1597 3.5483 0.3364 1.3766 1.4550 0.1531 3.3537

16 0.2563 1.3716 1.4544 0.1475 3.5359 0.3240 1.2832 1.4553 0.1574 3.3833

18 0.2451 1.3825 1.4544 0.1375 3.3601 0.3250 1.2985 1.4546 0.1610 3.4192

D 6–10 LOGD METAB NK1 OX1 OX2 LOGD METAB NK1 OX1 OX2

2 1.2459 1.2533 1.5495 1.0476 1.1977 1.2412 3.8735 1.2172 1.0941 1.8790

4 1.2417 1.2628 1.4946 1.0361 1.4692 1.2494 3.8236 1.3932 1.0784 1.7436

6 1.2409 1.2613 1.5328 1.0440 1.5704 0.9966 3.7244 1.1725 0.9277 1.7718

8 1.2408 1.2563 1.5530 1.0774 1.6382 1.0579 3.6622 1.3327 0.9531 1.5955

10 1.2406 1.2554 1.6461 1.0732 1.6395 1.0913 3.6360 1.2294 0.9849 1.6432

12 1.2409 1.2565 1.5326 1.0823 1.6807 1.1138 3.6066 1.2755 1.0030 1.6983

14 1.2431 1.1444 1.4820 1.0870 1.7258 1.1306 3.6410 1.3427 1.0139 1.5653

16 1.2442 0.9951 1.4733 1.0970 1.7146 1.1440 3.6564 1.2314 1.0253 1.4438

18 1.2435 0.8677 1.4865 1.0924 1.7188 1.1561 3.6507 1.1718 1.0201 1.4862

D 6–10 PGP PPB RAT_F TDI THROMBIN PGP PPB RAT_F TDI THROMBIN

2 0.3594 0.6768 0.2622 0.2096 4.8307 0.3611 0.6033 0.2800 0.2252 2.2657

4 0.3547 0.6552 0.2731 0.2012 4.4463 0.3564 0.6159 0.2828 0.2142 3.1515

6 0.3613 0.6500 0.2739 0.1817 4.4373 0.3546 0.6494 0.2591 0.2097 3.5472

8 0.3632 0.6600 0.2722 0.1862 4.4362 0.3308 0.6480 0.2642 0.2021 3.7272

10 0.3437 0.6656 0.2691 0.1888 4.4416 0.3212 0.6625 0.2641 0.2010 3.8545

12 0.3183 0.6345 0.2751 0.1811 4.4340 0.3300 0.6544 0.2646 0.2017 3.9463

14 0.2995 0.6475 0.2671 0.1757 4.4297 0.3340 0.6393 0.2660 0.2017 4.0111

16 0.2880 0.6425 0.2614 0.1723 4.4419 0.3374 0.5984 0.2577 0.2016 4.0668

18 0.2768 0.6471 0.2554 0.1734 4.4440 0.3255 0.6069 0.2594 0.2017 4.1051

https://doi.org/10.1371/journal.pone.0188746.t008

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 26 / 36

https://doi.org/10.1371/journal.pone.0188746.t008
https://doi.org/10.1371/journal.pone.0188746


provide significant improvements compared with the random approach, at each fold of the

5-fold cross-validation runs. The proposed approach provides a flexible manner by which the

number of classifiers can be determined. In addition, constructing an ensemble model with a

certain number of classifiers is directly choosing the optimal classifiers with better scores (low

training errors) from all the trained classifiers. In this manner, the generalization capability

Table 9. The prediction results of the ensemble model and the individual DNN classifier using the PSO-based optimization scheme and random

approach for 15 targets of the KCD datasets. (Result1 and Result2 denote the classification accuracy of the ensemble model and the individual classifier,

respectively. In addition, Time1 and Time2 are computational times of the network training phase for the ensemble model and the individual DNN classifier,

respectively.).

DNN-PSO DNN-NONPSO

DataSet Result1 Result2 Time1 Time2 Result1 Result2 Time1 Time2

1 0.2374 0.2113 821.6200 25.4780 0.3264 0.3354 896.1800 53.0870

2 1.3937 1.4728 1127.9000 44.9750 1.3110 1.4044 818.1400 21.1910

3 1.4544 1.5821 910.8900 35.3510 1.4548 1.5043 588.0000 26.4020

4 0.1304 0.1108 101.5000 4.1661 0.1638 0.1815 107.2100 5.7587

5 3.3894 3.7967 191.3800 10.9170 3.4216 3.5751 178.8900 8.7294

6 1.2430 1.2409 1441.0000 39.8040 1.1663 1.2559 1011.3000 45.5930

7 0.7825 0.5313 725.5000 26.9390 3.6589 3.3978 227.8900 10.1810

8 1.4879 2.1590 1024.4000 59.3520 1.1070 1.1072 582.8500 45.6880

9 1.0471 1.0256 559.6900 30.7540 1.0225 1.0971 427.1600 18.5420

10 1.7226 1.7181 1168.5000 64.7090 1.5182 1.7745 536.9000 33.1380

11 0.2660 0.3565 355.0300 13.9510 0.3265 0.3869 291.2000 22.1710

12 0.6457 0.7246 686.6400 33.0760 0.6088 0.6248 458.0700 23.7750

13 0.2509 0.2742 405.6200 14.1600 0.2567 0.2751 397.5300 19.9690

14 0.1669 0.1464 244.5200 10.0500 0.1973 0.2006 273.6000 15.9590

15 4.4391 4.4346 459.4700 21.2980 4.1438 4.6492 366.1600 20.5650

Avg 1.2438 1.3190 681.5700 28.9990 1.3789 1.4513 477.4000 24.7170

Std 1.2286 1.3079 398.1600 17.8360 1.3156 1.3768 265.8700 14.0280

https://doi.org/10.1371/journal.pone.0188746.t009

Fig 6. The training error values (loss values) of the network training using three hidden layers with

100 epochs of the individual classifier using the PSO algorithm and random method for 1–6 KCD

datasets.

https://doi.org/10.1371/journal.pone.0188746.g006

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 27 / 36

https://doi.org/10.1371/journal.pone.0188746.t009
https://doi.org/10.1371/journal.pone.0188746.g006
https://doi.org/10.1371/journal.pone.0188746


can be maximized, while the computational time of the prediction phase can be reduced.

Therefore, the choice of number of classifiers is a trade-off between performance and complex-

ity. In the next subsection, we investigate the influence of the choice of number of classifiers

and evaluate these ensemble models in terms of classification performance and computational

time for the prediction phase.

Fig 9 displays the fitness value (training accuracy) curves generated by the PSO algorithm at

each iteration for five runs of 5-fold cross-validation on the MNIST dataset. As shown in these

graphs, the fitness values gradually increase as the iterations increase, up to a certain number.

This indicates that a good solution can be found during the PSO search processes. Fig 10 dis-

plays the training error curves generated by the individual DNN classifier using the DNN-PSO

and DNN-NONPSO approaches. It can be observed that the DNN-PSO approach almost

achieved lower training error curves than DNN-NONPSO during each fold of the 5-fold

cross-validation runs.

Fig 7. The training error values (loss values) of the network training using three hidden layers with

100 epochs of the individual classifier using the PSO algorithm and random method for 7–12 KCD

datasets.

https://doi.org/10.1371/journal.pone.0188746.g007

Fig 8. The training error values (loss values) of the network training using three hidden layers with

100 epochs of the individual classifier using the PSO algorithm and random method for 13–15 KCD

datasets.

https://doi.org/10.1371/journal.pone.0188746.g008

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 28 / 36

https://doi.org/10.1371/journal.pone.0188746.g007
https://doi.org/10.1371/journal.pone.0188746.g008
https://doi.org/10.1371/journal.pone.0188746


4.5 The influence of the choice of number of classifiers

When constructing an ensemble model, the choice of number of classifiers is an important

issue that influences the generalization performance. How to choose a more appropriate num-

ber of classifiers is a challenging task because more classifiers may yield better generalization

performance but also require more computational resources in network training and predic-

tion. This subsection investigates the influence of the ensemble models that were constructed

Table 10. The prediction results of candidate classifiers generated from the final PSO (pbest) solutions and randomly generated solutions on the

test dataset using neural network classifiers with two processing layers for the 5-fold cross-validation on the MNIST dataset. (Here, Avg denotes

the average prediction result across all candidate classifiers, and N of c denotes the number of combined classifiers.).

DNN-PSO DNN-NONPSO

N of c Fold-1 Fold-2 Fold-3 Fold-5 Fod-5 Fold-1 Fold-2 Fold-3 Fold-4 Fold-4

1 0.9786 0.9798 0.9697 0.9702 0.9808 0.9496 0.9593 0.9754 0.9677 0.9794

2 0.9767 0.9779 0.9784 0.9716 0.9799 0.9736 0.9750 0.9735 0.9682 0.9766

3 0.9778 0.9767 0.9786 0.9763 0.9791 0.9752 0.9746 0.9749 0.9722 0.3713

4 0.9766 0.9764 0.9746 0.9749 0.9807 0.9666 0.9781 0.9722 0.9716 0.9744

5 0.9758 0.9760 0.9756 0.9728 0.9808 0.9787 0.9741 0.9688 0.9731 0.9789

6 0.9758 0.9760 0.9760 0.9736 0.9736 0.9679 0.2082 0.9731 0.4788 0.2121

7 0.9725 0.9756 0.9749 0.9761 0.9801 0.9793 0.9751 0.9754 0.9643 0.9794

8 0.9745 0.9788 0.9785 0.9764 0.9784 0.9772 0.9296 0.9733 0.9707 0.9683

9 0.9790 0.9797 0.9780 0.9746 0.9759 0.9749 0.9529 0.9732 0.9709 0.9798

10 0.9770 0.9756 0.9760 0.9699 0.9778 0.9786 0.9743 0.9681 0.9661 0.9787

11 0.9776 0.9774 0.9783 0.9753 0.9795 0.9749 0.9755 0.9747 0.9751 0.9734

12 0.9754 0.9775 0.9729 0.9764 0.9786 0.1124 0.9743 0.9680 0.9694 0.9780

13 0.9762 0.9769 0.9726 0.9689 0.9791 0.9743 0.9674 0.9759 0.9674 0.9721

14 0.9756 0.9774 0.9769 0.9767 0.9789 0.9776 0.9741 0.9700 0.9703 0.9802

15 0.9779 0.9771 0.9774 0.9756 0.9814 0.9685 0.9759 0.9695 0.9661 0.9768

16 0.9764 0.9744 0.9782 0.9738 0.9786 0.9725 0.9711 0.9766 0.9697 0.9785

17 0.9789 0.9771 0.9762 0.9742 0.9791 0.9724 0.9783 0.9644 0.9722 0.9747

18 0.9765 0.9718 0.9755 0.9697 0.9781 0.8105 0.9756 0.9770 0.9707 0.9750

19 0.9745 0.9781 0.9780 0.9749 0.9756 0.9741 0.9717 0.9726 0.9701 0.9793

20 0.9781 0.9783 0.9749 0.9717 0.9812 0.9765 0.9736 0.9760 0.9746 0.9792

Avg 0.9766 0.9769 0.9761 0.9737 0.9789 0.9218 0.9319 0.9726 0.9455 0.9083

Std 0.0016 0.0018 0.0024 0.0025 0.0020 0.1941 0.1707 0.0034 0.1099 0.2125

https://doi.org/10.1371/journal.pone.0188746.t010

Table 11. The prediction results of the final classification models (ensemble model and individual DNN classifier) of the proposed approach using

the PSO algorithm and random method for the 5-fold cross-validation runs on the MNIST Dataset. (Here, Avg and Std denote the average and stan-

dard deviation of the prediction results, Ensemble and Individual denote the prediction results achieved by the ensemble model and the individual DNN classi-

fier, respectively, and Time1 and Time 2 denote the computational times of the training phases of the ensemble model and the individual DNN classifier,

respectively.).

The proposed approach using PSO The proposed approach without PSO

Folds Ensemble Individual Time1 Time2 Ensemble Individual Time1 Time2

Fold-1 0.9855 0.9771 987.8683 47.9775 0.9833 0.9650 1016.8787 68.6839

Fold-2 0.9852 0.9771 1209.7731 53.7977 0.9818 0.9794 845.4705 35.4647

Fold-3 0.9832 0.9799 1001.8159 54.6867 0.9821 0.9729 645.3766 24.2177

Fold-4 0.9823 0.9752 1160.9647 75.6790 0.9782 0.9743 655.7204 28.1844

Fold-5 0.9863 0.9792 925.5798 49.0980 0.9859 0.9756 815.5113 33.0172

Avg 0.9845 0.9777 1057.2004 56.2478 0.9823 0.9734 795.7915 37.9136

Std 0.0015 0.0017 108.8520 10.0551 0.0025 0.0047 137.0992 15.8683

https://doi.org/10.1371/journal.pone.0188746.t011

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 29 / 36

https://doi.org/10.1371/journal.pone.0188746.t010
https://doi.org/10.1371/journal.pone.0188746.t011
https://doi.org/10.1371/journal.pone.0188746


with different numbers of classifiers using the DNN-PSO and DNN-NONPSO approaches. In

this experiment, all parameter configurations are set the same as before expect for the popula-

tion size (the number of all final classifiers) of the PSO algorithm. In addition, the various

ensemble models were generated by directly choosing the classifiers from the candidate classi-

fiers trained by pbest of the PSO algorithm and the randomly generated solutions on the

MNIST dataset, without training any new neural networks. Fig 11 displays the classification

accuracies achieved by the ensemble models with varying numbers of classifiers (from 2 to 59).

As shown in the graph, higher classification accuracy can be obtained when more DNN classi-

fiers are employed to construct the ensemble model. In addition, DNN-PSO almost yielded

the best classification performance compared with DNN-NONPSO when the ensemble model

was constructed by choosing the same number of classifiers. Fig 12 displays the computational

times for the training phase of the ensemble models generated by using the DNN-PSO and

DNN-NONPOS approaches. From the graph, we can observe that the computational times for

the training phase of the ensemble model are gradually increasing as the ensemble model

increases its number of members. Figs 13 and 14 respectively display the classification accuracy

and computational time of the training phase of ensemble models with three hidden layers.

There are similar results to be found in these graphs. Based on the above results, it can be

Table 12. The prediction results when using ensemble models with different numbers of classifiers.

Ensemble model using PSO Ensemble model without PSO

N of c Fold-1 Fold-2 Fold-3 Fold-5 Fold-5 Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

2 0.9790 0.9765 0.9766 0.9728 0.9781 0.9273 0.9672 0.9748 0.9686 0.9776

4 0.9818 0.9810 0.9808 0.9798 0.9834 0.9709 0.9777 0.9796 0.9753 0.9825

6 0.9829 0.9829 0.9824 0.9809 0.9853 0.9755 0.9807 0.9812 0.9756 0.9845

8 0.9836 0.9833 0.9823 0.9812 0.9854 0.9768 0.9811 0.9812 0.9758 0.9848

10 0.9843 0.9839 0.9826 0.9818 0.9855 0.9793 0.9820 0.9816 0.9774 0.9842

12 0.9848 0.9844 0.9826 0.9818 0.9860 0.9805 0.9814 0.9822 0.9777 0.9844

14 0.9848 0.9847 0.9827 0.9818 0.9861 0.9814 0.9811 0.9817 0.9782 0.9854

16 0.9851 0.9852 0.9825 0.9819 0.9859 0.9823 0.9822 0.9820 0.9783 0.9855

18 0.9851 0.9849 0.9831 0.9821 0.9863 0.9829 0.9821 0.9826 0.9784 0.9856

Avg 0.9835 0.9830 0.9818 0.9805 0.9846 0.9273 0.9672 0.9748 0.9686 0.9776

Std 0.0020 0.0027 0.0020 0.0030 0.0026 0.9709 0.9777 0.9796 0.9753 0.9825

https://doi.org/10.1371/journal.pone.0188746.t012

Fig 9. The training accuracy (fitness value) of the PSO algorithm at each generation across all

generations for the 5-fold cross-validation runs on the MNIST dataset. (The individual DNN classifier is

constructed by three hidden layers. The horizontal axis and the vertical axis represent the number of

generations of the PSO algorithm and the training accuracy, respectively.).

https://doi.org/10.1371/journal.pone.0188746.g009

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 30 / 36

https://doi.org/10.1371/journal.pone.0188746.t012
https://doi.org/10.1371/journal.pone.0188746.g009
https://doi.org/10.1371/journal.pone.0188746


Fig 11. The classification accuracies achieved by various ensemble models with different numbers of

classifiers (2 to 59) generated using the DNN-PSO and DNN-NONPSO approaches.

https://doi.org/10.1371/journal.pone.0188746.g011

Fig 10. The training error values (loss values) of the network training using three hidden layers with

20 epochs of the individual classifier using the PSO algorithm and random method for five runs of

5-fold cross-validation on the MNIST dataset.

https://doi.org/10.1371/journal.pone.0188746.g010

Fig 12. The computational times for the prediction phases of various ensembles with different

numbers of classifiers generated using the DNN-PSO and DNN-NONPSO approaches.

https://doi.org/10.1371/journal.pone.0188746.g012

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 31 / 36

https://doi.org/10.1371/journal.pone.0188746.g011
https://doi.org/10.1371/journal.pone.0188746.g010
https://doi.org/10.1371/journal.pone.0188746.g012
https://doi.org/10.1371/journal.pone.0188746


concluded that more DNN classifiers employed to construct an ensemble model may provide

better generalization capability, but the resulting long computational times in the training and

prediction phases make this inapplicable in real-time applications. Actually, the highest classi-

fication performance has been achieved by a certain number of classifiers instead of all classifi-

ers, because the improvement in performance of the ensemble model is smaller when

increasing classifiers until a certain number of classifiers is reached. To investigate the influ-

ence of the use of different numbers and depths of classifiers when constructing the ensemble

model, the same experimental processes as for the parameter configuration were performed.

5. Conclusion and future work

In this paper, a new automatic hyperparameter selection approach is proposed to find a more

appropriate network structure and hyperparameter configuration for deep neural network

training. The main ideal of the proposed approach is utilizing the advantages of global and

local exploration capabilities from particle swarm optimization (PSO) and the steepest gradi-

ent descent algorithm and combining them into a hybrid search procedure. Because the per-

formance of deep network classifiers extremely depends on their network structure and

hyperparameter configurations, we aim to optimize these configurations through an efficient

Fig 13. The classification accuracies achieved by various ensemble models based on three hidden

layers with different numbers of classifiers (2 to 59) generated using the DNN-PSO and DNN-NONPSO

approaches.

https://doi.org/10.1371/journal.pone.0188746.g013

Fig 14. The computational times for the prediction phases of various ensembles based on three

hidden layers with different numbers of classifiers generated using the DNN-PSO and DNN-NONPSO

approaches.

https://doi.org/10.1371/journal.pone.0188746.g014

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 32 / 36

https://doi.org/10.1371/journal.pone.0188746.g013
https://doi.org/10.1371/journal.pone.0188746.g014
https://doi.org/10.1371/journal.pone.0188746


parameter optimization scheme using PSO in combination with the steepest gradient descent

algorithm. After the procedure of the parameter optimization scheme, the final solutions

(pbest) and (gbest) of the PSO algorithm having important network configuration information

are used to initialize and train a final ensemble model and individual DNN classifier, respec-

tively. In addition, the proposed approach also provides a flexible method that allows users to

choose a certain threshold as the number of classifiers to construct a light ensemble model. In

this manner, the trade-off between the generalization capability and the model complexity can

be addressed, and this is discussed in the previous subsections in which several experiments

have been performed with the ensemble models with different numbers of classifiers. We have

constructed experimental studies to solve classification and regression problems by evaluating

the performance of the proposed approach on the handwritten characters and biological activ-

ity prediction datasets, respectively. The experimental results demonstrated that the proposed

approach can find a more appropriate network structure with a better hyperparameter config-

uration, which are then employed to initialize and train DNN classifiers, which achieve excel-

lent performance in both the training phase and final models (after training). Therefore, the

proposed approach can be regarded as an automatic hyperparameter optimization tool for

deep learning architectures without requiring any prior knowledge.

In our future work, we would like to extend our approach to optimize more deep learning

architectures, such as convolutional neural networks (CNNs) and recurrent neural networks

(RNNs), since the flexibility of the proposed approach in initializing and training a neural net-

work means that the above implementation would require only a small modification. In addi-

tion, we would like to use other advanced evolutionary algorithms or develop a new algorithm

to replace PSO in the proposed approach for network configuration optimization since it pro-

vides a flexible optimization scheme in which the algorithm is performed in a wrapped man-

ner, and any population-based optimization algorithm can be employed.

Acknowledgments

The authors would like to thank the associate editor and reviewers for their valuable comments

and suggestions, all of which have improved the study’s quality.

Author Contributions

Conceptualization: Fei Ye.

Data curation: Fei Ye.

Project administration: Fei Ye.

Resources: Fei Ye.

Validation: Fei Ye.

Visualization: Fei Ye.

Writing – original draft: Fei Ye.

Writing – review & editing: Fei Ye.

References

1. Yi Y., & Lin M. (2016). Human action recognition with graph-based multiple-instance learning. Pattern

Recognition, 53(C), 148–162.

2. Chen H., Wang G., Xue J. H., & He L. (2016). A novel hierarchical framework for human action recogni-

tion. Pattern Recognition, 55(C), 148–159.

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 33 / 36

https://doi.org/10.1371/journal.pone.0188746


3. Murtaza F., Yousaf M. H., & Velastin S. A. (2017). Multi-view human action recognition using 2d motion

templates based on mhis and their hog description. Iet Computer Vision, 10(7), 758–767.

4. Human action recognition using histogram of motion intensity and direction from multiple views

5. Ji X., Cheng J., Tao D., Wu X., & Feng W. (2017). The spatial laplacian and temporal energy pyramid

representation for human action recognition using depth sequences. Knowledge-Based Systems, 122

(C), 64–74.

6. Ijjina E. P., & Chalavadi K. M. (2016). Human action recognition using genetic algorithms and convolu-

tional neural networks. Elsevier Science Inc.

7. Yao T., Wang Z., Xie Z., Gao J., & Feng D. D. (2017). Learning universal multiview dictionary for human

action recognition. Pattern Recognition, 64(C), 236–244.

8. Wang P., Li W., Gao Z., Zhang J., Tang C., & Ogunbona P. O. (2016). Action recognition from depth

maps using deep convolutional neural networks. IEEE Transactions on Human-Machine Systems, 46

(4), 498–509.

9. Chaturvedi I., Ong Y. S., Tsang I. W., Welsch R. E., & Cambria E. (2016). Learning word dependencies

in text by means of a deep recurrent belief network. Knowledge-Based Systems, 108(C), 144–154.

10. Poria S., Cambria E., & Gelbukh A. (2016). Aspect extraction for opinion mining with a deep convolu-

tional neural network. Elsevier Science Publishers B. V.

11. Baly R., Hobeica R., Hajj H., El-Hajj W., Shaban K. B., & Al-Sallab A. (2016). A meta-framework for

modeling the human reading process in sentiment analysis. Acm Transactions on Information Systems,

35(1), 7.

12. Li Q., Jin Z., Wang C., & Zeng D. D. (2016). Mining opinion summarizations using convolutional neural

networks in chinese microblogging systems. Knowledge-Based Systems, 107(C), 289–300.

13. Lei T., Barzilay R., & Jaakkola T. (2015). Molding cnns for text: non-linear, non-consecutive convolu-

tions. Indiana University Mathematics Journal, 58(3), págs. 1151–1186.

14. Read J., & Perez-Cruz F. (2014). Deep learning for multi-label classification. Machine Learning, 85(3),

333–359.

15. Carneiro G., & Nascimento J. C. (2012). The Segmentation of the Left Ventricle of the Heart From Ultra-

sound Data Using Deep Learning Architectures and Derivative-Based Search Methods. IEEE Press.

16. Avendi M. R., Kheradvar A., & Jafarkhani H. (2016). A combined deep-learning and deformable-model

approach to fully automatic segmentation of the left ventricle in cardiac mri☆. Medical Image Analysis,

30, 108. https://doi.org/10.1016/j.media.2016.01.005 PMID: 26917105

17. Yan Z., Zhan Y., Peng Z., Liao S., Shinagawa Y., & Zhang S., et al. (2016). Multi-instance deep learn-

ing: discover discriminative local anatomies for bodypart recognition. IEEE Transactions on Medical

Imaging, 35(5), 1332–1343. https://doi.org/10.1109/TMI.2016.2524985 PMID: 26863652

18. Cha K. H., Hadjiiski L., Samala R. K., Chan H., Caoili E. M., & Cohan R. H. (2016). Urinary bladder seg-

mentation in ct urography using deep-learning convolutional neural network and level sets. Medical

Physics, 43(4), 1882. https://doi.org/10.1118/1.4944498 PMID: 27036584

19. Golkov V., Dosovitskiy A., Sperl J. I., Menzel M. I., Czisch M., & Samann P., et al. (2016). Q-space

deep learning: twelve-fold shorter and model-free diffusion mri scans. IEEE Transactions on Medical

Imaging, 35(5), 1344. https://doi.org/10.1109/TMI.2016.2551324 PMID: 27071165

20. Ngo T. A., Lu Z., & Carneiro G. (2017). Combining deep learning and level set for the automated seg-

mentation of the left ventricle of the heart from cardiac cine magnetic resonance. Medical Image Analy-

sis, 35, 159. https://doi.org/10.1016/j.media.2016.05.009 PMID: 27423113

21. Dhungel N., Carneiro G., & Bradley A. P. (2017). A deep learning approach for the analysis of masses

in mammograms with minimal user intervention. Medical Image Analysis, 37, 114. https://doi.org/10.

1016/j.media.2017.01.009 PMID: 28171807

22. Anthimopoulos M., Christodoulidis S., Ebner L., Christe A., & Mougiakakou S. (2016). Lung pattern

classification for interstitial lung diseases using a deep convolutional neural network. IEEE Transactions

on Medical Imaging, 35(5), 1207. https://doi.org/10.1109/TMI.2016.2535865 PMID: 26955021

23. Xu J., Xiang L., Liu Q., Gilmore H., Wu J., & Tang J., et al. (2016). Stacked sparse autoencoder (ssae)

for nuclei detection on breast cancer histopathology images. IEEE Transactions on Medical Imaging,

35(1), 119. https://doi.org/10.1109/TMI.2015.2458702 PMID: 26208307

24. Kamnitsas K., Ledig C., Newcombe V. F., Simpson J. P., Kane A. D., & Menon D. K., et al. (2017). Effi-

cient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Medical Image

Analysis, 36, 61. https://doi.org/10.1016/j.media.2016.10.004 PMID: 27865153

25. Chen S., Qin J., Ji X., Lei B., Wang T., & Ni D., et al. (2017). Automatic scoring of multiple semantic attri-

butes with multi-task feature leverage: a study on pulmonary nodules in ct images. IEEE Transactions

on Medical Imaging, 36(3), 802–814. https://doi.org/10.1109/TMI.2016.2629462 PMID: 28113928

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 34 / 36

https://doi.org/10.1016/j.media.2016.01.005
http://www.ncbi.nlm.nih.gov/pubmed/26917105
https://doi.org/10.1109/TMI.2016.2524985
http://www.ncbi.nlm.nih.gov/pubmed/26863652
https://doi.org/10.1118/1.4944498
http://www.ncbi.nlm.nih.gov/pubmed/27036584
https://doi.org/10.1109/TMI.2016.2551324
http://www.ncbi.nlm.nih.gov/pubmed/27071165
https://doi.org/10.1016/j.media.2016.05.009
http://www.ncbi.nlm.nih.gov/pubmed/27423113
https://doi.org/10.1016/j.media.2017.01.009
https://doi.org/10.1016/j.media.2017.01.009
http://www.ncbi.nlm.nih.gov/pubmed/28171807
https://doi.org/10.1109/TMI.2016.2535865
http://www.ncbi.nlm.nih.gov/pubmed/26955021
https://doi.org/10.1109/TMI.2015.2458702
http://www.ncbi.nlm.nih.gov/pubmed/26208307
https://doi.org/10.1016/j.media.2016.10.004
http://www.ncbi.nlm.nih.gov/pubmed/27865153
https://doi.org/10.1109/TMI.2016.2629462
http://www.ncbi.nlm.nih.gov/pubmed/28113928
https://doi.org/10.1371/journal.pone.0188746


26. Greenspan H., Ginneken B. V., & Summers R. M. (2016). Guest editorial deep learning in medical imag-

ing: overview and future promise of an exciting new technique. IEEE Transactions on Medical Imaging,

35(5), 1153–1159.

27. Chen Y., Li Y., Narayan R., Subramanian A., & Xie X. (2016). Gene expression inference with deep

learning. Bioinformatics, 32(12), 1832. https://doi.org/10.1093/bioinformatics/btw074 PMID: 26873929

28. Singh, R., Lanchantin, J., Robins, G., & Qi, Y. (2016). Deepchrome: deep-learning for predicting gene

expression from histone modifications. Bioinformatics(17).

29. Romo-Bucheli D., Janowczyk A., Gilmore H., Romero E., & Madabhushi A. (2017). A deep learning

based strategy for identifying and associating mitotic activity with gene expression derived risk catego-

ries in estrogen receptor positive breast cancers. Cytometry Part A the Journal of the International Soci-

ety for Analytical Cytology, 91(6), 566. https://doi.org/10.1002/cyto.a.23065 PMID: 28192639

30. Tsuji, S., & Aburatani, H. (2015). Deep learning for the large-scale cancer data analysis. AACR Special

Conference on Computational and Systems Biology of Cancer (Vol.75).

31. Alipanahi B., Delong A., Weirauch M. T., & Frey B. J. (2015). Predicting the sequence specificities of

dna- and rna-binding proteins by deep learning. Nature Biotechnology, 33(8), 831–8. https://doi.org/10.

1038/nbt.3300 PMID: 26213851

32. Fan X. N., & Zhang S. W. (2015). Lncrna-mfdl: identification of human long non-coding rnas by fusing

multiple features and using deep learning. Molecular Biosystems, 11(3), 892. https://doi.org/10.1039/

c4mb00650j PMID: 25588719

33. Zhang S., Zhou J., Hu H., Gong H., Chen L., & Cheng C., et al. (2016). A deep learning framework for

modeling structural features of rna-binding protein targets. Nucleic Acids Research, 44(4), e32. https://

doi.org/10.1093/nar/gkv1025 PMID: 26467480

34. Kelley D. R., Snoek J., & Rinn J. L. (2016). Basset: learning the regulatory code of the accessible

genome with deep convolutional neural networks. Genome Research, 26(7), 990. https://doi.org/10.

1101/gr.200535.115 PMID: 27197224

35. Angermueller C., Pärnamaa T., Parts L., & Stegle O. (2016). Deep learning for computational biology.

Molecular Systems Biology, 12(7), 878. https://doi.org/10.15252/msb.20156651 PMID: 27474269

36. Lodhi H. (2012). Computational biology perspective: kernel methods and deep learning. Wiley Interdis-

ciplinary Reviews Computational Statistics, 4(5), 455–465.

37. Zhang N., Ding S., Zhang J., & Xue Y. (2016). Research on point-wise gated deep networks. Applied

Soft Computing.

38. Ding, S., Zhang, J., Zhang, N., & Hou, Y. (2017). Boltzmann machine and its applications in image

recognition.

39. Hinton G, Osindero S, Teh Y. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation,

2006, 18(7):1527. https://doi.org/10.1162/neco.2006.18.7.1527 PMID: 16764513

40. Ritchie, D., Thomas, A., Hanrahan, P., & Goodman, N. D. (2016). Neurally-guided procedural models:

learning to guide procedural models with deep neural networks.

41. Schmidhuber J. (2015). Deep learning in neural networks: an overview. Neural Networks the Official

Journal of the International Neural Network Society, 61, 85. https://doi.org/10.1016/j.neunet.2014.09.

003 PMID: 25462637

42. Pan, J., Liu, C., Wang, Z., Hu, Y., & Jiang, H. (2013). Investigation of deep neural networks (DNN) for

large vocabulary continuous speech recognition: Why DNN surpasses GMMS in acoustic modeling.

International Symposium on Chinese Spoken Language Processing (Vol.7196, pp.301-305). IEEE.

43. Tang Y. (2013). Deep learning using linear support vector machines. Computer Science.

44. Ithapu V. K., Ravi S. N., & Singh V. (2015). On the interplay of network structure and gradient conver-

gence in deep learning. Computer Science, 488–495.

45. Zhang S., Choromanska A., & Lecun Y. (2014). Deep learning with elastic averaging sgd. 685–693.

46. Nasef A. (2017). Stochastic gradient descent analysis for the evaluation of a speaker recognition.

Kluwer Academic Publishers.

47. Klein S., Pluim J. P. W., Staring M., & Viergever M. A. (2009). Adaptive stochastic gradient descent opti-

misation for image registration. International Journal of Computer Vision, 81(3), 227.

48. Needell D., Srebro N., & Ward R. (2016). Stochastic gradient descent, weighted sampling, and the ran-

domized kaczmarz algorithm. Mathematical Programming, 155(1–2), 549–573.

49. Chang W. A., & Ramakrishna R. S. (2002). A genetic algorithm for shortest path routing problem and

the sizing of populations. IEEE Transactions on Evolutionary Computation, 6(6), 566–579.

50. Venter G., & Sobieszczanskisobieski J. (2013). Particle swarm optimization. Aiaa Journal, 41(8), 129–

132.

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 35 / 36

https://doi.org/10.1093/bioinformatics/btw074
http://www.ncbi.nlm.nih.gov/pubmed/26873929
https://doi.org/10.1002/cyto.a.23065
http://www.ncbi.nlm.nih.gov/pubmed/28192639
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1038/nbt.3300
http://www.ncbi.nlm.nih.gov/pubmed/26213851
https://doi.org/10.1039/c4mb00650j
https://doi.org/10.1039/c4mb00650j
http://www.ncbi.nlm.nih.gov/pubmed/25588719
https://doi.org/10.1093/nar/gkv1025
https://doi.org/10.1093/nar/gkv1025
http://www.ncbi.nlm.nih.gov/pubmed/26467480
https://doi.org/10.1101/gr.200535.115
https://doi.org/10.1101/gr.200535.115
http://www.ncbi.nlm.nih.gov/pubmed/27197224
https://doi.org/10.15252/msb.20156651
http://www.ncbi.nlm.nih.gov/pubmed/27474269
https://doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
https://doi.org/10.1371/journal.pone.0188746


51. Das S., & Suganthan P. N. (2011). Differential evolution: a survey of the state-of-the-art. IEEE Transac-

tions on Evolutionary Computation, 15(1), 4–31.

52. Pan W. T. (2012). A new fruit fly optimization algorithm: taking the financial distress model as an exam-

ple. Knowledge-Based Systems, 26(2), 69–74.

53. Dorigo M., & Gambardella L. M. (1997). Ant colony system: a cooperative learning approach to the trav-

eling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.

54. Gaing Z. L. (2004). A particle swarm optimization approach for optimum design of pid controller in avr

system. IEEE Transactions on Energy Conversion, 19(2), 384–391.

55. Park J. B., Lee K. S., Shin J. R., & Lee K. Y. (2005). A particle swarm optimization for economic dispatch

with nonsmooth cost functions. IEEE Transactions on Power Systems, 20(1), 34–42.

56. Esmin A. A. A., Lambert-Torres G., & Souza A. C. Z. D. (2005). A hybrid particle swarm optimization

applied to loss power minimization. IEEE Transactions on Power Systems, 20(2), 859–866.

57. Ting T. O., Rao M. V. C., & Loo C. K. (2006). A novel approach for unit commitment problem via an

effective hybrid particle swarm optimization. IEEE Transactions on Power Systems, 21(1), 411–418.

58. Ishaque K., Salam Z., Amjad M., & Mekhilef S. (2012). An improved particle swarm optimization (pso)–

based mppt for pv with reduced steady-state oscillation. IEEE Transactions on Power Electronics, 27

(8), 3627–3638.

59. Kennedy, J., & Eberhart, R. (2002). Particle swarm optimization. IEEE International Conference on

Neural Networks, 1995. Proceedings (Vol.4, pp.1942-1948 vol.4). IEEE.

60. Chen H. L., Yang B., Wang S. J., Wang G., Liu D. Y., & Li H. Z., et al. (2014). Towards an optimal sup-

port vector machine classifier using a parallel particle swarm optimization strategy. Applied Mathemat-

ics & Computation, 239(8), 180–197.

61. Ratnaweera A., Halgamuge S. K., & Watson H. C. (2004). Self-organizing hierarchical particle swarm

optimizer with time-varying acceleration coefficients. IEEE Press.

62. Huang C. L., & Dun J. F. (2008). A distributed pso—svm hybrid system with feature selection and

parameter optimization. Applied Soft Computing Journal, 8(4), 1381–1391.

63. Lécun Y., Bottou L., Bengio Y., & Haffner P. (2001). Gradient-based learning applied to document rec-

ognition. Proceedings of the IEEE, 86(11), 2278–2324.

A PSO-based deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188746 December 13, 2017 36 / 36

https://doi.org/10.1371/journal.pone.0188746

