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Abstract

An adaptive label propagation algorithm (ALPA) is proposed to detect and monitor commu-

nities in dynamic networks. Unlike the traditional methods by re-computing the whole com-

munity decomposition after each modification of the network, ALPA takes into account the

information of historical communities and updates its solution according to the network mod-

ifications via a local label propagation process, which generally affects only a small portion

of the network. This makes it respond to network changes at low computational cost. The

effectiveness of ALPA has been tested on both synthetic and real-world networks, which

shows that it can successfully identify and track dynamic communities. Moreover, ALPA

could detect communities with high quality and accuracy compared to other methods.

Therefore, being low-complexity and parameter-free, ALPA is a scalable and promising

solution for some real-world applications of community detection in dynamic networks.

Introduction

Many real-world systems can be represented as networks [1–4], in which nodes represent indi-

viduals and edges represent the relationships or interactions between individuals, such as the

Internet [5], friendship networks [6], collaboration networks [7], food webs [8, 9], and meta-

bolic networks [10, 11].

Community structure is a prominent feature of networks and has received much attention

in recent years. It deepens our understanding of the underlying structure of many real-world

networks [5–9], and promises a variety of practical applications ranging from the determina-

tion of functional modules within neural networks to the analysis of communities on the Inter-

net. A network is deemed to have community structure if it can be easily divided into groups

of nodes with denser connections internally and sparser connections between groups [12–14].

Detecting community structure is a challenging task and many algorithms have been devel-

oped in the last decade, such as modularity optimization [15, 16], dynamic label propagation

[17–19], statistical inference [20–22], spectral clustering [23], information-theoretic methods

[24, 25], and topology based [26, 27] methods.

However, most of the methods treat the network as a static one which is derived from

aggregating data during a long period of time. In this way, the evolutionary information of the

PLOS ONE | https://doi.org/10.1371/journal.pone.0188655 November 29, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Han J, Li W, Zhao L, Su Z, Zou Y, Deng W

(2017) Community detection in dynamic networks

via adaptive label propagation. PLoS ONE 12(11):

e0188655. https://doi.org/10.1371/journal.

pone.0188655

Editor: Jürgen Kurths, Humboldt-Universitat zu

Berlin, GERMANY

Received: August 10, 2016

Accepted: September 26, 2017

Published: November 29, 2017

Copyright: © 2017 Han et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All real-world

network files are available from the Harvard

Dataverse database (URL: http://dx.doi.org/10.

7910/DVN/XLGMJR).

Funding: This work was supported in part by

National Natural Science Foundation of China

(Grant No. 11505071, URLs: http://www.nsfc.gov.

cn/, Recipient: WD) and Program of Introducing

Talents of Discipline to Universities (Grant No.

B08033, Recipient: WL). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

https://doi.org/10.1371/journal.pone.0188655
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188655&domain=pdf&date_stamp=2017-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188655&domain=pdf&date_stamp=2017-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188655&domain=pdf&date_stamp=2017-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188655&domain=pdf&date_stamp=2017-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188655&domain=pdf&date_stamp=2017-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188655&domain=pdf&date_stamp=2017-11-29
https://doi.org/10.1371/journal.pone.0188655
https://doi.org/10.1371/journal.pone.0188655
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7910/DVN/XLGMJR
http://dx.doi.org/10.7910/DVN/XLGMJR
http://www.nsfc.gov.cn/
http://www.nsfc.gov.cn/


network and its communities is lost because real-world networks are always evolving, either by

adding or removing nodes or edges over time. These static methods cannot tell us how com-

munities evolve over time by neglecting intrinsic evolution of the network. Moreover, if one

would like to monitor the communities of a network in real time, the static methods are com-

monly time-consuming as they have to compute the whole community decomposition even if

a very small modification of the network occurs, especially when the network evolves rapidly.

One way to analyze communities in a dynamic or evolving network is to slice the network

into many snapshots, whichever is a static network. Algorithms along this line first analyze

snapshots of the dynamic network at different time steps more or less independently, and then

compare communities of different snapshots with each other so that one can monitor the evo-

lution of each community [28–33]. For example, one of such algorithms, FacetNet [33] detects

dynamic communities by optimizing a quality function which considers both the quality and

the stability of communities. While another one, DSBM [34] fits the evolving network to a

dynamic version of the stochastic block model, and determines the community assignment by

estimating the parameters of the model. A main disadvantage of these algorithms is that they

are commonly time-consuming when the network evolves rapidly and the time slices are

extremely small, i.e., the network has a lot of snapshots to be computed. Moreover, it is difficult

to find the appropriate time window for dividing the dynamic network into static snapshots.

Another way is to adaptively update the current community structure based on previous

ones according to modifications of the network. These algorithms quickly adapt their results

when the network undergoes a slight modification rather than compute the whole community

decomposition from scratch [35–38]. For example, Nguyen NP et al. [37] proposed a modular-

ity-based algorithm named quick community adaptive (QCA) which greedily changes member-

ships of nodes by optimizing a local modularity function whenever a small modification

occurs in the network. A similar kind of algorithm LabelRankT [39] adjusts its detecting

results according to the network modifications through a stabilized label propagation process

by taking advantage of what is already obtained in previous snapshots. Another algorithm

iLCD [36] first determines whether or not the new node joins existing communities according

to two adaptive threshold conditions, then decides whether a new edge is able to form a mini-

mal community or not, and finally merges all communities that are very close to each other

(i.e. they have more than a certain ratio of common nodes). If updates are computed effi-

ciently, these adaptive methods are commonly more efficient than computing communities on

each snapshot separately when used to monitor large dynamic networks in real time.

Although these methods have been developed to analyze communities in dynamic net-

works, most of them are not applicable to analyzing real-world networks because they either

need to know the prior information of communities (e.g., the number of them) which is usu-

ally unknown in advance, or require some user-defined parameters which are difficult to be set

in practice.

The present paper proposes an adaptive label propagation algorithm (ALPA) for analyzing

dynamic communities with no need for the prior information of communities or user-defined

parameters. It detects communities by taking into account their evolutions, and updates the

current community structure through a local label propagation process, which only affects a

small portion of the network. Therefore, ALPA can efficiently respond to network modifica-

tions at low computational cost. Moreover, ALPA is an incremental algorithm, and naturally

works in a streaming manner. We evaluated the proposed method on both synthetic and real-

world networks. Experimental results show that our method detects communities with high

quality and successfully tracks their evolution over time. ALPA has been implemented in a

freely available Julia package released under the MIT License (https://github.com/afternone/

ALPA.jl), and we believe it would be a helpful tool in the analysis of dynamic networks.

Dynamic community detection via adaptive label propagation
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The rest of this paper is organized as follows. The next section depicts the details of the pro-

posed method. Then, the method is tested on both synthetic and read-world networks. Finally,

we summarize our findings in the last section.

Methods

Local label propagation (LLP)

The LLP process uses LPA’s [17] label propagation technique to propagate labels only through-

out part of the network. It maintains an active node list that contains all currently active nodes

and finishes execution when the list is empty. An active node is the one whose label is not the

majority one among its neighbors and potentially changes its label if it was to attempt an

update. The LLP process asynchronously updates each label of the nodes in the active node list

in a random order according to the generalized update rule proposed by Xie and Szymanski

[40], in which the positive neighborhood strength is taken into account when a node considers

a new label. During the process, if a node changes its label after an update (i.e., the node is still

active), all its neighbors will be inserted into the active node list. If the node turns inactive (i.e.,

it does not change its label after an update), it will then be removed from the active node list.

As this process goes on, the active node list will eventually become empty.

To analyze the convergence behavior of the LLP process, we perform it on some snapshots

of AS-Internet and AS-Oregon datasets [41]. For simplicity, we assume that all nodes are active

at the beginning. During the LLP process, we record the number of active nodes per step and

show the convergence history in Fig 1. As one can see, the LLP process converges quickly. The

number of active nodes decreases dramatically in the first few steps.

Updating existing communities according to network modifications

We show the details of the procedures concerning different modifications of the network.

When a new edge connecting two existing nodes is added, there are two cases: intra-commu-

nity edge or inter-community edge. An intra-community edge’s addition will tighten up the

community and should not change the current partition (see Fig 2 (c!d)). However, an inter-

Fig 1. (Color online) Convergence behavior of the LLP process on real-world networks. (a) and (b) show the number of active nodes

per step during the LLP process on some snapshots of AS-Internet and AS-Oregon datasets, respectively. The labels in the legend indicate

the date of the snapshots.

https://doi.org/10.1371/journal.pone.0188655.g001
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community edge’s addition could potentially move one of the two endpoints from the current

community into another, or merge the two communities into a new and large one (see Fig 2

(e!f) for an example). To handle this, we first relabel all nodes in the two corresponding com-

munities which are connected by the new edge. For convenience, we just relabel them with

their IDs. Then we insert all nodes of the two target communities into the active node list.

Finally, we apply LLP process to update the community structure. In order to avoid unneces-

sary updates, after adding a new edge, if each node of the two endpoints still has more connec-

tions within its community than its connections with other nodes which do not belong to its

commnunity, we will not carry out the LLP process.

However, these operations alone are still not enough to guarantee good performance in

practice. This is because when nodes in the border of these two communities update their

Fig 2. (Color online) Schematic illustrations of how community structure can be affected by network modifications. The node to be

added or removed is stroked by red, and the edge to be added or removed is represented by red dashed line. Communities are distinguished

by different filled colors of the nodes.

https://doi.org/10.1371/journal.pone.0188655.g002
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labels at the initial stage, they tend to adopt more frequent labels from other adjacent commu-

nities. Consequently, communities tend to merge during the evolution of the network. To deal

with this issue, prior to the LLP process, we perform a “warm-up” step in which the target

communities are treated as a subgraph for labels to propagate, i.e., during the label propagation

process, when we update the label of a node, we only consider labels of its neighbors that are in

the subgraph. Note that nodes in the target community (communities) need to reinitialize

their labels before the warm-up step, and the LLP process is then based on the labels obtained

in the warm-up step. This strategy allows us to preserve detected communities. Obviously, the

number of affected nodes of warm-up step should not be larger than that of the LLP process.

There is generally a certain relationship among the warm-up step, the LLP process, and the

whole network, as shown in Fig 3.

When an existing edge is deleted, there are also two cases: the edge is either inter-commu-

nity or intra-community. For the former case, the deletion will make the current community

structure clearer (see Fig 2 (b!a) for an example). Herewith we leave the partition intact. For

the latter case, the deletion may break the community into small pieces (see Fig 2 (f!e) for an

example), and these pieces could join in other communities. To deal with this, we first insert

all nodes of the target community into the active node list, and then perform the warm-up and

LLP processes to update the community structure.

If an isolate node is inserted, we simply create a new community for it (see Fig 2 (h!i)).

While, if the node comes with some adjacent edges connecting to one or more existing

Fig 3. Schematic diagram of the scope of the warm-up step and the LLP process. The warm-up step only propagates

labels inside the target community (or communities), while the LLP process may involve some nodes outside of the target

community (or communities). These two processes generally affect a small portion of the whole network, especially when the

network has many small communities.

https://doi.org/10.1371/journal.pone.0188655.g003
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communities (see Fig 2 (h!g)), we split the process into two steps, i.e., first add an “isolate”

node and then add its adjacent edges one after another. If an isolated node is removed, the cur-

rent community structure will be unchanged (see Fig 2 (i!h)). However, when a node with

degree larger than or equal to two is removed (see Fig 2 (g!h)), all its adjacent edges will be

destroyed, and the community containing the node could remain unchanged, or break into a

number of small pieces which could join in other communities. To efficiently deal with this

case, we first remove all the node’s adjacent edges one by one, and then remove the node itself.

Finally, combining all these cases, our adaptive label propagation algorithm is summarized

as follows.

1. Initialize an empty graph and an empty partition.

2. For each modification:

(a) If a new edge is added, we update the current partition according to the procedure of

adding a new edge.

(b) If an existing edge is removed from the network, we update the current partition

according to the procedure of removing an existing edge.

(c) If an isolated node is added, we simply create a new community for it.

(d) If a node with some associate edges is added, we first create a new community for it (i.e.,

step 2c), and then add all its associate edges one by one according to step 2a.

(e) If an isolated node is removed, we just delete it from the current partition, and leave

other communities intact.

(f) If a node with degree larger than one is removed, we first remove all its adjacent edges

one by one according to step 2b, and then remove the node itself according to step 2e.

3. Output the graph and its partition at each time step.

Note that, ALPA can also start with any given snapshot network instead of an empty one.

The initial community structure can be obtained with any of the available static methods, or

with ALPA itself (i.e., start with an empty graph and treat the network as a collection of new

nodes or edges).

Results

In this section, we first evaluate our method on different synthetic networks with known com-

munity structures, and then show the results on two popular real-world datasets: AS-Internet

and AS-Oregon. In order to verify the performance of our method, we compare it with two

public available methods FacetNet [33] and iLCD [36]. Moreover, a widely used static method

Infomap [25] is also involved in the comparisons.

Synthetic networks

We start with the first synthetic network which is a static network generated by the well-

known Lancichinetti-Fortunato-Radicchi (LFR) benchmark [42], to show that our algorithm

can handle incremental inputs. The network contains 1000 nodes which are naturally grouped

into nine communities. There are around 10000 edges in the network. Starting with an empty

network, we add these edges one by one and use our algorithm to update the community

structure after each edge’s addition. Fig 4(a) shows the evolution of communities in the net-

work. It is shown that ALPA identifies the nine communities correctly. In addition, we are
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interested in knowing how many nodes are involved in ALPA after each edge’s addition,

which can be used to estimate the time complexity of our algorithm. We record the number

of involved nodes (i.e., those are activated at least once) in each time step and plot them in

Fig 4(b). As one can see, most of the modifications only affect a few nodes. The average num-

ber of involved nodes in each time step is 23.7, which is tiny compared to the network size, so

our algorithm can efficiently respond to the changes in network topology.

The second synthetic network is also an LFR network, but with embedded community

events inside it. The network is constructed according to the following steps. Starting with a

static LFR network, at each time step, we make a slight modification to the network, such as

nodes or edges’ addition or removal. In this way we produce a dynamic network which con-

tains some community events. For the experiment conducted here, community events are

sequentially embedded as follows: birth, expansion, shrinkage, death, separation and combina-

tion. As shown in Fig 5(a), our algorithm recognizes all these major changes of communities

and successfully tracks the evolution of each community. To demonstrate the evolution of

each community clearer, we select eight snapshots of the network and visualize them using

Netgram tool developed by Mall R et al [43]. As shown in Fig 5(b), each circle represents a

community, and its size is proportional to the number of nodes inside the community at that

time step. The dashed line represents the evolution of communities between two consecutive

time steps. We can see that a new community NewC8 is born at snapshot T3, C6 expands at T4,

C2 disappears at T5, C1 shrinks at T4, C5 is divided into two small communities at T6, C3 and

C4 are merged at T8, while community C7 remains intact throughout the whole evolution.

In order to compare ALPA with other methods, we employ the dynamic benchmark model

proposed by Granell et al [44] to generate three standard benchmarks: grow-shrink, merge-

split and mixed. The first one contains communities that grow and shrink periodically in size,

while the second one considers communities that merge and split periodically. The third one

is a mixed version of the previous two and consists of a combination of all the four operations.

Each of the benchmark network consists of 100 time steps, and is divided into 4 communities,

where each community has 32 nodes initially (therefore the total size of the network is 128).

Fig 4. (Color online) Incremental detection of communities on the LFR network. The color code in panel (a) corresponds to our

incremental detection of the different communities in the network over time. Each node (vertical axes) at every time step belongs to a

community, which is distinguished by different colors. White indicates that the node does not exist at that snapshot. From left to right, as new

edges are added, nodes tends to group together, hence, many colors disappear and the community structure becomes clear. Eventually,

our algorithm could correctly detect the true community structure. In particular, the number of active nodes involved in each event is shown

in panel (b). The parameters of the LFR network are: N = 1000, μ = 0.3, hki = 20, kmax = 50, γ = 2, β = 1, minimum and maximum community

sizes are 90 and 125 respectively.

https://doi.org/10.1371/journal.pone.0188655.g004
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The nodes of the same community are connected with a probability pin = 0.05, whereas nodes

of different communities are connected with a probability pout = 0.5. For the grow-shrink pro-

cess, the maximum fraction of nodes moving from one community to another is 0.5, i.e., there

are at most 16 nodes switching between communities.

Fig 6 shows the planted partitions and the results from different algorithms. It can be seen

that the results of ALPA are mostly correct, except for some extreme time steps, whereas the

partitions detected by FacetNet and iLCD are very different from the planted ones. Moreover,

the partitions detected by ALPA have higher consistency through time than those detected by

the other two algorithms.

To quantitatively evaluate the results, we calculate the normalized mutual information

(NMI) [13], the normalized variation of information (NVI) and the Jaccard index between the

planted partitions and the detected ones. As shown in Fig 7, in most snapshots, the values of

NMI and Jaccard index of ALPA are higher than those of the other two algorithms, while the

values of NVI of ALPA are lower than those of the other two algorithms. These results indicate

that ALPA outperforms FacetNet and iLCD on these dynamic benchmark networks.

In order to compare the performance of different algorithms for community detection on

general settings, we test them on the LFR networks with four scenarios: two different network

sizes (1000 and 5000 nodes) and two different ranges of community sizes ([10, 50] and [20,

100]). The following parameters are the same for all the LFR networks used here: the average

and maximum degrees are 20 and 50 respectively, the power-law exponent of the degree distri-

bution and the community size distribution are -2 and -1 respectively, and the mixing parame-

ter increases from 0 to 1 with step size being 0.05. For iLCD, if a node belongs to multiple

communities, we assign it to the one with maximum size to output disjoint partition. Since

FacetNet requires the number of communities as its input parameter, we assign its value with

the number of planted communities. We use the NMI to measure the consistency between

the planted partition and the detected partition. It can be found (see Fig 8) that ALPA detects

communities correctly and outperforms the other two algorithms up to μ * 0.6 in all cases.

Fig 5. (Color online) Visualization of communities’ evolution for time-varying LFR network. The color code in panel (a) corresponds

to our adaptive detection of communities in the network over time. Each node (vertical axes) at every time step belongs to a community,

which is distinguished by different colors. White indicates that the node does not exist at that snapshot. From left to right, embedded

community events occur sequentially. Panel (b) visualizes the communities’ evolution by using Netgram with parameters ρ = 0.4 and ν = 0.1

[43]. The parameters of the LFR network are the same as those in Fig 4.

https://doi.org/10.1371/journal.pone.0188655.g005
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Real-world networks

In this section, we tested the performance of ALPA on two real-world networks from the Stan-

ford network analysis project datasets [45]. AS-Internet [41] and AS-Oregon [41] were chosen

from the available datasets, since they have a varying number of snapshots. The description of

the two datasets is as follows.

AS-Internet dataset is a communication network of who-talks-to-whom from the border

gateway protocol logs of routers in the Internet. The dataset contains 733 daily instances of

autonomous systems (AS) graph from November 8, 1997 to January 2, 2000. The largest graph

(dataset from January 2, 2000) has 6474 nodes and 13859 edges. The nodes and edges are

added or removed over time. Fig 9(a) shows the number of edges added and deleted, as well as

the number of nodes involved in these changes. It is shown that the network topology can

change dramatically at some snapshots.

AS-Oregon dataset contains nine undirected networks of AS peering information inferred

from Oregon route-views between March 31, 2001 and May 26, 2001. These nine networks are

different snapshots of the data with a minimum of 10,670 (March 31, 2001) and maximum of

Fig 6. (Color online) Results of the application of different methods on the three standard benchmarks (in columns). The first row

corresponds to the planted partition of each benchmark, while the three remaining rows are the partitions detected by different algorithms. In

each plot, the vertical axis corresponds to the index of nodes in the network, while the horizontal axis represents the time. The color of each

pair {node, time} indicates the community to which the node is belongs at that specific time.

https://doi.org/10.1371/journal.pone.0188655.g006
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11,174 (May 26, 2001) nodes. In addition, the number of edges ranges from 22,002 (April 7,

2001) to 23,409 (May 26, 2001). Fig 9(b) shows the number of edges added and deleted, as well

as the number of nodes involved in the changes for the AS-Oregon dataset.

Since the real community structures of both datasets are unavailable, it is impossible to use

NMI to evaluate the performance of different algorithms. Hence, we use modularity[46] to

evaluate different algorithms on the datasets. In particular, we will show modularity values and

processing times of ALPA in comparison with other methods. For each dataset, dynamic algo-

rithms like ALPA (also iLCD) run on the network modifications, whereas the static method

Infomap and snapshot method FacetNet have to be performed on the whole network snapshot

at each time step.

Fig 10(a) shows the modularity values of ALPA and three other algorithms on the AS-Inter-

net dataset. It is shown that ALPA and FacetNet have similar performance, and both of them

achieve competitively higher modularity values than Infomap does for most of the snapshots.

While iLCD fails to find strong community structure at all. In particular, the modularity values

obtained by ALPA are more stable over time, since our method keeps preserving the commu-

nity structure of the previous snapshots and only considers current network changes. Retain-

ing the historical information is a great advantage of ALPA because it avoids the expense of

recomputing from scratch and makes the algorithm run faster. As shown in Fig 10(b), the

computational cost is significantly reduced in ALPA. The running time of iLCD and Infomap

Fig 7. (Color online) Three different measures (NMI, NVI and Jaccard index) between the planted partitions and the partitions

detected by different algorithms for the three standard benchmarks. There is a column for each benchmark and a row for each

measure.

https://doi.org/10.1371/journal.pone.0188655.g007
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is close. FacetNet requires a little more time. In fact, ALPA is three times faster than iLCD, two

times faster than Infomap, and 250 times faster than FacetNet on the AS-Internet dataset.

These results indicate that on the AS-Internet dataset, both ALPA and FacetNet are able to

identify high quality community structure with high modularity. However, only our method

significantly reduces the processing time.

Compared with AS-Internet dataset, AS-Oregon has fewer snapshots. However, the num-

ber of nodes and edges is large enough for an extensive analysis. In Fig 11(a), we compare

modularity values obtained by ALPA at each network snapshot with those of iLCD and Info-

map. FacetNet does not appear to complete the tasks due to the overflow in memory, and is

thus excluded from the plots. It is shown that the modularity values obtained by ALPA are

close to those obtained by Infomap and are far higher than those obtained by iLCD. Fig 11(b)

shows that regarding the running time ALPA outperforms Infomap as well as iLCD. In conclu-

sion, high modularity values and low computational cost on this dataset confirm the effective-

ness of our method.

Fig 8. (Color online) Normalized mutual information (NMI) as a function of the mixing parameter μ in LFR networks. Four network

scenarios are shown, which correspond to two different network sizes (N = 1000,5000) and, for a given size, to two different ranges for the

community sizes (C = [10, 50], [20, 100]). Each point on the curves corresponds to the average value of the NMI value over 100 network

realizations.

https://doi.org/10.1371/journal.pone.0188655.g008
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Discussion

In this work, we proposed an adaptive algorithm ALPA to detect communities in dynamic net-

works. It processes a sequence of modifications on the network and tries to maintain a fairly

good community structure by updating a few existing communities through a local label prop-

agation process, rather than computing the whole community decomposition from scratch.

The advantages of our approach are as follows. Firstly, it requires neither any user-defined

parameters nor the prior information of communities. Secondly, it is fast, scalable and incre-

mental, i.e., it can work in a streaming fashion: whenever there is a modification of the net-

work, ALPA adapts its result according to the modification by taking advantage of the

Fig 9. (Color online) Structural changes over time in the datasets of interest. (a) The structural changes over 733 snapshots in the

AS-Internet dataset, including the number of edges added (E+) and deleted (E−), as well as the number of nodes involved in changes (N+,

N−). (b) The structural changes in the AS-Oregon dataset over 9 snapshots.

https://doi.org/10.1371/journal.pone.0188655.g009

Fig 10. (Color online) Results on the AS-Internet dataset. Comparison of (a) modularity and (b) consuming time of ALPA at each

snapshot with FacetNet, iLCD and Infomap on the AS-Internet dataset.

https://doi.org/10.1371/journal.pone.0188655.g010
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historical information. Thirdly, it can monitor the evolution of each community at low

computational cost. We have tested our method on synthetic networks and have shown that it

identifies the planted communities with a high degree of success. We have also tested it on two

real-world networks and have shown that it detects community structures with relatively high

modularity scores and low computational costs.

It is difficult to accurately determine the time complexity of ALPA due to its randomness.

We can roughly analyze the time complexity of ALPA as follows. The LLP or warm-up process

is a local version of the original LPA. The time complexity is roughly O(hmci), where hmci is

the mean number of edges in each community. Generally, hmci is tiny compared with the

number of edges of the whole network. For each network modification, ALPA updates the cur-

rent community structure with time complexity roughly O(Ihmci), where I is the number of

iterations (usually is a small constant). The total time complexity of the ALPA for a dynamic

network with T time steps is O(TIhmci). Therefore, our method is applicable to analyzing com-

munities of large dynamic networks which evolve rapidly, especially when sizes of communi-

ties are small.

As noticed, ALPA is not deterministic due to the random update order of nodes and a lot of

tie-breaks. However, in our experiments, it is shown that ALPA is generally able to obtain the

same partition in most runs. Only when community structure is not clear enough, may ALPA

produce many similar partitions in multiple runs. We could obtain more robust and stable

results by adopting a more deterministic update rule, e.g., considering similarities between

adjacent node pairs when updating the labels of nodes.

In the forthcoming works, we plan to improve the current method by employing other

more deterministic update rules and extend it to overlapping community detection. We also

plan to apply our method to some practical applications, for example, constructing efficient

distributed social-based message routing policy for wireless Ad hoc network.
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