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Abstract

A region-specific method, NTR (non-threshold rare) variant detection method, was devel-

oped—it does not use the threshold for defining rare variants and accounts for directions of

effects. NTR also considers linkage disequilibrium within the region and accommodates

common and rare variants simultaneously. NTR weighs variants according to minor allele

frequency and odds ratio to combine the effects of common and rare variants on disease

occurrence into a single score and provides a test statistic to assess the significance of the

score. In the simulations, under different effect sizes, the power of NTR increased as the

effect size increased, and the type I error of our method was controlled well. Moreover, NTR

was compared with several other existing methods, including the combined multivariate and

collapsing method (CMC), weighted sum statistic method (WSS), sequence kernel associa-

tion test (SKAT), and its modification, SKAT-O. NTR yields comparable or better power in

simulations, especially when the effects of linkage disequilibrium between variants were at

least moderate. In an analysis of diabetic nephropathy data, NTR detected more confirmed

disease-related genes than the other aforementioned methods. NTR can thus be used as a

complementary tool to help in dissecting the etiology of complex diseases.

Introduction

Genome-wide association studies (GWAS) constitute a powerful means for analyzing com-

mon variations with minor allele frequency (MAF) greater than 1–5% [1]. GWAS have identi-

fied risk alleles for a wide range of complex human diseases, such as diabetes [2], heart disease

[3], and Alzheimer’s disease [4], etc. Despite many successes in identifying risk alleles, most

associated variants discovered through GWAS pertain to relatively small-to-moderate in-

creases in risk and do not account for the majority of heritability estimated for complex

human diseases and traits. An estimated 60–80% of human diseases can be attributed to herita-

bility, however GWAS have identified only 5–10% of this heritability. This continues to lead

researchers to contemplate which alleles underlie the missing heritability [5–7]. Many reasons

have been posited for this shortfall in accounting for heritability [5,6,8]. A plausible explana-

tion is that rare variants (with MAF < 5% or < 1%) are often not detected in most GWAS.
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Unlike common variants, which are usually found within intergenic or non-coding regions,

most missense mutations are rare and expected to be harmful [9] and are thus expected to

alter gene expression levels or change amino acid sequences, which could affect protein-pro-

tein interactions [10]. Furthermore, rare variants may have higher odds ratios (ORs); i.e., >2,

compared with common variants (OR = 1.1–1.5) [11–13].

Although rare variants have been proven to contribute to certain complex diseases, they

have not been discovered by genomic searches such as those for common single-nucleotide

polymorphisms (SNPs) [14]. Many statistical methods that are currently used to detect dis-

ease-associated common variants have insufficient power to detect rare variants due to the rel-

ative large abundance albeit low frequency of rare variants [6,7,15–17].

Several methods can be used to detect rare variants within a gene, genomic region, or bio-

chemical pathway, including the burden test and variance-component test, which assign

weights to variants based on linear modeling of variant effects. Madsen and Browning [18]

proposed a weighted sum statistic (WSS) method as one of the burden tests that assigns

weights to variants according to their frequency in controls such that a variant with lower

frequency would have greater weight. Li and Leal [19] proposed a combined multivariate and

collapsing (CMC) method for case-control data as another burden test. One example of a vari-

ance-component method is the sequence kernel association test (SKAT) [20], which is advan-

tageous when the effects of rare variants are in opposing directions or if they are comprised of

a mixture of neutral and non-neutral effects. However, SKAT can be less powerful than burden

tests if a large proportion of the rare variants in a region are truly causal and influence the phe-

notype in the same direction [20,21]. Hence, a variation of SKAT, termed SCAT-O, was pro-

posed to maximize statistical power by using the data to optimally combine the burden test

and the non-burden SKAT [22].

Some disadvantages exist in these burden tests for detecting rare variants. The performance

of existing and well-established methods depends on the MAF threshold used to define rare

variants, which can result in the inclusion of neutral variants or exclusion of causal variants in

the analysis [23]. This problem can be exacerbated when both common and rare variants con-

tribute to disease risk because common neutral variants are likely to be included when the

MAF threshold is relatively high; hence, the power to detect an association could be dimin-

ished [18,19,23]. Furthermore, if the pooled common/rare variants are associated with the

disease in different directions, i.e., some positively and others negatively, a few rare variant

detection methods are very sensitive to the presence of protective and risk variants [24]. It’s

likely the statistical significance could be diminished due to cancelation. Moreover, several

studies have found that common variants may often have a key role as modifiers of the effects

of rare variants in Mendelian diseases, thus it is reasonable to expect that this also holds true

for common diseases [25]. Hence, combining information on common and rare variants is

essential for identifying complex diseases.

Accordingly, we developed a method, the NTR (non-threshold rare) variant detection

method, that does not require arbitrary frequency thresholds for collapsing alleles and ac-

counts for the directions of effects to detect the combined signal from rare and common vari-

ants within a genomic region while properly accounting for linkage disequilibrium (LD)

between variants. We were particularly interested in five factors that might influence power

and type I error of our method: (i) different ORs; (ii) different MAFs; (iii) different LD

between variants in each region; (iv) variations in noise within a region, i.e., the number of

non-causal variants in each region; and (v) variations in direction within a region, i.e., the

number of positive and negative variants in each region. To evaluate the validity of NTR, we

compared the results to those obtained from CMC, WSS, SKAT and SKAT-O. By evaluating

results from simulations, we addressed the advantages and disadvantages of applying these
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methods to detect associated rare variants. Finally, we performed a rare-variant analysis using

those methods and a publicly available dataset of diabetic nephropathy (DN) which was down-

loaded from the Database of Genotypes and Phenotypes (phs000389). We compared the

results with current knowledge of DN. Our results reveal discrepancies among methods for

rare-variant detection. The information from our results will assist researchers in identifying

biological links to the etiology of complex diseases.

Methods

The common weaknesses and limitations of certain popular methods for detecting rare vari-

ants are their inability to account for LD within the region of interest, and the overestimation

of the validity of any particular association for common variants. We therefore developed

NTR, which integrates the effects of common and rare variants on disease occurrence into a

single score and provides a test statistic for assessing its significance. NTR accounts for LD

using Hedrick’s multiallelic D0im [26] (the range of D0im is [0,1]) and gives more weight to geno-

mic regions containing relatively more rare variants under the assumption that the effects of

most rare variants are more deleterious than protective. Hedrick (1987) [26] proposed

D0im ¼
P

i

P
m piqmjDim=Dmaxj, where Dim = him − piqm, him denotes the population proportion

of haplotype AiBm for a two-locus haplotype consisting of alleles Ai and Bm, while pi = ∑m him
and qm = ∑i him, the proportions of alleles Ai and Bm, respectively. Dmax is

minðpiqm; ð1 � piÞð1 � qmÞÞ if Dim < 0

minðpið1 � qmÞ; ð1 � piÞqmÞ if Dim > 0

In fact, a summary measure of gametic disequilibrium between two loci is often considered

[27]. Therefore, in this study, we used D0im which considers two alleles at each locus between

the two loci, when there are only two alleles at each locus, there is a unique value of |Dim/

Dmax|. The range of D0im is [0,1], independent of the pi and qm, which makes cross-locus and

cross-population comparisons uncomplicated [26,27].

For genome-wide data, such as whole-genome or whole-exon resequencing data, it is possi-

ble to categorize the data as “genes” or “genomic regions” and test the association of a specific

variant with a disease/phenotype for each gene or region [28]. Let Xij be the number of minor

alleles at the ith variant carried by the jth individual (both cases and controls) in a region (e.g.,

haplotype, gene, pathway), i = 1, 2, . . ., L, where L is the number of genotyped variants. We

define the genetic score for the jth individual as follows:

SjðkÞ ¼
XL

i¼1
WiXij þ

XL

i¼1

XL

m¼2
m¼= i

WimðkÞðXij þ XmjÞ

2

4

3

5
� PR

where PR is the proportion of rare variants (i.e., MAF < 0.01) among L variants and

Wi ¼ jlog2ORij
1

MFi

� �
; log2ORi is the logarithm of the corresponding OR (base 2) for the ith var-

iant, and 1

MFi
is the reciprocal of MAF for the ith variant. The genetic effects of causal variants

correlate inversely with their MAFs, and the ORs for causal variants have an exponential rela-

tionship with their MAFs [29]. Hence, we chose log2ORi for use in this study. We calculated
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three different weight Wim(k) values for interaction as follows.

Wim 1ð Þ ¼ log2ORi þ log2ORmð Þ
1

MFi
þ

1

MFm

� �

1 � D0im
� �

;

Wim 2ð Þ ¼ jlog2ORi þ log2ORmj
1

MFi
þ

1

MFm

� �

ð1 � D0imÞ;

Wim 3ð Þ ¼ jlog2ORij þ jlog2ORmjð Þ
1

MFi
þ

1

MFm

� �

ð1 � D0imÞ

These Wim values are the weights for the ith and mth variants, where D0im is the Hedrick’s mul-

tiallelic D0im [26], which represents the degree of LD between the ith and mth variants. We give

lower weights to SNPs in high LD since they carry redundant information.

The three different Wim(k) values were designed to maximize the capacity to detect SNPs,

and we selected the one weight that yielded the smallest p-value. The first term of Wim(1) is the

sum of two ORs, the first term of Wim(2) is the absolute value of the sum of two ORs, and the

first term of Wim(3) is the sum of two absolute values of ORs. These three Wim(k) values yield

the same magnitude but can have different signs, thus avoiding cancelation of the results if two

variants have different directions.

We use the sum of ranked scores from cases as the test statistic. In the formula for score

Sj(k), most of Xs (the number of minor alleles) equal zero, implying that most of Sj(k) are also

equal to zero. We then use the permutation strategy to assess the power and type I error rate

since many tied ranks (i.e., when multiple scores = 0) exist, which could make the distribution

of scores severely skewed. We adopted approach used by Sanat K. Sarkar et al., 1997 and Yoav

Benjamini et al., 2001[30,31] that use false discovery rate (FDR) [32] for the multiple tests cor-

rection of the minimum P-value. The test is comprised of the following steps 1–3.

Step 1. All individuals (cases and controls together) are ranked according to their genetic

scores, and the sum of the ranks for cases is calculated as

RðkÞ ¼
X

j2cases

rank ðSjðkÞÞ; k ¼ 1; 2; 3:

R(k) is sum of independently and identically distributed random variables, and this is

thus approximately normally distributed according to the central limit theorem.

Step 2. The affected/unaffected status is permuted among the individuals and repeated n times

for samples r01ðkÞ; . . . ; r0nðkÞ under the null hypothesis.

Step 3. The averages m(k) and sample standard deviations s(k) of r01ðkÞ; . . . ; r0nðkÞ are calcu-

lated to yield the standardized score-sum Z(k) = (R(k) −m(k))/s(k). Under the null

hypothesis, Z(k) follows an approximate standard normal distribution. k is chosen to

produce the smallest p-value among three Z(k)0s. In other words,

k� ¼ arg min
k

PðZ > jZðkÞjÞ

where Z is a standard normal random variable. Thus, the p-value is 2 × P(Z> |Z(k�)|).
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PLOS ONE | https://doi.org/10.1371/journal.pone.0188566 November 30, 2017 4 / 16

https://doi.org/10.1371/journal.pone.0188566


Simulation studies

We generated simulated data as in Basu and Pan (2011) [21,33]. A simulation study was under-

taken using R software (http://www.r-project.org). Different scenarios were considered in order

to explore the efficiency of NTR versus other methods in terms of LD, OR, MAF, noise (i.e., the

number of non-causal variants in each region), and direction (i.e., the number of positive- and

negative-acting variants) in each region. First, we generated a latent vector from a multivariate

normal distribution with a first-order autoregressive covariance structure, e.g. there was a corre-

lation between any two latent components. We used the correlation coefficient for LE (ρ = 0)

and LD (ρ = 0.2, 0.4, and 0.6) within each region. In each region, we simulated eight causal vari-

ants and five different numbers of non-causal variants (0, 4, 8, 16, 32). We compared regions

with only rare variants to regions with rare and common variants combined. Each rare variant

had a MAF uniformly distributed between 0.001 and 0.01, and it was 0.01 to 0.5 for common

variants. Second, the latent vector was dichotomized to yield a haplotype with MAFs selected

randomly. Third, we combined two independent haplotypes and derived genotype data. Fourth,

the disease status of the jth individual was generated from the logistic regression model. Fifth, as

in any case-control design we sampled 3000 cases and 3001 controls in each dataset. Further-

more, we investigated additive genetic models and assumed two OR models: (1) only risk vari-

ants with OR in (1.2, 1.5); (2) risk and protective variants with OR in ((2.5, 0.4), (1.2, 0.8)).

Results

Type I error rate

Fig 1 reports the type I error rate for each of the five methods in all scenarios, and it confirms

that our simulation parameters were valid in the sense that each type I error rate matched the

Fig 1. Type I error rates under different scenarios.

https://doi.org/10.1371/journal.pone.0188566.g001
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nominal significance level of 0.05. From the Fig 1 and S4 Table, we found that type I errors

were controlled well.

Power comparisons

To evaluate power, 1000 permutations were performed under each scenario. In total, there

were 1000 simulations for power evaluation for each scenario. We considered five different

amounts of non-causal variants (0, 4, 8, 16, 32) and four correlation coefficients (0, 0.2, 0.4,

0.6). As for OR, we considered two levels for a single direction (1.2, 1.5) and two levels for two

opposing directions ((2.5, 0.4), (1.2, 0.8)). In our simulation, causal variants were not limited

to being rare, as in reality, causal variants can be quite common. For these eight causal variants,

in all scenarios and all simulated datasets, ~45% were rare (MAF < 1%), 62% were uncommon

(MAF < 5%), and 38% were common (MAF > 5%).

Fig 2 presents power for rare causal SNPs (panel a) and for rare and common causal SNPs

(panel b) in one direction (only risk variants). The two rows represent OR = 1.2 and 1.5, and

the four columns represent the different correlation conditions. Fig 3 presents power for rare

causal SNPs (panel a) and for rare and common causal SNPs (panel b) in two directions (risk

and protective variants). The first row (ORS1) represents OR = (2.5, 0.4), and the second row

(ORS2) represents OR = (1.2, 0.8). The impact of OR, LD, MAF (i.e., the proportion of rare

and common variants in each region), noise (i.e., the number of non-causal variants in each

region), and direction (i.e., the number of positive- and negative-acting variants) in each

region on power was explored separately. All methods gave a higher power for larger OR,

lower noise, larger LD, one direction, and regions that included both rare and common vari-

ants. In contrast, the scenario with OR = 1.2, non-causal variants = 32, and ρ = 0 was the

worst-case scenario with respect to power rating, and all methods showed an ~80% decrease in

power, i.e., to 20% (Fig 2A).

For one-direction scenarios (Fig 2A and 2B), NTR had higher power when ρ = 0.2 or ρ =

0.4 with OR = 1.2 regardless of the number of non-causal variants and causal variants with or

without common variants than SKAT, CMC and WSS. In one of the scenario, e.g. OR = 1.2,

ρ = 0.2, no noise and no common variants, NTR showed a 30% increase in power compared to

that for SKAT (64.55% vs 34.5%) (Fig 2A). However, SKAT-O had the best performance when

ρ = 0 with OR = 1.2 or 1.5. Under the remaining scenarios, NTR and SKAT-O had comparable

performance.

For two-direction scenarios (Fig 3A and 3B), none of the methods could detect associations

effectively for OR = 0.8 or 1.2 for causal variants without including common variants regard-

less of LD in a region. Under the remaining scenarios, NTR, SKAT-O, and SKAT had compa-

rable performance. CMC and WSS were consistently the least powerful tests among the

methods we compared, regardless of scenario. The power of CMC was greatly influenced by

the number of non-causal variants in each region because of the collapsing-based method,

which may be diluted by the number of non-causal variants increased in each region. Except

for WSS, all methods showed an ~70% increase in power, to 98%, for two-direction scenarios

(Fig 3A and 3B).

In summary, when the variants were independent, SKAT-O was more powerful; when the

variants were correlated, NTR had the advantage of considering the effect of LD, thus making

it more powerful. CMC and WSS were the least powerful methods regardless of scenario.

Application of NTR to DN data

DNA from 1726 individuals (823 DN cases and 903 neurologically normal controls) in the

UK-ROI collection (All Ireland and Warren 3 Genetics of Kidneys in Diabetes UK Collection)
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Fig 2. A: Power for rare causal SNPs when OR = 1.2 or 1.5. B: Power for rare and common causal SNPs when OR = 1.2 or 1.5.

https://doi.org/10.1371/journal.pone.0188566.g002
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were genotyped using the Omni1-Quad array (Illumina, San Diego, CA, USA) downloaded

from the Database of Genotypes and Phenotypes (phs000389.v1.p1). Chronic inflammation is

a common contributor to progressive renal failure and leads to increased damage to mitochon-

drial DNA. Pathogenic mutations in mitochondrial DNA are an increasingly recognized cause

of chronic morbidity, with mitochondrial mutations being implicated in a range of complex

disorders, including kidney disease [34–36]. Hence, we focused on eight mitochondrial genes

that E. J. Swan and coworkers reported as being associated with kidney disease [37]. Data for

all SNPs in these eight mitochondrial genes were analyzed with the trend test. We then applied

NTR, SKAT, SKAT-O, CMC, and WSS methods to detect rare variants. In addition, we col-

lected 102 DN-related genes through the use of QIAGEN’s Ingenuity1 Pathway Analysis

(IPA1, QIAGEN Redwood City, www.qiagen.com/ingenuity). We employed these 102 DN-

related genes to confirm previous DN findings.

Results for DN data

A total of 341 SNPs were located in the eight mitochondrial genes, and all SNPs satisfied the

following quality-control criteria: genotype call rate < 0.95, departure from Hardy-Weinberg

equilibrium (i.e., p-value < 10−4), and no cut-off allele frequency.

The results of the SNP analysis are shown in S1 Table. Of the 341 SNPs located in the eight

mitochondrial genes, no significant SNPs were identified using a threshold of p< 1.4 × 10−4

(Bonferroni adjustments based on 341 SNPs). This was consistent with previous studies [37]

that reported that no significant SNPs were detected in the DN data. Among them, rs1408705

(with borderline significance, p = 0.00024) is located in PACRG (PARK2 co-regulated), which

was previously found to be deleted in clear-cell renal cell carcinomas [38].

By using CMC, WSS, SKAT, SKAT-O, and NTR, we assessed the association between rare

variants for 7 mitochondrial genes (one of the 8 genes was excluded because it only contained

one SNP). Among these 7 genes, CMC (3 genes) found more associated genes compared with

NTR (1 genes), WSS (1 gene), SKAT (0 genes), and SKAT-O (0 genes) (Table 1). Among the 1

genes detected with NTR/CMC/WSS, TOP1MT (topoisomerase (DNA) I, mitochondrial) was

found by NTR (p = 0.02557), CMC (p = 0.02054) and WSS (p = 0.01967).

Of the 102 DN-related genes that were collected by IPA, NTR found considerably more

genes (9 genes) than SKAT (7 genes), SKAT-O (8 genes), CMC (6 genes), or WSS (8 genes)

(see S2 Table). Among these 9 genes, the association with GSS (glutathione synthetase,

Fig 3. A: Power for rare causal SNPs under ORS1 and ORS2. B: Power for rare and common causal SNPs under ORS1 and ORS2.

https://doi.org/10.1371/journal.pone.0188566.g003

Table 1. Summary of results for the detection of rare variants in the DN dataset.

Gene symbol Chr* Num** NTR SKAT SKAT-O CMC WSS

PACRG 6 205 0.15337 0.226 0.36498 0.01396 0.8646

TOP1MT 8 9 0.02557 0.36791 0.38406 0.02054 0.01967

COQ5 12 6 0.58652 0.46948 0.4821 0.38591 0.73318

GATC 12 5 0.59337 0.71746 0.7179 0.16793 0.59031

SPTLC2 14 34 0.43911 0.07054 0.11769 0.0336 0.09501

COX10 17 41 0.98879 0.07526 0.12677 0.05307 0.88205

TXNRD2 22 40 0.15633 0.59836 0.764 0.37006 0.90084

*:chromosome.

**: the number of SNPs located within the gene.

https://doi.org/10.1371/journal.pone.0188566.t001
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p = 0.04), CTSH (cathepsin H, p = 0.0018), and PPARG (peroxisome proliferator activated

receptor gamma, p = 0.0165) was found only by NTR (see S2 Table). Moreover, NR1H3
(nuclear receptor subfamily 1 group H member 3) was found by all the methods except CMC.

NR1H3 belongs to the NR1 subfamily of the nuclear receptor superfamily and is highly

expressed in visceral organs including liver, kidney, and intestine [39]. NR1H3 also plays

numerous roles in pathways involved in metabolic syndrome [40]. Finally, PPARG has been

implicated in the pathology of numerous diseases including obesity and diabetes [41].

Our research illustrates the important role of rare variants in DN and shows that NTR is

useful for analyzing real datasets. Therefore, we also examined the LD structure in the DN

data. We found that most of the D0im values of the significant genes for NTR are close to 1,

whereas most of the non-significant genes for NTR are much lower than 1. For example,

despite the similarly large number of SNPS for CTSH (43 SNPs, Fig 4) and ANGPT4 (44 SNPs,

Fig 5), LD for CTSH SNPs was greater and yielded a lower p value (p = 0.0018), and LD was

smaller for ANGPT4 and yielded a non-significant p-value (p = 0.4252). Strong LD and small

NTR p-values were also found for CR1, REN, NR1H3, GAS6, and GSS, whereas low LD and

large NTR p-values were found for AKR1C3 and CXADR.

Discussion

NTR was designed for detecting the combined signal from rare and common variants and

does not require arbitrary frequency thresholds for collapsing alleles. Thus, the associations

Fig 4. LD structure of CTSH in the DN dataset. The numbers in squares are D’. A standard color scheme in Haploview is used to display LD with

bright red for very strong LD (LOD = 2, D’� 1), white for no LD (LOD < 2, D’ < 1), and pink (LOD = 2, D’ < 1) and blue (LOD < 2, D’� 1) for

intermediate LD. [LOD, logarithm of odds].

https://doi.org/10.1371/journal.pone.0188566.g004
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contributed by both common and rare variants are less likely to be overlooked. When using

burden tests, it is usually necessary to remove all variants above a certain MAF threshold for

the signal to not be overwhelmed by common variants. However, all MAF frequency thresh-

olds are arbitrary. The signal from rare variants will be swamped by noise from common

variants when the MAF threshold is too high. On the contrary, true causal variants may be

neglected when the MAF threshold is too low. NTR utilizes information for both risk-associ-

ated and protective SNPs and considers LD among all variants within a genomic region. NTR

efficiently weights all variants by combining the values of Hedrick’s multiallelic D0im and the

reciprocal of MAF to improve the performance for detecting rare variants. NTR proved to

be a flexible statistical method that can assess associations between phenotypes and rare and

common genetic variants. High-density genetic maps built with SNP markers that are poly-

morphic in various genetic backgrounds are very useful for studying the genetics of traits as

well as genome organization and evolution. High-throughput genotyping technologies, such

as sequencing-based genotyping [42], have provided rapid, efficient, and cost-effective geno-

typing approaches that have proven their efficiency for the construction of saturated genetic

maps and mapping of genes and quantitative trait loci in the human genome [43]. Therefore,

NTR integrates the effects of LD into a single score to detect rare variants, thus making it indis-

pensable for future genetic studies of complex diseases. In addition to using a stratification

analysis before NTR, covariates could be cooperated into our proposed genetic score equation.

The extensions will be carried out in the future.

In this study, we conducted extensive simulations to evaluate the performance of NTR for

detecting rare variants. Simulation results demonstrated that the performance of NTR was

superior to that of other methods over a wide range of scenarios, especially when the effects of

Fig 5. LD structure of ANGPT4 in the DN dataset.

https://doi.org/10.1371/journal.pone.0188566.g005
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LD between variants (Figs 2 and 3) were considered. In addition, the power of NTR was robust

under all the five levels of the number of non-causal variants for both directions (Fig 3). In

most scenario, SKAT-O performed best, however, the performance for NTR was better than

that for SKAT-O while OR = 1.2 (Rare, Rare + Common, and number of causal variant were

lower than 16). In addition, the performances of all methods were comparable when OR = 1.5

and ρ> 0.2 for causal variants while including common variants. Moreover, NTR had higher

power when ρ = 0.2 and ρ = 0.4 with OR = 1.2 for causal variants including common variants

than those obtained from SKAT, CMC and WSS (Figs 2 and 3). However, a mean value of r2 =

0.30 ± 0.32 has been observed for pairwise distances of<25 kb [44,45]. For common variants,

very few had OR values>2, and most values fell between 1.1 and 1.4. For rare variants, many

have OR values >2 [45,46]. As an example of a common disease, namely colorectal cancer, the

highest overall OR ever reported was 1.22 [47]. In our analysis of DN data, NTR was more

powerful than the other methods. Our one-direction simulation results (Fig 2) showed that

SKAT-O performed better than SKAT. In our two-direction simulation results (Fig 3), how-

ever, SKAT-O was less powerful than SKAT. These findings are consistent with previous stud-

ies because SKAT was designed for detecting rare variants that have different directions

[20,21]. Hence, SKAT was less powerful than SKAT-O when a large proportion of the rare var-

iants in a region were truly causal and influenced the phenotype in the same direction. On the

contrary, SKAT performed better than SKAT-O when the rare variants in a region influenced

the phenotype in two directions. CMC and WSS were the least powerful among the methods

we compared, regardless of scenario. The power of CMC and WSS was influenced by the num-

ber of non-causal variants in each region. Due to the nature of the collapsing-based method,

power might be compromised when the number of non-causal variants increases in a particu-

lar region. As for the type I error rate shown in Fig 1 and S4 Table, the range of type I error for

NTR was 3.9–5.9%, we found that type I errors were controlled well for the method.

The statistic of NTR is R(k), i.e., the sum of score ranks from cases, and we used a permuta-

tion strategy to calculate the corresponding p-value. In this regard, we used the Mann–Whit-

ney U test, but the performance was insufficient in that an excess number of OR. Too many

tied ranks could affect the accuracy of the results. In addition, we found that the power of

Mann–Whitney U test in our simulation was proportional to the number of non-causal SNPs;

hence, a greater number of non-causal SNPs would increase the power, but this is counterintu-

itive. The reason could be that a greater number of SNPs diversifies the rank scores, so the

Mann–Whitney U test tends to yield smaller p-values. However, in simulations we found that

the permuted samples r0
1
ðkÞ; . . . ; r0nðkÞ follow a normal distribution, so in fact an increased

number of tied ranks does not affect the permutation strategy.

Hedrick’s (1987) [26] D0im ranged from [0,1] was used in our proposed method. The reason

was due to that using Hedrick’s (1987) D0im makes cross-locus and cross-population compari-

sons uncomplicated [27]. We also carried out a simulation study assuming one causal SNP

and 100 non-causal SNPs in a region under a scenario that NTR had lowest power in this

study. The results showed that NTR had a bit higher power due to its consideration for linkage

disequilibrium although all methods performed poorly. As suggested previously, the causal

SNP that are in LD are more likely to end up together (segregate together) in a person (com-

pared to independent alleles), thus LD would affect prevalence and the risk distribution in the

population [48]. According to Morris et al. [49], an analysis based on haplotypes might be

favorable over an analysis based on individual SNPs when multiple susceptibility alleles exist,

particularly when linkage disequilibria between SNPs is not so strong [49].

The computation time for NTR, however, grows exponentially as the number of markers in

a genomic region increases. This is a limitation for considering pairwise LD of all markers.
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When using our Linux-based workstation (Intel Xeon X5690 3.47-GHz CPU) to calculate the

association for rare variants, the computation time was ~1 min for 50 SNPs in a genomic

region, 6 min for 100 SNPs, and 43 min for 200 SNPs. However, SKAT-O required ~11 and

~21 s for 100 and 200 SNPs, respectively, in a genomic region. Despite the longer computation

time and slightly higher false-positive rate, NTR might identify a greater number of genuine

rare variants that are associated with complex diseases.

Our re-analysis of the DN dataset not only confirmed a landmark finding in genetic associ-

ation studies but also discovered some potentially new candidate genes related to the disease.

We caution, however, that the sample size in the DN dataset is relatively small, and hence

these candidate genes require further investigation. Our research illustrates the important role

of rare variants in DN and demonstrates that NTR is useful for analyzing real data. We con-

clude that different rare-variant association methods should complement each other toward

the goal of dissecting possible risk factors for complex diseases.

Supporting information

S1 Table. Summary of results for eight mitochondrial genes from the SNP analysis.

(PDF)

S2 Table. Summary of results for 102 DN-related genes from the rare variant analysis.

(PDF)

S3 Table. The power for one causal rare SNP and 100 non-causal SNPs scenario.

(PDF)

S4 Table. The type I error rates under different scenarios.

(PDF)

Acknowledgments

We thank the National Center for Genome Medicine at Academia Sinica, Taiwan, for techni-

cal/bioinformatics support. This Center was supported by grants from the National Core Facil-

ity Program for Biotechnology of National Science council, Taiwan. We are also grateful to the

National Science Council and Institute of Biomedical Sciences, Academia Sinica of Taiwan

and China Medical University of Taiwan for funding (MOST102-2314-B-001–003 -MY2,

CMU103-N-15 and CMU105-N-23).

Author Contributions

Conceptualization: Ai-Ru Hsieh.

Data curation: Ai-Ru Hsieh, Dao-Peng Chen, Ying-Ju Li, Chien-Ching Chang.

Methodology: Ai-Ru Hsieh, Dao-Peng Chen, Amrita Sengupta Chattopadhyay, Cathy S. J.

Fann.

Software: Ai-Ru Hsieh, Dao-Peng Chen, Ying-Ju Li, Chien-Ching Chang.

Supervision: Cathy S. J. Fann.

Writing – original draft: Ai-Ru Hsieh, Dao-Peng Chen, Cathy S. J. Fann.

Writing – review & editing: Ai-Ru Hsieh, Dao-Peng Chen, Cathy S. J. Fann.

A non-threshold region-specific method for detecting rare variants

PLOS ONE | https://doi.org/10.1371/journal.pone.0188566 November 30, 2017 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188566.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188566.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188566.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188566.s004
https://doi.org/10.1371/journal.pone.0188566


References
1. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:

1516–1517. PMID: 8801636

2. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. (2009) Potential etio-

logic and functional implications of genome-wide association loci for human diseases and traits. Proc

Natl Acad Sci U S A 106: 9362–9367. https://doi.org/10.1073/pnas.0903103106 PMID: 19474294

3. Hofker MH, Fu J, Wijmenga C (2014) The genome revolution and its role in understanding complex dis-

eases. Biochim Biophys Acta 1842: 1889–1895. https://doi.org/10.1016/j.bbadis.2014.05.002 PMID:

24834846

4. Shen L, Jia J (2016) An Overview of Genome-Wide Association Studies in Alzheimer’s Disease. Neu-

rosci Bull 32: 183–190. https://doi.org/10.1007/s12264-016-0011-3 PMID: 26810783

5. Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, et al. (2014) Searching for missing

heritability: designing rare variant association studies. Proc Natl Acad Sci U S A 111: E455–464.

https://doi.org/10.1073/pnas.1322563111 PMID: 24443550

6. Auer PL, Lettre G (2015) Rare variant association studies: considerations, challenges and opportuni-

ties. Genome Med 7: 16. https://doi.org/10.1186/s13073-015-0138-2 PMID: 25709717

7. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. (2009) Finding the missing

heritability of complex diseases. Nature 461: 747–753. https://doi.org/10.1038/nature08494 PMID:

19812666

8. Gibson G (2011) Rare and common variants: twenty arguments. Nat Rev Genet 13: 135–145.

9. Kryukov GV, Pennacchio LA, Sunyaev SR (2007) Most rare missense alleles are deleterious in

humans: implications for complex disease and association studies. Am J Hum Genet 80: 727–739.

https://doi.org/10.1086/513473 PMID: 17357078

10. Fan R, Huang CH, Lo SH, Zheng T, Ionita-Laza I (2011) Identifying rare disease variants in the Genetic

Analysis Workshop 17 simulated data: a comparison of several statistical approaches. BMC Proc 5

Suppl 9: S17.

11. Bodmer W, Bonilla C (2008) Common and rare variants in multifactorial susceptibility to common dis-

eases. Nat Genet 40: 695–701. https://doi.org/10.1038/ng.f.136 PMID: 18509313

12. Wen SH, Yeh JI (2014) Cohen’s h for detection of disease association with rare genetic variants. BMC

Genomics 15: 875. https://doi.org/10.1186/1471-2164-15-875 PMID: 25294186

13. Nicolae DL (2016) Association Tests for Rare Variants. Annu Rev Genomics Hum Genet 17: 117–130.

https://doi.org/10.1146/annurev-genom-083115-022609 PMID: 27147090

14. Asimit J, Zeggini E (2010) Rare variant association analysis methods for complex traits. Annu Rev

Genet 44: 293–308. https://doi.org/10.1146/annurev-genet-102209-163421 PMID: 21047260

15. Morris AP, Zeggini E (2010) An evaluation of statistical approaches to rare variant analysis in genetic

association studies. Genet Epidemiol 34: 188–193. https://doi.org/10.1002/gepi.20450 PMID:

19810025

16. Feng T, Zhu X (2010) Genome-wide searching of rare genetic variants in WTCCC data. Hum Genet

128: 269–280. https://doi.org/10.1007/s00439-010-0849-9 PMID: 20549515

17. Lee S, Abecasis GR, Boehnke M, Lin X (2014) Rare-variant association analysis: study designs and

statistical tests. Am J Hum Genet 95: 5–23. https://doi.org/10.1016/j.ajhg.2014.06.009 PMID:

24995866

18. Madsen BE, Browning SR (2009) A Groupwise Association Test for Rare Mutations Using a Weighted

Sum Statistic. Plos Genetics 5.

19. Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases: appli-

cation to analysis of sequence data. Am J Hum Genet 83: 311–321. https://doi.org/10.1016/j.ajhg.

2008.06.024 PMID: 18691683

20. Wu MC, Lee S, Cai T, Li Y, Boehnke M, et al. (2011) Rare-variant association testing for sequencing

data with the sequence kernel association test. Am J Hum Genet 89: 82–93. https://doi.org/10.1016/j.

ajhg.2011.05.029 PMID: 21737059

21. Basu S, Pan W (2011) Comparison of statistical tests for disease association with rare variants. Genet

Epidemiol 35: 606–619. https://doi.org/10.1002/gepi.20609 PMID: 21769936

22. Lee S, Wu MC, Lin X (2012) Optimal tests for rare variant effects in sequencing association studies. Bio-

statistics 13: 762–775. https://doi.org/10.1093/biostatistics/kxs014 PMID: 22699862

23. Zawistowski M, Gopalakrishnan S, Ding J, Li Y, Grimm S, Zollner S (2010) Extending rare-variant test-

ing strategies: analysis of noncoding sequence and imputed genotypes. Am J Hum Genet 87: 604–

617. https://doi.org/10.1016/j.ajhg.2010.10.012 PMID: 21070896

A non-threshold region-specific method for detecting rare variants

PLOS ONE | https://doi.org/10.1371/journal.pone.0188566 November 30, 2017 14 / 16

http://www.ncbi.nlm.nih.gov/pubmed/8801636
https://doi.org/10.1073/pnas.0903103106
http://www.ncbi.nlm.nih.gov/pubmed/19474294
https://doi.org/10.1016/j.bbadis.2014.05.002
http://www.ncbi.nlm.nih.gov/pubmed/24834846
https://doi.org/10.1007/s12264-016-0011-3
http://www.ncbi.nlm.nih.gov/pubmed/26810783
https://doi.org/10.1073/pnas.1322563111
http://www.ncbi.nlm.nih.gov/pubmed/24443550
https://doi.org/10.1186/s13073-015-0138-2
http://www.ncbi.nlm.nih.gov/pubmed/25709717
https://doi.org/10.1038/nature08494
http://www.ncbi.nlm.nih.gov/pubmed/19812666
https://doi.org/10.1086/513473
http://www.ncbi.nlm.nih.gov/pubmed/17357078
https://doi.org/10.1038/ng.f.136
http://www.ncbi.nlm.nih.gov/pubmed/18509313
https://doi.org/10.1186/1471-2164-15-875
http://www.ncbi.nlm.nih.gov/pubmed/25294186
https://doi.org/10.1146/annurev-genom-083115-022609
http://www.ncbi.nlm.nih.gov/pubmed/27147090
https://doi.org/10.1146/annurev-genet-102209-163421
http://www.ncbi.nlm.nih.gov/pubmed/21047260
https://doi.org/10.1002/gepi.20450
http://www.ncbi.nlm.nih.gov/pubmed/19810025
https://doi.org/10.1007/s00439-010-0849-9
http://www.ncbi.nlm.nih.gov/pubmed/20549515
https://doi.org/10.1016/j.ajhg.2014.06.009
http://www.ncbi.nlm.nih.gov/pubmed/24995866
https://doi.org/10.1016/j.ajhg.2008.06.024
https://doi.org/10.1016/j.ajhg.2008.06.024
http://www.ncbi.nlm.nih.gov/pubmed/18691683
https://doi.org/10.1016/j.ajhg.2011.05.029
https://doi.org/10.1016/j.ajhg.2011.05.029
http://www.ncbi.nlm.nih.gov/pubmed/21737059
https://doi.org/10.1002/gepi.20609
http://www.ncbi.nlm.nih.gov/pubmed/21769936
https://doi.org/10.1093/biostatistics/kxs014
http://www.ncbi.nlm.nih.gov/pubmed/22699862
https://doi.org/10.1016/j.ajhg.2010.10.012
http://www.ncbi.nlm.nih.gov/pubmed/21070896
https://doi.org/10.1371/journal.pone.0188566


24. Ionita-Laza I, Buxbaum JD, Laird NM, Lange C (2011) A new testing strategy to identify rare variants

with either risk or protective effect on disease. PLoS Genet 7: e1001289. https://doi.org/10.1371/

journal.pgen.1001289 PMID: 21304886

25. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-

genome sequencing. Nature reviews Genetics 11: 415–425. https://doi.org/10.1038/nrg2779 PMID:

20479773

26. Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117: 331–341.

PMID: 3666445

27. Ayres KL, Balding DJ (2001) Measuring gametic disequilibrium from multilocus data. Genetics 157:

413–423. PMID: 11139521

28. Zhu X, Feng T, Li Y, Lu Q, Elston RC (2010) Detecting rare variants for complex traits using family and

unrelated data. Genet Epidemiol 34: 171–187. https://doi.org/10.1002/gepi.20449 PMID: 19847924

29. Liu DJ, Leal SM (2010) Replication strategies for rare variant complex trait association studies via next-

generation sequencing. Am J Hum Genet 87: 790–801. https://doi.org/10.1016/j.ajhg.2010.10.025

PMID: 21129725

30. Sarkar SK, Chang CK (1997) The Simes method for multiple hypotheses testing with positively depen-

dent test statistics. Journal of the American Statistical Association 92: 1601–1608.

31. Benjamini Y, Yekutieli D (2001) The Control of the False Discovery Rate in Multiple Testing under

Dependency. The Annals of Statistics 29: 1165–1188.

32. Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate—a Practical and Powerful

Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 57: 289–

300.

33. Pan W (2009) Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet Epi-

demiol 33: 497–507. https://doi.org/10.1002/gepi.20402 PMID: 19170135

34. Chinnery PF, Hudson G (2013) Mitochondrial genetics. Br Med Bull 106: 135–159. https://doi.org/10.

1093/bmb/ldt017 PMID: 23704099

35. Chen JB, Yang YH, Lee WC, Liou CW, Lin TK, et al. (2012) Sequence-based polymorphisms in the

mitochondrial D-loop and potential SNP predictors for chronic dialysis. PLoS One 7: e41125. https://

doi.org/10.1371/journal.pone.0041125 PMID: 22815937

36. Hatunic M, Stapleton M, Hand E, DeLong C, Crowley VE, et al. (2009) The Leu262Val polymorphism of

presenilin associated rhomboid like protein (PARL) is associated with earlier onset of type 2 diabetes

and increased urinary microalbumin creatinine ratio in an Irish case-control population. Diabetes Res

Clin Pract 83: 316–319. https://doi.org/10.1016/j.diabres.2008.12.004 PMID: 19185381

37. Swan EJ, Salem RM, Sandholm N, Tarnow L, Rossing P, Lajer M, et al. (2015) Genetic risk factors

affecting mitochondrial function are associated with kidney disease in people with Type 1 diabetes. Dia-

bet Med 32: 1104–1109. https://doi.org/10.1111/dme.12763 PMID: 25819010

38. Toma MI, Wuttig D, Kaiser S, Herr A, Weber T, Zastrow S, et al. (2013) PARK2 and PACRG are com-

monly downregulated in clear-cell renal cell carcinoma and are associated with aggressive disease and

poor clinical outcome. Genes Chromosomes Cancer 52: 265–273. https://doi.org/10.1002/gcc.22026

PMID: 23125027

39. Ahn SB, Jang K, Jun DW, Lee BH, Shin KJ (2014) Expression of liver X receptor correlates with intrahe-

patic inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Dig Dis Sci 59: 2975–

2982. https://doi.org/10.1007/s10620-014-3289-x PMID: 25102981

40. Legry V, Cottel D, Ferrieres J, Chinetti G, Deroide T, Staels B, et al. (2008) Association between liver X

receptor alpha gene polymorphisms and risk of metabolic syndrome in French populations. Int J Obes

(Lond) 32: 421–428.

41. Kotlinowski J, Jozkowicz A (2016) PPAR Gamma and Angiogenesis: Endothelial Cells Perspective. J

Diabetes Res 2016: 8492353. https://doi.org/10.1155/2016/8492353 PMID: 28053991

42. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. (2011) A robust, simple gen-

otyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6: e19379. https://doi.

org/10.1371/journal.pone.0019379 PMID: 21573248

43. Zhang G, Ren Y, Sun H, Guo S, Zhang F, Zhang J, et al. (2015) A high-density genetic map for anchor-

ing genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima

Duch.). BMC Genomics 16: 1101. https://doi.org/10.1186/s12864-015-2312-8 PMID: 26704908

44. Peralta JM, Dyer TD, Warren DM, Blangero J, Almasy L (2005) Linkage disequilibrium across two differ-

ent single-nucleotide polymorphism genome scans. BMC Genet 6 Suppl 1: S86.

45. Pengelly RJ, Tapper W, Gibson J, Knut M, Tearle R, Collins A, et al. (2015) Whole genome sequences

are required to fully resolve the linkage disequilibrium structure of human populations. BMC Genomics

16: 666. https://doi.org/10.1186/s12864-015-1854-0 PMID: 26335686

A non-threshold region-specific method for detecting rare variants

PLOS ONE | https://doi.org/10.1371/journal.pone.0188566 November 30, 2017 15 / 16

https://doi.org/10.1371/journal.pgen.1001289
https://doi.org/10.1371/journal.pgen.1001289
http://www.ncbi.nlm.nih.gov/pubmed/21304886
https://doi.org/10.1038/nrg2779
http://www.ncbi.nlm.nih.gov/pubmed/20479773
http://www.ncbi.nlm.nih.gov/pubmed/3666445
http://www.ncbi.nlm.nih.gov/pubmed/11139521
https://doi.org/10.1002/gepi.20449
http://www.ncbi.nlm.nih.gov/pubmed/19847924
https://doi.org/10.1016/j.ajhg.2010.10.025
http://www.ncbi.nlm.nih.gov/pubmed/21129725
https://doi.org/10.1002/gepi.20402
http://www.ncbi.nlm.nih.gov/pubmed/19170135
https://doi.org/10.1093/bmb/ldt017
https://doi.org/10.1093/bmb/ldt017
http://www.ncbi.nlm.nih.gov/pubmed/23704099
https://doi.org/10.1371/journal.pone.0041125
https://doi.org/10.1371/journal.pone.0041125
http://www.ncbi.nlm.nih.gov/pubmed/22815937
https://doi.org/10.1016/j.diabres.2008.12.004
http://www.ncbi.nlm.nih.gov/pubmed/19185381
https://doi.org/10.1111/dme.12763
http://www.ncbi.nlm.nih.gov/pubmed/25819010
https://doi.org/10.1002/gcc.22026
http://www.ncbi.nlm.nih.gov/pubmed/23125027
https://doi.org/10.1007/s10620-014-3289-x
http://www.ncbi.nlm.nih.gov/pubmed/25102981
https://doi.org/10.1155/2016/8492353
http://www.ncbi.nlm.nih.gov/pubmed/28053991
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1371/journal.pone.0019379
http://www.ncbi.nlm.nih.gov/pubmed/21573248
https://doi.org/10.1186/s12864-015-2312-8
http://www.ncbi.nlm.nih.gov/pubmed/26704908
https://doi.org/10.1186/s12864-015-1854-0
http://www.ncbi.nlm.nih.gov/pubmed/26335686
https://doi.org/10.1371/journal.pone.0188566


46. Yuan A, Chen G, Zhou Y, Bentley A, Rotimi C (2012) A novel approach for the simultaneous analysis of

common and rare variants in complex traits. Bioinform Biol Insights 6: 1–9. https://doi.org/10.4137/BBI.

S8852 PMID: 22346348

47. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, et al. (2007) A genome-wide

association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat

Genet 39: 984–988. https://doi.org/10.1038/ng2085 PMID: 17618284

48. Zollner S, von Haeseler A (2000) A coalescent approach to study linkage disequilibrium between sin-

gle-nucleotide polymorphisms. Am J Hum Genet 66: 615–628. https://doi.org/10.1086/302766 PMID:

10677321

49. Morris RW, Kaplan NL (2002) On the advantage of haplotype analysis in the presence of multiple dis-

ease susceptibility alleles. Genet Epidemiol 23: 221–233. https://doi.org/10.1002/gepi.10200 PMID:

12384975

A non-threshold region-specific method for detecting rare variants

PLOS ONE | https://doi.org/10.1371/journal.pone.0188566 November 30, 2017 16 / 16

https://doi.org/10.4137/BBI.S8852
https://doi.org/10.4137/BBI.S8852
http://www.ncbi.nlm.nih.gov/pubmed/22346348
https://doi.org/10.1038/ng2085
http://www.ncbi.nlm.nih.gov/pubmed/17618284
https://doi.org/10.1086/302766
http://www.ncbi.nlm.nih.gov/pubmed/10677321
https://doi.org/10.1002/gepi.10200
http://www.ncbi.nlm.nih.gov/pubmed/12384975
https://doi.org/10.1371/journal.pone.0188566

