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Abstract

Obesity and cigarette smoke are major cardiovascular (CV) risk factors and, when coexist-

ing in the same individuals, have additive/synergistic effects upon CVD. We studied the

mechanisms involved in nicotine enhancement of CVD in Sprague Dawley rats with diet–

induced obesity. The rats were fed either a high fat (HFD) or normal rat chow diet with or

without nicotine (100 mg/L in drinking water) for 20 weeks. HFD rats developed central obe-

sity, increased systolic blood pressure (SBP), aortic superoxide (O2
-) production, and

impaired endothelial nitric oxide synthase (eNOS) and endothelium-dependent relaxation to

acetylcholine (EDR). Nicotine further increased SBP, O2
- and impaired eNOS and EDR in

obese rats. In the peritoneal macrophages from obese rats, tumor necrosis factor (TNF) α,

interleukin 1β and CD36 were increased, and were further increased in nicotine-treated

obese rats. Using PCR array we found that 3 of 84 target proinflammatory genes were in-

creased by 2–4 fold in the aorta of obese rats, 11 of the target genes were further increased

in nicotine-treated obese rats. HUVECs, incubated with conditioned medium from the perito-

neal macrophages of nicotine treated-obese rats, exhibited reduced eNOS and increased

NADPH oxidase subunits gp91phox and p22phox expression. Those effects were partially

prevented by adding anti-TNFα antibody to the conditioned medium. Our results suggest

that nicotine aggravates the CV effects of diet–induced obesity including the oxidative

stress, vascular inflammation and endothelial dysfunction. The underlying mechanisms may

involve in targeting endothelium by enhancement of macrophage-derived TNFα.

Introduction

Cigarette smoke is the most common cause of preventable morbidity and mortality worldwide,

and an independent risk factor for cardiovascular (CV) diseases and type 2 diabetic mellitus[1,

2]. We and others have demonstrated the importance of chemically stable compounds, present
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in the gas phase of cigarette smoke, in mediating endothelial injury and atherosclerosis[3–5].

Nicotine, one of the major active compounds of cigarette smoke, has been shown to have

adverse effects upon the CV system[5, 6], including autonomic imbalance, endothelial dys-

function and impaired coronary blood flow. It has been documented that nicotine, at concen-

tration similar to that found in smokers’ blood, modifies lipid metabolism and impairs

endothelial function in animals[7].

Vascular endothelium plays an important role in the maintenance of CV health. Endothe-

lial dysfunction is a key feature of early atherosclerotic lesions and predictive of CV prognosis

in both human and animal models[8, 9]. Endothelial cells are major targets of inflammatory

cytokines released from various immune cells and vascular cells[10]. It has been shown that

inflammatory cytokines, such as tumor necrosis factor (TNF)α, interact with endothelial cells

or vascular smooth muscle cells to induce endothelial nitric oxide dysfunction, reactive oxygen

species (ROS) production and vascular smooth muscle cell proliferation, resulting in endothe-

lial dysfunction and promotion of CV diseases (CVD)[11–13].

Active macrophages are the main source of inflammatory cytokines. Macrophages via their

scavenger receptors take up oxidized LDL (oxLDL) and other lipids, undergo activation, and

produce various cytokines[14]. The macrophages also produce an oxidative state that pro-

motes the oxidation of LDL, activation of endothelial cells and monocyte migration into the

vascular wall, initiation of vascular inflammation and progression of atherosclerosis[15, 16].

Recently, we[3] have shown that nicotine can synergize with oxLDL to increase macrophage

expression of scavenger receptor CD36. Nicotine in the presence of oxLDL promoted macro-

phage activation and production/release of multiple pro-inflammatory cytokines in vitro

including TNFα, interleukin 6 (IL6) and monocyte chemoattractant protein (MCP)1 and

accelerated atherosclerosis in vivo through CD36-dependent mechanisms[3].

Obesity is a chronic low-grade inflammatory disease associated with increased oxidative

stress and plasma levels of various atherogenic lipids including oxLDLs[17, 18]. Epidemiologi-

cal studies indicate that the combination of obesity and smoking results in significant increase

in total death and CV death risk in both men and women[19, 20]. Here, we hypothesize that

nicotine augments the CV effects of diet-induced obese rats via promoting macrophages to

produce/release inflammatory cytokines such as TNFα, resulting in endothelial dysfunction

via disrupting the balance between eNOS/NO and ROS in the vasculature.

Materials and methods

Animals and experimental protocols

The animals were housed in facilities accredited by the American Association for Accredita-

tion of Laboratory Animal Care and by the Chinese Association for Accreditation of Labora-

tory Animal Care. The Institutional Animal Care and Use Committee at the Miami VA

Medical Center and Jinzhou Medical University approved the studies. All procedures were

performed in accordance with the Guide for the Care and Use of Laboratory Animals pub-

lished by the US National Institutes of Health (Eighth Edition, the Guide, NRC 2011). Six-

week-old Sprague-Dawley male rats were purchased from Harlan Sprague-Dawley Inco. (Indi-

anapolis, IN) and maintained under controlled conditions of light, temperature, and humidity.

After having 2 weeks to accommodate to the new environment, the rats were randomly

divided into 4 groups and treated for 20 weeks (n = 6–7): NFD (normal fat diet): fed a normal

rat chow diet (17% caloric from fat); Nic: fed a NFD diet with nicotine (100 mg/L in drinking

water); HFD (high fat diet): fed a high fat diet (47% caloric from fat); HFD/Nic: fed a HFD

plus nicotine treatment. Body weight was measured every week. Systolic blood pressure (SBP)

was measured in the conscious rats by the tail-cuff method. At the end of the study, the rats
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were starved overnight, fasted plasma glucose was measured by blood glucose meter. Fasted

plasma cholesterol and nonesterified free fatty acids (NFFA) were determined by cholesterol

assay kit (Wako Diagnostics, Richmond, VA) and NFFA assay kit, respectively (Wako Diag-

nostics, Richmond, VA). The rats were anesthetized by sodium pentobarbital (50 mg/kg IP)

and euthanized by decapitation; the heart, aortas and total abdominal fat were weighed. The

heart weight/body weight and aortic weight/cm (arch of thoracic aorta to the origin of mesen-

teric artery) were used as indices of cardiac and aortic hypertrophy.

Histological analysis

The aorta (1 cm below the highest point of the aortic arch) was isolated. The specimens from

the thoracic aorta were fixed in 4% paraformaldehyde in phosphate-buffered saline. The 4-μm

thick sections were cut and stained with hematoxylin and eosin. Four nonconsecutive digital

images per animal were acquired with a LC Evolution camera (Media Cybernetics, Inc.,

Bethesda, Maryland, USA) and Olympus BX51 microscope (Leeds Precision Instruments, Inc.,

Minneapolis, Minnesota, USA) and analyzed with Image-Pro Plus version 6.0 software (Media

Cybernetics, Inc.). The radial thickness of the media was measured.

Isolation of peritoneal macrophages

Another set group of rats as described above were used to isolate the macrophages from the peri-

toneal cavity, the rats were injected intraperitoneally (I.P) with 5 ml of 3% thyoglycolate medium

to induce the macrophages to enter the peritoneal cavity. On day 5 post-injection, the rats were

anesthetized with sodium pentobarbital (50 mg/kg I.P) and injected with 5 to 10 ml cold PBS with

10 mmol/L EDTA to rinse the macrophages from the peritoneal cavity. The abdominal exudate

was centrifuged at 400 g for 10 minutes. The supernatant was discarded and the pellet was washed

by PBS twice, and resuspended in 0.2 ml DMEM, the cells were counted. The macrophages iso-

lated from the peritoneal cavity were plated separately in 6-well tissue culture plates and cultured

with RPMI/10% fetal bovine serum (FBS) overnight. The following morning, nonadherent cells

were removed by aspiration and washing three times with PBS. [3, 21, 22]

Cell culture

Human umbilical vein endothelial cells (HUVECs, ATCC, Manassas, VA) were cultured in

DMEM medium supplemented with 10% FBS. The cells were cultured at 37˚C, 95% humidity,

and 5% CO2. All experiments were performed using cells between passages 4 and 12. The cells

were seeded in six-well plates (5 x 105 cells/well), and starved in serum free DMEM medium

for 24 hours before the experiments were performed. The macrophages (about 106 cells) iso-

lated from the peritoneal cavity were cultured in RPMI/10% FBS for 3 days. The conditioned

medium was collected, centrifuged, filtered, and stored at -20 C in aliquots. The remaining

macrophages were collected for real-time PCR experiments. The macrophage-conditioned

medium was added to HUVECs in final concentration of 20%. For neutralizing experiments,

macrophage-conditioned medium was preincubated with neutralizing TNFα antibody (5 μg/

ml) for 1 hour. The conditioned medium was then added to HUVECs to incubate for another

24 hours. Following precipitation of the antigen antibody complex, the concentration of TNFα
in the media was measured by ELISA to determine efficacy of neutralization.

Detection of superoxide anion (O2
–) generation in the aorta

The O2
– generation in fresh aortic rings was determined by chemiluminescence of lucigenin

(5 μmol/L) with Krebs’ buffer, as previously described[23]. The results were expressed as
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counts/min/mg dry tissue. Chemiluminescence of lucigenin has been validated as method to

measure O2
-[23].

ELISA assay

Plasma levels of C-reactive protein (CRP) and insulin, and TNFα concentration in plasma and

conditional media were determined using ELISA assay kits (R&D systems, Minneapolis, Min-

nesota, USA), following the manufacturer’s instructions, as described in our previous studies

[23]. The concentrations were calculated from a standard curve. HOMA-IR, an index for insu-

lin resistance, was calculated by multiple of fast plasma level of glucose by fast plasma level of

insulin. The plasma level of cotinine, a stable metabolite of nicotine was also determined using

Cotinine ELISA kit (Cal Biotech) following the manuscript’s instruction.

Organ chamber experiments

Endothelial function in the aortic rings was examined using an organ bath chamber, as previ-

ously described[23]. Endothelium-dependent relaxation (EDR) to acetylcholine (10−9 to 10−5

mol/L) was studied in the rings pre-contracted to 70% of maximal contraction to norepineph-

rine. Relaxation of aortic rings was expressed as a percentage inhibition of norepinephrine-

induced constriction. The maximal response to acetylcholine (Emax) and the concentration of

acetylcholine required for a half-maximal response curve (ED50) were determined from the

concentration-response curve, using best fit to a logistic sigmoid function.

Western blot

Western blotting analysis was used to determine the protein expression of TNFα and eNOS in

the aorta. Briefly, the aorta was cut into small pieces with a scissor, the aortic tissues were

placed in a 2 ml via with 3 time volumes of homogenization buffer, the aortic tissues were

homogenized for 45 second with 30 second remission at 4 oC, and the homogenization was

repeated three times. After the homogenization, the protein content of the different samples

was determined by Bio-Rad protein assay (Life Science, Hercules, CA). Thirty μg of protein

was separated by SDS-PAGE and transferred to a nitrocellulose membrane. Transferred pro-

teins were incubated overnight with specific primary antibodies against TNFα (1:500 dilution,

Santa Cruz Biotech, Santa Cruz, CA) and eNOS (1:1000 dilution, Cell Signaling, Danvers,

MA). After washing, the blots were incubated with the appropriate secondary antibody and

signal detected by luminal chemiluminescence, followed by exposure to an autoradiography

film. The membrane was reblotted for β-actin (1:500 dilution, Santa Cruz Biotech, Santa Cruz,

CA) as a loading control.

Real-time PCR

HUVECs or the macrophages from the peritoneal cavity were harvested in 1 ml trizol reagent,

the aortic tissues were homogenated in 1 ml trizol reagent. Total RNA (2 μg) reverse-tran-

scribed using a superscript II RT first strand synthesis kit (Gibco, BRL) according to the manu-

facturer’s instructions. Real-time PCR was performed with a TaqMan master mix assay kit

(ABI). Relative quantities of each transcript were normalized by a housekeeping gene (GAPDH)

and expressed as fold increase vs. control. All PCR primers with fluorescence probe for CD36

(assay ID: Rn00590726-m1), TNFα (Rn09999017-μ1, interleukin (IL) 1β (Rn01336189-m1),

eNOS (Rn02132634-s1), gp91phox (Rn00576710-m1), p22phox (Rn00577357-m1) were ordered

through ABI online system with assay IDs.
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PCR array for determination of mRNA profile of rat inflammatory

signaling pathway

The aortic tissues were homogenated in 1 ml trizol reagent, one μg of RNA was converted to

cDNA with random primers in a 20-μl reaction volumes using high capacity cDNA archive kit

(C-3, Superarray). The cDNA was diluted in total volume 100 μl. One μl of cDNA was used for

each primer set in the PCR array according to the manufacturer’s instruction as previously

described[24]. Rat inflammatory cytokine & receptor signaling pathway was used to determine

a panel of inflammatory gene expression (PARN-011Z, SuperArray Qiagen). This PCR array

includes 84 target genes of inflammatory chemokines, cytokines, interleukins and their recep-

tors and 12 control genes. The control genes include each array for genomic DNA contamina-

tion, RNA quality, housekeep and general PCR performance. Data analysis was performed

using the manufacturer’s integrated web-based software package for the PCR array system

using delta-delta Ct based fold-change calculations and normalized by a housekeeping control

gene.

Data analysis

The results were expressed as means ± SE. Statistical analyses for all parameters were per-

formed by two way ANOVA followed with Bonferonni’s correction for multiple comparisons

(StatView, BrainPower, Calabasas, CA). Significance was assumed at P< 0.05.

Results

Effects of nicotine on SBP, body weight, plasma level of cotinine and

metabolic variables in diet-induced obese rats

HFD for 20 weeks increased SBP (146 ± 4 vs. 131 ± 5 mmHg in NFD, p<0.05), compared

with NFD rats. Nicotine treatment further increased SBP in obese rats (159 ± 5 vs. 146± 4

mmHg in obese rat, p<0.05), and had a tendency to increase SBP in lean rats but did not

reach a statistical significance. There were no statistically significant differences in SBP

between NFD and Nic group (131 ± 5 mmHg in NFD vs. 138 ± 4 mmHg in Nic, p>0.05).

Compared with the NFD group, HFD for 20 weeks resulted in significant increase in body

weight (495 ± 10 vs. 432 ± 8 g in NFD, 14.5% increase, p<0.05) and total abdominal fat

weight (17.8 ± 1.7 vs. 11.6 ± 2.3 g in NFD, 53% increase, p<0.05). Nicotine significantly

inhibited body weight gain and abdominal fat weight in both NFD and HFD rats (all p<0.05,

Fig 1). HFD for 20 weeks significantly increased fast plasma levels of glucose, insulin, choles-

terol, NFFA and HOMA-IR (Table 1), the rats on HFD diet developed central obesity with

insulin resistance. Long-term treatment with nicotine did not affect above metabolic vari-

ables (Table 1) in either NFD or HFD rats. The plasma levels of cotinine, a stable metabolite

of nicotine, were undetectable in both control and obese rats without nicotine treatment,

and were increased by around 5–10 ng/ml in the rats receiving oral administration of nico-

tine (Table 1). The plasma concentration of cotinine in the rats with nicotine treatment is

correlated with plasma cotinine levels found in secondhand smokers and nicotine patch user

in human[25, 26]. HFD significantly increased aortic weight but did not affect the ratio of

heart weight/body weight. Nicotine treatment did not affect aortic weight and the ratio of

heart weight/body weight in NFD and HFD rats (Table 1). Histological study revealed that

diet-induced obese rats (HFD) exhibited a significant aortic medial growth and increased

aortic wall thickness. In NFD and HFD rats, nicotine treatment had no effects upon aortic

medial growth and aortic wall thickness (Fig 2).
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Effects of nicotine on aortic O2
-production and plasma CRP in diet-

induced obese rats

Increased ROS production has been implicated in the pathogenesis of metabolic syndrome

[27]. We have previously shown that stimulation of nicotinic acetylcholine receptor with nico-

tine increased ROS production via NADPH oxidase[3, 28]. Here we examined the effect of nic-

otine on aortic O2
- production in diet-induced obese rats. As shown in Fig 3A, aortic O2

-

production was significantly increased in diet-induced obese rats. Nicotine increased O2
- pro-

duction in lean rats and further increased O2
- production in diet-induced obese rats, suggest-

ing that nicotine and obesity additively increased vascular O2
- production. CRP is an acute

phase reactant, and increased plasma CRP is a reliable biomarker to predict for development

of CVD. As shown in Fig 3B, plasma level of CRP was significantly increased in diet-induced

obese rats. Nicotine treatment further increased plasma level of CRP in obese rats but not in

lean rats (Fig 3B), suggesting that nicotine increased systemic inflammation in obese rats.

Nicotine increased the mRNA expressions of CD36, TNFα and IL1β in

the peritoneal macrophages of diet-induced obese rats

CD36 is the major scavenger receptor for the uptake of oxLDL in macrophages[29]. We have

recently shown[3] that nicotine promotes foam cell formation and atherosclerosis via

Fig 1. Body weight (A), total abdominal fat weight (B) and systolic blood pressure (SBP, C) in nicotine-treated obese rats. The data was expressed

as mean ± SE. NFD: normal rat chow diet; HFD: high fat diet; Nic: NFD with nicotine; HFD/Nic: HFD with nicotine treatment. N = 6–7, *p<0.05.

https://doi.org/10.1371/journal.pone.0188439.g001
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upregulating macrophage CD36 signaling. As shown in Fig 4A, the mRNA expression of CD36

was significantly increased in the peritoneal macrophages of diet-induced obese rats and was

further increased in nicotine-treated obese rats. Proinflammatory cytokines such as TNFα and

IL1β are important markers of activated inflammatory macrophage (M1). As shown in Fig 4B

and 4C, the mRNA expressions of TNFα and IL1β were significantly increased in the peritoneal

macrophages of diet-induced obese rats. Nicotine further potentiated the expressions of those

inflammatory genes in obese rats.

Nicotine and obesity additively/synergistically increased

proinflammatory gene expression in the aorta

It has been generally accepted that obesity is associated with chronic low-grade inflammation

[17, 30]. We have recently shown that nicotine promoted vascular inflammation and athero-

sclerotic lesion formation in apo E-/- mice[3]. Here we used PCR array of rat proinflammatory

signaling pathway to determine a panel (84 target genes) of proinflammatory gene expression

in the aorta. This PCR array includes genes of inflammatory chemokines, cytokines, and inter-

leukins. As shown in Table 2, among the 84 target genes, 4 genes including MCP1, interferon

γ, TNFα and chemokine (C-X-C motif) ligand (CXCL)11 were increased by approximately

2–4 folds in diet-induced obese rats; 11 genes, including MCP1, interferon γ, TNFα, CXCL11,

CXCL10, CXCL9, IL4, IL6, CXC chemokine receptor 3, macrophage migration inhibitor fac-

tor and CD14 ligand, were increased by approximately 2–10 folds in nicotine-treated obese

rats as compared with NFD rats. Nicotine further increased 10 of 11 genes expressions (except

MCP1) in diet-induced obese rats (Table 2), but not in lean rats. These results suggest that nic-

otine and obesity additively/synergistically promoted vascular inflammation.

Nicotine increased TNFα and reduced eNOS expression in the aorta of

diet-induced obese rats

TNFα is an important inflammatory cytokine released from activated macrophage, T cells,

endothelial cells and adipocytes, and has been shown to induce macrophage activation and

endothelial dysfunction[31, 32]. As shown in Fig 5A and 5B, the mRNA and protein

Table 1. Effects of nicotine and obesity on metabolic parameters.

NFD Nic HFD HFD/nic

HW (g/100 g BW) 0.31 ± 0.01 0.31 ±0.01 0.3 ± 0.01 0.3 ± 0.01

AW (mg/cm) 17.4 ± 0.5 17.0 ± 0.5† 18.7 ± 0.4* 18.6 ±0.7*

Plasma glucose

(mg/dl)

112 ± 5 113 ± 4† 125 ± 2* 124 ± 3*

Plasma insulin

(ng/ml)

3.3 ±0.2 3.4 ± 0.2† 3.8 ±0.1* 3.8 ± 0.1

Plasma cotinine

(ng/ml)

undetectable 5.8 ± 1.6 Undetectable 9.1 ± 2.8

Plasma cholesterol

(mg/dl)

83 ± 5 79 ± 3† 112 ± 4* 106 ± 7*

NFFA (mmol/L) 0.60 ± 0.04 0.68 ±0.1† 1.07 ±0.21* 0.99 ±0.06*

HOMA-IR 24.6 ± 1.4 25.6 ± 1.1† 31.7 ± 1.3* 31.4 ± 1.5*

NFD: low fat diet; HFD: high fat diet; Nic: nicotine; HW: heart weight; AW: aortic weight; BW: body weight; NFFA: noesterified free fatty acids. Data was

expressed as mean ± SE,

*p<0.05, vs. NFD;
†p<0.05, vs. HFD. N = 5–6.

https://doi.org/10.1371/journal.pone.0188439.t001
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expressions of TNFα were increased in the aorta of obese rats and further increased in nico-

tine-treated obese rats. Reduction in eNOS-derived NO production is considered a hallmark

of endothelial dysfunction. As shown in Fig 5C, the protein expression of aortic eNOS was sig-

nificantly reduced in obese rats. Nicotine further decreased aortic eNOS expression in obese

rats, suggesting that nicotine and obesity have a synergistic reduction in eNOS expression.

Nicotine impaired EDR to acetylcholine in the aorta of obese rats

Endothelial dysfunction, characterized by loss of endothelium-dependent relaxation, is

thought to be a key event in the development of atherosclerosis and other vascular diseases

[33]. As shown in Fig 6, EDR to acetylcholine was significantly attenuated in the aorta of diet-

induced obese rats (Emax: 85 ±6% in HFD rats vs. 98 ± 3% in NFD rats, p<0.05; ED50: 6.9

±0.1 vs. 7.1 ± 0.1 -log molar in NFD rats, p<0.05), compared with NFD rats. Nicotine further

impaired EDR to acetylcholine in obese rats (Emax: 85 ± 6% in HFD rats vs. 72 ± 5% in the

Fig 2. Histological examination of aortic hypertrophy in nicotine treated obese rats. Representative cross section of aortic wall (A) stained

with HE. Bar graphs show the quantitative analysis of aortic wall thickness (B). *p< 0.05 vs. NFD, N = 6–7.

https://doi.org/10.1371/journal.pone.0188439.g002
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HFD/Nic rats, p<0.05; ED50: 6.9 ±0.1 vs. 6.6 ± 0.1 -log molar in NFD/Nic rats, p<0.05) but

not in lean rats (Fig 6).

Effects of the macrophage conditioned medium on the mRNA

expressions of eNOS, gp91phox and p22phox in HUVECs

HUVECs were pre-incubated with vehicle medium or the conditioned medium (20%) from

the peritoneal macrophages for 24 hours, HUVECs were collected for determination of eNOS

and NADPH oxidase subunits gp91phox and p22phox mRNA expression. As shown in Fig 7,

incubation with the conditioned medium from lean (NFD), nicotine-treated lean (Nic) or

HFD groups did not significantly affect the mRNA expressions of eNOS, gp91phox or

p22phox in HUVECs, as compared with vehicle medium. Only incubation with the condi-

tioned medium from nicotine-treated obese rats resulted in a significant reduction in the

mRNA expression of eNOS or increase in the mRNA expressions of gp91phox and p22phox in

HUVECs (all p<0.05, Fig 7B and 7C).

TNFα antibody partially restored the expressions of eNOS, gp91phox

and p22phox in HUVECs induced by the conditioned medium

To determine the role of TNFα in the macrophage conditioned medium-induced eNOS

and NADPH oxidase dysfunction, the conditioned medium from the peritoneal macrophages

were preincubated with neutralizing TNFα antibody (5 μg/ml) for 1 hour. The conditioned

medium was then added to HUVECs in final concentration of 20% and incubated for another

24 hours. As shown in Fig 8, TNFα antibody in the conditioned medium from HFD rats did

not significantly affect the mRNA expressions of eNOS, gp91phox or p22phox in HUVECs,

but TNFαantibody in the conditioned medium from nicotine-obese rats in part prevented a

decrease in eNOS and an increase in gp91phox and p22phox expression in HUVECs, as com-

pared with the correspondence conditioned medium without TNFα antibody. Furthermore,

Fig 3. Aortic superoxide (O2
-) production (A) and plasma level of C-reactive protein (CRP, B) in nicotine-treated obese rats. HFD for 20 weeks

increased aortic O2
- production and plasma level of CRP. Nicotine increased O2

- production in both lean and obese rats, and increased plasma level of CRP

only in HFD rats. *p<0.05, vs. NFD, #p<0.05 vs. HFD, N = 6–7.

https://doi.org/10.1371/journal.pone.0188439.g003
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we measured TNFα concentration in plasma and the conditioned medium by ELISA, TNFα
concentration was 0.7 ± 0.1 ng/ml in the conditioned medium from lean rats, 0.8 ± 0.2 ng/ml

in nicotine-lean rats, and 1.5 ± 0.4 ng/ml in obese rats, 4.5 ± 0.7 ng/ml in nicotine-obese rats.

TNFα was undetectable in the vehicle medium or the conditioned medium treated with neu-

tralizing TNFα antibody (Fig 8D). Plasma level of TNFα was significantly increased in obese

rats compared with lean rats, nicotine treatment further increased plasma level of TNFα in

obese rats, but not in lean rats (Fig 8E). The results suggest that nicotine further increases mac-

rophage production/release of TNFα in obese rats but not in lean rats. TNFα may in turn

induce endothelial dysfunction via disrupting the balance between vascular eNOS and ROS.

Discussion

The major findings of this study are that long-term oral treatment with nicotine augmented

endothelial dysfunction, vascular oxidative stress and vascular inflammation in diet-induced

obese rats, which were associated with the enhancement of the macrophage release of proin-

flammatory cytokines. Most of those effects except oxidative stress, however, were not seen in

nicotine-treated lean rats. Furthermore, treatment with the conditioned medium from the

peritoneal macrophages of nicotine-obese rats inhibited eNOS expression and increased

Fig 4. The mRNA expressions of CD36 (A), TNFα (B) and IL1β (C) in the peritoneal macrophages of nicotine-treated obese rats. The mRNA

expressions of TNFα, IL1β and CD36 were significantly increased in the peritoneal macrophages of diet-induced obese rats. Nicotine further increased the

mRNA expressions of three molecules in obese (HFD) rats and the mRNA expression of CD36 in lean rats. N = 5, *p<0.05, vs. NFD, #p<0.05, vs. HFD.

https://doi.org/10.1371/journal.pone.0188439.g004
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NADPH oxidase subunits gp91phox and p22phox expressions in HUVECs, which were in

part prevented by addition of neutralizing anti-TNFα antibody to the conditioned medium.

Cigarette smoke is a well-established risk factor for CVD and atherosclerosis[34]. The

health care risk associated cigarette smoke for CVD is exaggerated by obesity or type II dia-

betic mellitus[6, 19, 20]. Nicotine has been suggested to participate in many of the adverse

effects of smoke on the CV system[7], although there are also opposite reports that chronic

nicotine treatment may have some beneficial vascular effects[35] We and others[3, 36] have

shown that chronic nicotine treatment promotes atherosclerotic lesion formation in apo E-/-

mice. Nicotine replacement therapy (NRT) is widely used for smoking cessation[37]. NRT for

a short term is considered as relatively safe, although long term NRT regarding CV safety has

not been determined[37]. The present study showed that long-term treatment with nicotine

(20 weeks) did not cause vascular structure and functional damage in normal rats. However,

nicotine treatment did augment endothelial dysfunction, vascular oxidative stress and inflam-

mation in diet-induced obese rats. Importantly, our results shows that plasma levels of cotinine

in nicotine-treated rats are about 5–10 ng/ml, which is comparable with plasma level in nico-

tine patch users in human[26]. These results suggest that long term NRT may be less toxic

than cigarette smoking but it may also not be fully safe, particularly for the those who are

obese, have type 2 diabetes or concomitant with CV risk factors such as hypertension.

Multiple mechanisms have been suggested as the underlying link between nicotine and

CVD, including inflammation, endothelial dysfunction/injury, activation of thrombosis, and

the modification of the lipid profile[34, 38]. The pro-inflammatory or anti-inflammatory

effects of nicotine have been the subjects of much controversy[36, 39, 40]. Nicotine has been

often implicated as anti-inflammatory[40, 41]. Acting through nicotinic acetylcholine recep-

tors on neurons, nicotine can have anti-inflammatory effects protecting, for example, against

neural damage during inflammation associated with Parkinson’s disease or traumatic brain

injury[42]. On the other side, nicotine was also found to be a strong proinflammatory media-

tor[43]. We and others have shown that nicotine stimulates monocytes/macrophages-release

inflammatory cytokines, and promotes monocyte/macrophage adhesion to endothelium and

Table 2. mRNA profile of inflammatory cytokines in the aorta of nicotine-treated obese rats (data was normalized by NFD group as 1, determined

by PCR array).

NFD Nic HFD HFD/Nic

CCL2 (MCP1) 1 ± 0.13 1.03 ± 0.12 2.13 ± 0.25* 2.01 ± 0.26*

MIF 1 ± 0.15 0.97 ± 0.20 1.21 ± 0.42 3.01 ±0.75*#

CXCL9 1 ± 0.25 0.92 ± 0.22 1.25 ± 0.45 5.54 ± 1.25*#

CXCL10 1 ± 0.35 0.77 ± 0.28 1.34 ± 0.25 2.76 ±0.80*#

CXCL11 1 ± 0.23 0.85 ± 0.15 2.79 ± 0.55* 7.51 ± 1.32*#

CXCr 3 1 ± 0.18 0.73 ± 0.22 0.83 ± 0.30 3.26 ± 1.12*#

Interferon γ 1 ± 0.20 0.92 ± 0.35 3.92 ± 1.02* 9.82 ± 2.15*#

IL4 1 ± 0.22 1.09 ± 0.16 1.35 ± 0.50 3.63 ± 0.65*#

IL6 1 ± 0.10 1.21 ± 0.15 1.25 ± 0.22 5.45 ± 0.72*#

TNFα 1 ± 0.35 1.39 ± 0.37 3.52 ± 0.65* 5.25 ± 0.86*#

CD40 ligands 1 ± 0.12 1.13 ± 0.22 1.45 ± 0.33 3.43 ± 0.98*#

Nic: nicotine, MCP-1: monocyte chemoattract protein 1, MIF: macrophage migration inhibitor factor, TNFα: tumor necrosis factor α, IL: interleukin. Data was

normalized and expressed as fold increase by lean group. Data was expressed as mean ± SE, 4 PCR array for each group.

*p<0.05 vs. NFD,
#p<0.05 vs. HFD.

https://doi.org/10.1371/journal.pone.0188439.t002
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migration into vascular wall, resulting in vascular inflammation and acceleration of atheroscle-

rotic process in vitro and in vivo [3, 36, 44].

Our results from PCR array showed that nicotine had different effects on the expression of

proinflammatory cytokines in the aorta of obese and lean rats, increased the mRNA expres-

sions of inflammatory cytokines in obese rats but not in lean rats. Harwani et al[45] reported

that nicotine increased plasma levels of proinflammatory cytokines in prehypertensive sponta-

neously rats but suppressed those responses in Wistar Kyoto rats, suggesting an opposite

response of nicotine on inflammatory system in those two strains of rats. The mechanisms

why nicotine exhibits a different proinflammatory response in lean and obese rats are not

investigated in this study. We have recently shown that nicotine promotes macrophage activa-

tion and release of inflammatory cytokines by upregulating CD36 inflammatory pathway[3].

oxLDL (a CD36 ligand) is required for nicotine activation of this pathway[3]. Here we showed

that nicotine and obesity additively upregulated macrophage CD36 expression. Obesity is asso-

ciated with oxidative stress and increased oxLDL[46, 47], therefore it is reasonable to speculate

that the upregulation of macrophage CD36 may interact with oxLDLs to initiate inflammatory

responses in nicotine-treated obese rats, but the similar pathway may not be activated by

Fig 5. The mRNA (A) and protein (B) expressions of TNFα or protein expression of eNOS (C) in the aorta of nicotine-treated obese rat. N = 5,

*p<0.05, vs. NFD, #p<0.05 vs. HFD.

https://doi.org/10.1371/journal.pone.0188439.g005
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nicotine in lean rats because there may not have enough oxidized LDL products to stimulate

CD36 inflammatory pathway in lean rats.

Nicotine can induce endothelial dysfunction[48, 49]. Acute and chronic administration of

nicotine impairs endothelium-dependent relaxation and produces morphological abnormali-

ties of endothelium[7, 50]. Endothelial dysfunction represents a key step in the initiation and

maintenance of atherosclerosis and may be a marker for further risk of cardiovascular diseases.

Reduced NO bioavailability caused by oxidative stress is a common feature of endothelial dys-

function[51, 52]. Here we showed that nicotine augmented endothelial dysfunction accompa-

nied with further increased oxidative stress and decreased eNOS expression in the vasculature

of diet-induced obese rats. Therefore, we surmise that nicotine may augment endothelial dys-

function via further induction of imbalance between vascular NO and ROS.

Inflammatory cytokines can target vascular endothelium to induce endothelial dysfunction

[53], for example, TNFα has been shown to induce endothelial dysfunction associated with

increased oxidative stress and decreased eNOS expression[13, 31]. TNFα is mainly produced

in immune cells such as macrophages. To investigate the role of macrophage TNFα in nicotine

induction of endothelial dysfunction in obese rats, we examined the effects of macrophage

conditioned medium on eNOS and NADPH oxidase subunits gp91phox and p22phox in

HUVECs. Here we found that TNFα concentration/expression was increased in the plasma,

the culture medium, the peritoneal macrophages and the aorta from nicotine-treated obese

Fig 6. Endothelium-dependent relaxation (EDR) to acetylcholine in the aorta of nicotine-treated obese rats. EDR to

acetylcholine was attenuated in obese rats. Nicotine further impaired the EDR to acetylcholine in obese rat but not in lean rats. NS: no

significant difference. N = 5–7, *p<0.05.

https://doi.org/10.1371/journal.pone.0188439.g006
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rats. HUVECs, treated with the macrophage conditioned medium from nicotine-treated obese

rats, exhibited a significant decrease in eNOS expression and increase in the expressions of

gp91phox and p22phox. Those effects were partially reversed by adding anti-TNFα antibody

into the conditioned medium. Based on those results, we speculate that nicotine induces endo-

thelial dysfunction at least in part through promoting the macrophage production/release of

TNFα in obese rats, which result in disrupting the balance between eNOS and ROS in the

endothelium.

It is well known that nicotine reduces body weight[54, 55]. Consistent with previous studies

[54], we observed that long-term treatment with nicotine reduced body weight and abdominal

fat weight in both lean and obese rats. The effect of nicotine on reducing body weight was

more pronounced in obese rats than in lean rats. Our data also showed that nicotine increased

blood pressure in obese rats. Clinically, increased BP by nicotine may also increase CV risk in

obesity.

In conclusion, the present study provides convincing evidences that nicotine aggravates

endothelial dysfunction and vascular inflammation with cellular oxidative stress and impaired

eNOS in diet-induced obese rats. Those deteriorating vascular effects of nicotine can be in part

explained by enhancement of macrophage-derived TNFα, which may target endothelium.

More importantly, plasma levels of cotinine in nicotine-treated rats are comparable with the

Fig 7. Effects of the macrophage conditioned medium on the mRNA expressions of eNOS (A) and NADPH oxidase subunits gp91phox (B) and

p22phox (C) in HUVECs. *p<0.05, NS: no significant difference. N = 5.

https://doi.org/10.1371/journal.pone.0188439.g007
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plasma cotinine levels found in secondhand smokers, nicotine patch users or individuals with

chronic inhalation of nicotine such as e-cigarette[25, 26, 56], those subjects, after exposure to

nicotine, may increase the risk for vascular atherosclerotic diseases, particularly in the patients

with obesity or type II diabetes. Additional research in cellular and molecular studies should

enable the determination of important mechanistic insights in nicotine aggravation of CV risk

in obesity.
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