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Abstract

Having determined the mass of a single cell of brewer yeast Saccharomyces cerevisiae by
means of a microcantilever-based biosensor Cantisens CSR-801 (Concentris, Basel, Swit-
zerland), it was found that its dry mass is 47,65 + 1,05 pg. Found to be crucial in this mass
determination was the cell position along the length of the cantilever. Moreover, calculations
including cells positions on the cantilever provide a threefold better degree of accuracy than
those which assume uniform mass distribution. We have also examined the influence of
storage time on the single cell mass. Our results show that after 6 months there is an
increase in the average mass of a single yeast cell.

Introduction

Mass constitutes one of the most important physical parameters of a cell. However, its regula-
tion and involvement in cellular processes is still poorly understood. The main reason being
that it is quite difficult to directly determine the mass of a single or even a few cells. There are a
few established methods such as optical quantitative phase imaging (QPI) [1-3], pedestal reso-
nant sensors [4], suspended microchannel resonator [5-7] or microcantilever-based microbio-
sensors [8-9] which have been successfully used to determine the mass of individual cells.
Measuring single cell mass provides an opportunity to investigate the regulatory processes and
behavior of a singular cell-for there is no interference between the signals from distinct cells.
The research employed a microcantilever-based system and improved data elaboration pro-
cedure to determine the average mass of a single Saccharomyces cerevisiae yeast cell. This is one
of only a few methods that enable the direct measurement of adherent cell mass. The sample
(in our case yeast cells) requires no fluorescent or radioactive marker labelling, which could
affect its mass and internal cell processes [10-12]. The method measures the mass of a few cells
with high precision in a non-invasive way. Furthermore, it affords real-time measurements
offering the possibility of performing 8 different, independent experiments simultaneously.
The basic principle of the cantilever-based microbiosensor is that it converts molecular bio-
logical interactions into a mechanical response-bending or changing its resonant frequency-
from the elastic silicon micrometer-sized cantilever. The cantilever response is optically
detected and then converted into an electronic signal [13]. High sensor sensitivity and preci-
sion allow for experiments to be performed at the cellular or even molecular level making it
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possible to detect the cantilever bending magnitude in a single nanometer range.Measure-
ments can be carried out in a liquid environment as well as in the air with a controlled temper-
ature in the measuring chamber. The interaction specificity of the cantilever biosensor
response can be significantly improved by means of suitable functionalization of the cantilever
surface. This is accomplished by coating the cantilever surface with specific antibodies or
nucleic acid fragments [14-15]. Cantilever microbiosensors are able to operate in two inde-
pendent work modes: the static, where only a cantilever bending magnitude is measured, and
the dynamic, where the change of cantilever resonant frequency is determined. The working
principles of the cantilever biosensor modes are described below:

1. in static mode, nanometer cantilever deflection occurs as a result of the difference between
the upper and lower cantilever surface stress levels caused by the external interactions of the
biomolecules deposited on one of the cantilever surfaces. The magnitude of the cantilever
deflection is described by Eq 1 [13]:

3(1—v)L?

Az =
Et?

Ao (1)
Az is the magnitude of cantilever deflection; Ao is surface stress; v and E are the Poisson

ratio and the Young modulus of cantilever, respectively; L and t denote cantilever length
and thickness;

2. in the dynamic mode, aload of an additional mass, Am, causes a resonant frequency shift
(Af = fi-fo) from which Am can be determined [16]:

P2k/1o1
Am="r = —— 2
= (5 7) )

Am is a constant for the respective resonance mode; k is a spring constant; f, and f; are canti-
lever resonant frequencies before and after load deposition.

To date, in most cell mass measurements conducted using a cantilever-based biosensor it
was assumed that the loaded mass was evenly distributed on the cantilever surface or that all
the loaded mass was located at the tip of the cantilever [8-9]. In such a case, Eq 2 could be used
for loaded mass determination. However, in a case where a few single cells are deposited in dif-
ferent places on the cantilever surface this assumption is insufficient for any precise cell mass
calculation and it may result in the creation of underestimated or overestimated values for the
loaded mass. This is because the frequency shift caused by the loaded mass strictly depends on
loaded mass position along the cantilever. In a fundamental mode the response is the highest
near the free end while there is no response at all close to the clamped end. Furthermore, the
resonance shift not only depends on the position of the loaded mass but also on the dimen-
sions of the cantilever—for a short cantilever the response is higher than it is for a longer canti-
lever due to the higher value of frequency resonance [9]. As Dohn et all. have defined in [17],
the mass of a single particle can be calculated from a resonance frequency shift with known
cell position as described in Eq 3:

me =i () e
U,(z) = A,(cos(k,z) — cosh(k,z)) + B, (sin(k,z) — sinh(k,z)) (4)

PLOS ONE | https://doi.org/10.1371/journal.pone.0188388 November 21, 2017 2/14


https://doi.org/10.1371/journal.pone.0188388

@° PLOS | ONE

Cantilever microbiosensors

mg and m, are the mass of the cantilever and the mass of a single particle respectively, z is
the distance between the loaded mass and the fixed end of the beam, A,.. By, k,, are constants
characteristic of a specific resonance mode and cantilever length. After attaching a particle to
the cantilever, resonance frequency f,, changes to f, A,. Function U(z) describes the time inde-
pendent mode shape of the cantilever (Eq 4). This equation can be applied to multiple sepa-
rated mass objects on the cantilever [18] (assuming that the mass of every cell is the same) (Eq
5). Eq 5 allows for a precise determination of the contribution of every mass object to the resul-
tant resonant frequency shift. This represents the theoretical base of this work.

my .
m = s () )

Cantilever-based methods have been employed in many research fields. In microbiology,
they were mostly used to detect the presence of microorganisms or viruses [19, 20], but also to
determine biophysical parameters such as mass [8, 9] and growth rate [11-12, 21] of various
biological objects. They can also be applied in studies of protein: conformational changes [22],
response to ligands [23], detection of disease markers [24], specific reactions with DNA [25]
and in other types of experiments. Moreover, cantilever sensors haved been used to analyze
physical and chemical factors such as concentration [26], reaction heat [27], viscosity [28] or
even velocity and the direction of air flow [29, 30]. Over the last few years, cantilever-based
sensors have been employed in both chemical vapor detection or explosives detection [31].
Although the cantilever working principle is the same in all experiments, the deflection read-
out can be monitored differently. There are optical [12, 31], piezoresistive [11] or MOS transis-
tor-based [32] systems. This work employs an optical read-out method by Position Sensitive
Detector (PSD). Fig 1 shows a diagram of the PSD cantilever-based microbiosensor.

This work focuses on the dry cell mass, which as a parameter is related to the changes in cell
metabolism. Mutations or diseases can influence the number and amount of proteins produced
in a cell and change their dry mass. For example, the initial mass of a cell has an impact on the
onset of the DNA synthesis in the cell [33]. The ability to measure this parameter on a single cell
level can provide more precise data on the molecular regulatory mechanism of this phenome-
non. For example, one current work on cell growth kinetics is based on the measurements of
cell volume changes. Such research should rather be based on measuring the change in cell
mass instead of volume. The possibility of comparing or combining the volume and mass mea-
surements of a single cell seems very useful in analyzing molecular processes within the cell.
Nowadays, new and more accurate models of cell growth have been created and tested mostly
with the help of optical methods (cell size) [34]. It seems more accurate to analyze changes in
mass rather than changes in cell shape. Cantilever-based methods have a potential application
in this area of research and in other areas which have not been mentioned in this article.

Materials and methods
Materials

Cantilever pre-cleaning was carried out with Piranha solution, prepared by mixing 95%
H,SO, and 30% H,0, (both from Sigma Aldrich) [8].

Brewer instant yeast Instaferm was obtained from Lallemand, (Jozefow, Poland). Initially,
28 measurements were carried out with fresh yeast, while the subsequent 22 measurements
were performed six months later.

Experiments were carried out on the Cantisens® CSR 801 (Concentris, Basel, Switzerland)
cantilever-based microbiosensor, employing cantilevers type CLA-500-070-04V2 and CLA-
500-070-08V. Cantilever arrays were made of silicon with a plain non-coated surface (native
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Fig 1. Working principle of the cantilever-based optomechanical sensor. The cantilever bending
amplitude or oscillation frequency is detected by a laser-based optical system. The light from laser (A) on
being deflected from the oscillating cantilever (B) falls on PSD (C) where the signal is transformed into the
electronic form. Subsequently signal is sent to the computer where its magnitude is displayed on the screen.

https://doi.org/10.1371/journal.pone.0188388.9001

oxide). These types of cantilevers are designed for dynamic work mode. Each cantilever is
7 um thick and 100 um wide and in order to avoid any resonance between adjacent cantilevers
during excitation, their lengths vary from 150 pm to 500 pm.

Methods

We performed 50 measurements on yeast cells deposited near the free end on the cantilever
surface using a microcantilever biosensor and optical microscope. Every measurement
included the following steps: cantilever and chamber preparation, the first series of resonant
frequency measurement, yeast cell deposition on the cantilevers, the second series of resonant
frequency measuring and, finally, imaging the cantilever surfaces and data analysis.

Our measurements were performed in two time periods: 22 of them during the first term
and the remainder after a half-year interval. During this period of time the dry yeast cells were
kept in a fridge in an open container. In every experiment we used a chip with 6-8 cantilevers
and at least 1-2 of them were without deposited yeast and acted as a negative control. Yeast
deposition was controlled by comparing the images of the cantilever surfaces between every
series of resonant frequency measurement. Before every experiment, a new dilution of a por-
tion of dry yeast from the container and freshly distilled water was prepared.

Cantilever and measurement chamber preparations

The freshly prepared Piranha solution was always used to clean the microcantilever surfaces
before every experiment. Cantilever arrays were dipped for 20 minutes in the solution and,
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after that, rinsed three times in distilled water. Before every resonance frequency measurement
the cantilevers arrays and the measurement chamber were left to dry for about 75 minutes.
Before the first series of resonant frequency measurement the cantilevers chip was imaged to
determine the cleanliness of the cantilever surface.

Resonant frequency measurements

All experiments were conducted in the fundamental resonance mode of every cantilever in
order to minimize the experimental uncertainty. First, cantilever oscillation frequencies were
scanned to find the resonant frequencies. A full scan was performed in the frequency range
from 10 to 1000 kHz with a 100 Hz step. Experimentally, the determined resonance frequen-
cies of subsequent modes were compared with the expected, theoretically calculated values to
establish the value of the fundamental mode resonance frequency. Next, the narrowed fre-
quency range of the fundamental resonance mode on every cantilever was again scanned with
a 50 Hz step. However, the final position of the resonant peak was twice re-scanned automati-
cally by the experimental device with a step smaller than 1Hz. To determine the average reso-
nant frequency of every cantilever, 10 such measurements were carried out at 5 or 10- minute
intervals.

The lyophilized yeast were suspended in distilled water and incubated for 5 minutes at
room temperature. Next, the apexes of the cantilevers were quickly immersed in a drop of
freshly prepared yeast cell suspension and then immediately removed. The yeast cells adhered
to the cantilever surface, whereas the amount of water that also remained on the cantilever
evaporated quickly. Next, the resonant frequency was determined once again by a series of
measurements performed in the way described earlier. In every experiment some cantilevers
were intentionally left uncoated to act as negative controls. The second series of resonant fre-
quency measurements for each cantilever was performed until the value of resonance fre-
quency was stable for more than an hour. The water was evaporated from the yeast and the dry
mass of the yeast cells remained in balance with the humidity in the measurement chamber.
We improved the method of yeast cell deposition by changing the size of the suspension drop-
let before the immersion of the cantilever; consequently, the amount of water deposited on the
cantilever surface was negligible. Because of this, water evaporated faster from the cells and the
time needed to reach the equilibrium was shorter than before.

Microscope images acquisition and analysis

A crucial step in data analysis is the determination of each cell position. Therefore, in this
work, images were very carefully examined to determine the number of cells, their position
and the presence of contaminations on the cantilever. Employed for this purpose was an opti-
cal microscope (Axio Observer Z1 Zeiss, Jena, Germany); the images were taken with 40x and
63x objectives (1.4 NA and 1.46 NA respectively). In order to determine the number and posi-
tion of the yeast cells on the cantilever, microscope images were captured immediately after
the resonant frequency measurement. First, one side of the cantilever was imaged and, after
that, the cantilever array was flipped over and the other side was imaged. Due to the fact that
light is absorbed in silicon, cells located on each side of the cantilever could be distinguished
(through the difference in cell contrast). In some cases we were unable to count them properly
because of the yeast cells that were on the opposite side of the cantilever and their overlapped
images. Therefore, confocal microscopy was used (LSM 710 on Axio Observer Z1 Zeiss, Ger-
many, Jena). This method allows for an optical sectioning not possible in wide field optical
microscopy. Consequently each side of the cantilever could be separated and the position of
every cell on the cantilever surface be determined with a high precision. Afterwards images
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Fig 2. Cantilever dimensions were obtained by analyzing the line profiles on the cantilever images. A)
Image of the cantilever with a superimposed line used to make the profile. B) Obtained intensity profile along a
marked line. C) Derivative of intensity profile curve from Graph B. The Gauss function was fitted to the
obtained peaks (line). The distance between the peak positions was interpreted as being the cantilever width.
To estimate cantilever length the same procedure was performed.

https://doi.org/10.1371/journal.pone.0188388.9002

were analyzed in Image] (Rasband, W.S., Image], U. S. National Institutes of Health, Bethesda,
Maryland, USA) to find the cantilever dimensions (Fig 2) and precise cell positions (Fig 3). On
every microscope image the distance between the center of the cell and the shortest edge of the
cantilever was measured and the value of the function U(z) was calculated in OriginPro (Origi-
nLab Corp., Northampton, MA, USA) using Eq 4. The precise length and width of the cantile-
ver were determined by analyzing the line profiles (Fig 2) of the perpendicular and parallel
lines to the cantilever’s edges.

Single cell mass determination

Finally, to determine single cell mass, parameters such as the number of cells and their posi-
tions obtained on the basis of image analysis, average frequency before and after the cell depo-
sition obtained during the measurement with a microcantilever biosensor and the cantilever
mass were entered into Eq 5. The mass of the cantilever was calculated from its dimensions
using the silicon density of pg; = 2300 kg/m’ [16].

Results

The shift in the value of cantilever resonant frequency serves as a measure of the loaded mass.
To determine precisely the value of the resonant frequency, Lorentz functions were fitted to
raw data (frequency scans) (Fig 4A and 4B). The calculated position of the fitted peak was
deemed to be the value of the cantilever resonant frequency. The positions of subsequent
peaks were measured at equal periods of time to monitor any resonant frequency change (Fig
4C). During each measurement, the values of the resonant frequencies were very consistent,
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Fig 3. Yeast cells located on the cantilever surface. Left panel-a cluster of 5 yeast cell near the free end of the
cantilever. Right panel-magnification of the square from the left panel showing the graphical determination of a
cell distance from the edge of the cantilever.

https://doi.org/10.1371/journal.pone.0188388.9g003

which improved the precision of this method. At least 10 resonant frequency measurements
before and after yeast cells deposition were averaged in all these measurements. The values
were most stable with deviations of these points in every measurement being under 3% of the
frequency shift value. After the deposition of the yeast cells on the cantilevers, the value of the
cantilever resonance frequency dropped as a result of its mass increase. In some initial experi-
ments, after the deposition of yeast cells on the cantilevers, the value of the resonance fre-
quency initially dropped and subsequently increased slightly (Fig 4C). This phenomenon was
interpreted to be the result of the evaporation of the remaining water and a possible minimal
shift in the cell positions, one brought about by this evaporation. With improvements in the
cell loading procedure and ensuring that only a small volume of cell suspension was deposited
on the cantilevers, no repeat in this phenomenon was observed.

To determine yeast cells positions, Image] software was used. First, we evaluated the cleanli-
ness of the cantilever by analyzing the images taken before the experiment. We also used these
images to calculate accurate dimensions of the cantilevers. Similarly, we took images after
yeast deposition (before resonant frequency measurement) as well as after measurement. Then
we compared these two sets of images for each cantilever to check if the position of the yeast
cells had changed during the experiment. We did not observe any displacement of cells or
shake losses in any of the performed experiments. The yeast cells were located near the free
end of the cantilever. During water evaporation and after yeast deposition, they were pulled in
clusters as a result of the water surface tension and remained in this configuration until the
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does not exhibit frequency shift. Lorentz function was fitted (lines) to experimental data (dots). The position of
the peak was interpreted as the value of cantilever resonance frequency. All measured frequencies are shown
on (C). Each point corresponds to a resonance frequency value at experimental time intervals. Area | shows
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blue dots) does not change its value during the entire measurement process.

https://doi.org/10.1371/journal.pone.0188388.9004

end of the experiment. There were no yeast cells on the cantilever’s sides because the cantilever
thickness was too small in comparison to the cell size. The cell position was determined as the
distance from the center of the cell to the free end of the cantilever edge It was then used to cal-
culate the position z in the single cell yeast mass in Eq 4 for every cell.

As was mentioned in the Introduction, previous research into cell mass with cantilever-
based microbiosensors, had assumed that the beam is end-loaded or uniformly loaded [9, 11].
In this work we have shown that taking the cell position into account is crucial for the precise
determination of the cell mass. We have demonstrated what happens when an average cell
mass is calculated in two ways: an approach including cell position (determining every cell
position on the cantilever) and an approach assuming a uniform cell arrangement on the can-
tilever. The results of both approaches are presented on Fig 5. The mean single cell mass when
every cell position was determined and included in the calculations is 47.65 £ 1.05 pg, but
when uniform cell distribution was assumed, that value was 40.79 + 2.77 pg. Moreover, taking
the position of loaded masses into account gives much more precise final values than employ-
ing the other method.
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We also compared the cantilever frequency shift normalized by the number of cells (Fig
6A), assuming a uniform distribution of the deposited cell mass or taking into considerations
the position of every individual deposited cell along the cantilever length by employing the
sum of U(z) functions (Fig 6B). It has been shown that for longer beams the resonance fre-
quency shift is smaller than for the shortest one, as was expected on the basis of theoretical
assumptions [9]. However, the precision of frequency shift determination for a single cell is
better for longer cantilevers. It seems that it is up to the person conducting the experiment to
decide which cantilever length should be employed for particular measurements. The data also
show that taking into consideration the positions of individual cells significantly decreases the
data deviation and approximates it to theoretical assumptions.

Next, the way the storage time of a yeast sample influences single cell mass was examined.
We compared the aforementioned 22 measurements (1% series) with 28 measurements (2nd
series) performed on the yeast sample stored for 6 months after the first experiments. The final
results are shown in Fig 7. There was an increase in the mean value of the mass of a single
yeast cell although the data ranges overlap. We noted that the mean single cell mass for 1%
series was 47.65 + 1.05 pg (Fig 7, part A), while the single cell mass for the 2" series was 53.10
+0.73 pg (Fig 7 part B).

The data shown in Fig 8 illustrate that the number of deposited cells has no influence on the
measured average cell mass. However, it can be noted that for a higher number of yeast cells
deposited on the cantilever the value of the single cell mass seems to be slightly higher than for
a smaller number of cells. We suspect that this may be caused by residual water held in cell
gaps when in clusters or simply by a miscounting of the number of cells in large cell clusters.
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Discussion

Many cellular phenomena are connected with cell mass changes. Most are also related to cell
volume changes. To directly determine such links it would follow to measure the mass and vol-
ume of individual or a few cells in the physiological conditions relevant for such cells. Usually
it was possible to estimate the mass of a single cell by averaging the mass of many (thousands

60

40

A B

Fig 7. Change in the lyophilized yeast cell mass after a 6-month period of refrigerated storage. A) Initial
yeast cell mass value and B) after 6 months of storage.

https://doi.org/10.1371/journal.pone.0188388.g007
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Fig 8. Dependence of the average single cell mass on the number of cells deposited on the cantilever.
Initial series (black) and after a 6- month period of storage (white). The dashed line separates areas with a
different scale.

https://doi.org/10.1371/journal.pone.0188388.9008

or millions) cells, which resulted in high experimental uncertainty. Another approach is to cal-
culate the cell mass on the basis of the optical density and volume of the cell. However, the
density of the cell is not uniform while cell size depends considerably on environmental factors
(such as the osmotic effect). In contrast, dry mass is an independent parameter that describes
the amount of proteins and other materials inside the cell.

Different water amounts in a cell can significantly influence the results of the mass mea-
surement. To avoid this effect, we always prepared a fresh suspension of lyophilized yeast in
distilled water immediately before the yeast deposition on the cantilevers. Consequently envi-
ronmental moisture has no effect on yeast mass measurements. The yeast cell wall maintains
the shape and protects the cell against the osmotic effect. This was shown in [35] where the
Saccharomyces Cerevisiae were prepared in the same way and where their size and shape did
not change before and after hydration.

In this work the mass of a single brewer yeast cell was determined by means of cantilever-
based biosensors systems. In our calculations we included the cells position on the cantilever
and the dimensions of the cantilever, which resulted in a 3-fold improvement in accuracy than
when uniform mass distribution was assumed. We employed the physical model of a vibrating
cantilever, which did not take into account the stiffness of the deposited matter. The first work
that described a positive frequency shift due to this effect was published more than a decade
ago by the J. Tamayo group [36]. This also demonstrated a potential in the estimation of the
Young modulus of adsorbed matter [37]. However, in our research, we used conditions that
greatly minimize the influence of deposited material stiffness on the cantilever frequency
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change. First, this effect is significant when deposited matter forms layers on the cantilever sur-
face [38]. It is also common knowledge that the stiffness effect is a major contributor when the
deposited matter is located near the clamped end of the cantilever and that it decreases with
the distance from the clamped end of the cantilever. Because of that the overestimation of
deposited mass was observed for point masses, when they were randomly placed on the canti-
lever surface. In our research, we placed the yeast cells only near the free end of the cantilever,
which resulted in a strong mass response and a very weak stiffness response. In [38] it was
shown that the stiffness effect response is greater for an elastic (low Young modulus) adsorbent
or cantilever. Moreover, the dependence of the mass reading ratio on the stiffness was calcu-
lated—the mass reading ratio is close to 1 when the adsorbent stiffness exceeds 100 kPa. In our
research we used a silicon cantilever and yeast cells. Because the yeast cell wall Young modulus
is close to 0.74 MPa [39] together with other conditions mentioned earlier, the stiffness effect
in our research is negligible.

The single yeast cell dry mass, as determined in this work, is 47.65 + 1.05 pg. However, the
single cell mass varied from 40 pg to up to 67 pg, though most of the results are in the range 44
to 51. This shows that changes in the mass of individual cells can be correlated with the biolog-
ical processes taking place in these cells. This opens up many new possibilities for biophysical
research. Moreover, the size of the cells varied between 2-4 pm in diameter with most of them
being close to 3 pm in diameter, which indicates that the average density of the measured cells
is around 3 times greater than water density. As expected, the density of the dry mass was sig-
nificantly higher than the density of water. During measurements water evaporates from the
cell while heavy organic structures such as proteins or the cell wall remain in the cell.

It has also been demonstrated that by using our method it is possible to see the change in
the mass of a single yeast cell after 6- months of storage. The lyophilized yeast was stored in a
fridge as normal in domestic conditions. The moisture was uncontrolled because, as has been
mentioned, the yeast were diluted in water. An increase in the mean value of the yeast cell
mass was observed. It is a matter of speculation whether yeast cells produced additional pro-
teins during the storage time rather than budding or fully stopping their metabolism.

This work also indicates that the cantilever-based method can be used for the determination
of the mass of adherent cells, which is not possible or difficult when using a suspended micro-
channel method. In addition, specific processes can be detected such as water evaporation and
cell positions shift; however, further research is needed.
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