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Abstract

Electroencephalography (EEG) has recently been considered for use in rehabilitation of

people with motor deficits. EEG data from the motor imagery of different body movements

have been used, for instance, as an EEG-based control method to send commands to reha-

bilitation devices that assist people to perform a variety of different motor tasks. However, it

is both time and effort consuming to go through data collection and model training for every

rehabilitation task. In this paper, we investigate the possibility of using an EEG model from

one type of motor imagery (e.g.: elbow extension and flexion) to classify EEG from other

types of motor imagery activities (e.g.: open a drawer). In order to study the problem, we

focused on the elbow joint. Specifically, nine kinesthetic motor imagery tasks involving the

elbow were investigated in twelve healthy individuals who participated in the study. While

results reported that models from goal-oriented motor imagery tasks had higher accuracy

than models from the simple joint tasks in intra-task testing (e.g., model from elbow exten-

sion and flexion task was tested on EEG data collected from elbow extension and flexion

task), models from simple joint tasks had higher accuracies than the others in inter-task test-

ing (e.g., model from elbow extension and flexion task tested on EEG data collected from

drawer opening task). Simple single joint motor imagery tasks could, therefore, be consid-

ered for training models to potentially reduce the number of repetitive data acquisitions and

model training in rehabilitation applications.

Introduction

Several BCIs are based on electroencephalography (EEG). EEG measures the electric brain

activity caused by the flow of electric currents during the synaptic excitations of the dendrites

in the neurons. [1]. Recently, research on EEG controlled system has become particularly

active, as EEG measurement is non-invasive and easy to set up [2–6].

Different EEG-based control approaches have been explored in different populations to

assist individuals to reacquire the basic abilities for communication [7] and mobility (e.g.,
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control of neuroprostheses [8–10] and wheelchairs [11]). Recently, research groups have also

explored the use of EEG controlled systems in stroke rehabilitation, in order to encourage

users to be actively engaged during the rehabilitation process [3][12]. A current challenge is to

develop EEG controlled systems for a large number of tasks with high accuracy [4]. To over-

come this problem, the building of binary classification models for each task has been investi-

gated [13]. However, repetitively acquiring EEG data and building EEG models for each task

does require considerable effort on the part of the user and is also time-consuming. A possible

solution is to build a general EEG model based on EEG data of a specific movement, which

can be reused in different but similar training tasks (general model approach, GM for short).

Motor imagery is a common method for EEG controls in the literature [4][14]. Motor

imaginary can be either goal-oriented or be related to a single joint. Goal-oriented motor

imagery refers to imagery on context-specific movements, such as grasping a glass of water for

drinking or eating with a spoon [15]. On the other hand, single joint motor imagery, as

referred to in this paper, consists of imagining a single joint movement that is not goal-ori-

ented or has a specific meaningful purpose. Examples of single joint motor imagery include

imagining flexing or extending the elbow, the wrist, or another joint without grasping an

object or any specific function [15].

Studies have shown that practice of goal-oriented tasks after stroke produces long-lasting

cortical reorganization compared to traditional stroke rehabilitation[15][16][17]. Additionally,

Boyd et al. demonstrated that goal-oriented task training with the hemiparetic arm resulted in

both functional reorganization of both motor cortices and a larger motor learning-related

change after stroke[18].

Despite the importance of goal-oriented tasks in stroke rehabilitation, most existing EEG

controlled systems were developed to perform simple movements rather than goal-oriented

tasks (see Table 1). Only a few studies considered goal-oriented tasks (e.g. Frisoli, A. et al. [19],

Royer, AS. et al.[20], Min, BK. et.al[21]).

Recent literature has shown that the motor imagery (MI) of goal-oriented movements is

better than non-goal-oriented movements in terms of achieving higher EEG control accuracy

[13]. However, in practical rehabilitation applications, participants would have to spend time

and effort in repetitive data acquisition and model training for each different goal-oriented

task. On the other hand, the use of a GM could potentially drastically reduce the training time

as the training would be done on a single task. However, it is not known whether an EEG

model trained using the EEG signals of the motor imagery of a single upper extremity move-

ment (e.g., elbow flexion and extension) could be used to classify the motor imagery of similar

other movements (e.g., opening a door, combing hair, placing a ball into a basket, etc.). To the

best of the authors’ knowledge, it is also not known which movement would work best to gen-

erate the GM. The investigation into a model can be reused in different training tasks is an

important problem to be addressed especially in EEG controlled rehabilitation applications,

where each goal-oriented movement is generally functionally different from the others.

The main goal of this exploratory study is to determine which motor imagery task is the

most suitable to make the EEG model versatile during EEG acquisition, i.e. have the highest

inter-task test accuracy. Specifically, the versatility of nine different motor imagery tasks was

considered in this paper. In this context, versatility means that the EEG model generated from

one specific motor imagery task leads to good performance when tested on the EEG data of

other motor imagery tasks. In this study, six classification methods were used to generate the

EEG models of the nine predefined motor imagery tasks. Then, the EEG data from other eight

motor imagery tasks were used to test the inter-task test accuracy of the EEG model. Finally, a

statistical analysis was performed to determine which motor imagery task was the most versa-

tile when used as a GM.
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Given the complexity of the problem, this exploratory study focuses only on upper-extrem-

ity movements to simplify the investigation. Specifically, all the tasks were selected to be cen-

tered on the elbow joint.

Methods

All the methods within this study were in compliance with the Declaration of Helsinki. The

study was also approved by the Simon Fraser University (SFU) Office of Research Ethics.

In this study, 12 participants (aged 20–33 years old, 10 males and 2 females) agreed to join

the study. All the participants signed informed consent forms before taking part in the experi-

ment. Each individual was seated in front of a computer monitor, which provided a simple

Graphical User Interface (GUI) that displayed pictures or cues to the participant.

Experimental protocol

A 32-channel, EGI Geodesic N400 system (Electrical Geodesics Inc., Eugene, OR, USA) was

used to acquire the EEG data from the participants. EEG data were amplified and recorded at

Table 1. Examples of different EEG control setup and tasks used in the literature.

Bibliography Feedback EEG Classes

Wolpaw et al. 2004 [22] EEG+Visual 8-Class: By combining Vertical and Horizontal control to select 8

targets

Meng et al. 2008 [23] EEG + Visual + FES 2-Class: MI (Wrist/Hand) vs Rest

Buch et al. 2008[24] EEG + Visual + Orthosis 2-Class: MI (Grasp) vs MI (Open)

Daly et al. 2009[25] EEG + Visual + FES 2-Class: MI/AT (Finger Extension) vs Relax

Ying Gu et al. 2009[26] EEG 4-Class: MI of finger/wrist with different moving speed

Prasad et al. 2010[27] EEG + Visual 2-Class: MI Left vs MI Right (Arm/Hand)

Tan et al. 2010 [28] EEG + Visual + NES 2-Class: MI (Hand) vs Rest

Ang et al. 2010[29] EEG + Visual + Robot 2-Class: MI/AT (Grasp) vs Rest

Broetz et al. 2010[30] EEG + Visual + Orthosis 2-Class: MI/AT (Grasp) vs MI/AT (Open)

Tam et al. 2011 [31] EEG + Visual + FES 2-Class: MI (Wrist) vs Rest

Gomez-Rodriguez et al. 2010[32] EEG + Visual + Robot 2-Class: MI (Elbow Flexion/Extension) vs Rest

Shindo et al. 2011[33] EEG + Visual + Orthosis 2-Class: MI (Open Hand) vs Rest

Ortner et al. 2012[34] EEG + Visual 2-Class: MI Left vs MI Right (Hand)

Kaiser et al. 2012[35] EEG + Visual 2-Class: MI/AT (Grasp) vs Rest

Cincotti et al. 2012[36] EEG + EMG + FES 2-Class: MI/AT (Grasp/Finger Extension) vs Relax

Frisoli et al. 2012[19] EEG + Arm Exoskeleton + Kinect + Eye-

Tracker

2-Class: MI (Right Arm) vs Rest

Vuckovic et al. 2012[37] EEG 4-Class: MI on both wrist movement

Ramos-Murguialday et al. 2013

[38]

EEG + Orthosis 2-Class: AT (Reach & Grasp) vs Rest

Young et al. 2014[39] EEG + Visual + FES + TS 2-Class: AT (Open + Close Hand) vs Rest

Ang et al. 2015[40] EEG + Visual + Robot 2-Class: MI (Grasp) vs Rest

Pinto et al.2015[41] EEG 2-Class: Action vs Rest; 4-Class: L-R motor, L-R MI

Ibáñez et al. 2015[42] EEG+FES 2-Class: AT(Elbow) vs Rest

Yong et al. 2015[13] EEG Offline Analysis 4-Class: MI(Grasp, Elbow, Reach&Grasp) vs Rest

Elnady et al. 2015[43] EEG + Exoskeleton + FES 2-Class: MI (Grasp) vs Rest

Edelman et al. 2016[44] EEG 4-Class: MI on one hand movement

MI: motor imagery; AT: attempted movement; NES: neuromuscular electrical stimulation; TS: tongue stimulation; S: stroke volunteers; H: healthy

individuals; sess: session(s)

https://doi.org/10.1371/journal.pone.0188293.t001
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a sampling rate of 1 kHz. The electrode contact sites are shown in Fig 1. 17 channels were used

in this study, as the remaining channels were located on the face (the EGI cap does not allow

to re-position the electrodes). All participants were requested to wear the EGI sensor net for

approximately 40 minutes during this experiment. During the experiment, the participants

could take a break if desired.

EEG data were collected using the Stimulus Presentation mode in BCI2000[45]. During

Stimulus Presentation, customized pictures were shown on the screen while the EEG signals

Fig 1. Contact montage of the EEG system in the experiment, 17 channels was used. Cz was defined as the reference contact

by the EGI system, COM was the common ground contact.

https://doi.org/10.1371/journal.pone.0188293.g001
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were recorded and filtered with a bandpass filter of 0.1–40 Hz. In this study, the pictures for

ten different tasks were randomly selected and displayed on the screen. These pictures are pre-

sented in Fig 2. The participants were asked to repetitively perform the kinaesthetic motor

imagery task displayed on the screen for 4 seconds without actually moving. Kinaesthetic

motor imagery means that the participants were required to perform imaginary movement by

focusing on imagining the sensation of the movement[46].

In this study, nine motor imagery tasks were chosen as upper limb movements. Tasks were

selected to primarily involve the elbow joint. These motor imagery tasks can be divided into

three main categories: 1) simple joint task that do not have any context meaning. In this paper,

we chose Elbow Task, Drawer Task, and Weight Task; 2) simple elbow joint tasks that are

commonly executed in daily life and require a relatively low level of synergy of other joints. In

this paper we chose Door Task, Plate Task, and Comb Task; and 3) goal-oriented tasks, which

require trajectory planning and multiple joint synergies. In this paper, we chose Soup Task,

Pizza Task, and Pick&Place Task. The specific instructions given to the participants with

respect to the ten tasks are summarized below:

1. Rest (Fig 2(A)): rest while looking at the center of the cross;

2. Elbow task (Fig 2(B)): kinaesthetically imagine flexing and extending the elbow of the dom-

inant arm;

3. Drawer task (Fig 2(C)): kinaesthetically imagine opening and closing a drawer with the

dominant hand;

4. Soup task (Fig 2(D)): kinaesthetically imagine getting a spoonful of soup and drinking the

soup using the dominant hand;

Fig 2. Picture of the tasks that were used in the Stimulus Presentation tasks where: (a)Rest Task, rest and

stay alerted; (b)Elbow Task, imagine elbow flexion and extension; (c)Drawer Task, imagine opening and

closing a drawer; (d)Soup Task, imagine drinking soup with a spoon; (e)Weight Task, imagine lifting and

putting down a dumbbell; (f)Door Task, imagine opening and closing a door; (g)Plate Task, imagine cleaning a

plate; (h)Comb Task, imagine combing hair; (i)Pizza Task, imagine cutting a pizza with a pizza cutter; and (j)

Pick &Place Task, imagine picking up a ball and put it into a basket.

https://doi.org/10.1371/journal.pone.0188293.g002
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5. Weight task (Fig 2(E)): kinaesthetically imagine lifting and putting down a dumbbell with

the dominant hand;

6. Door task (Fig 2(F)): kinaesthetically imagine opening and closing door with the dominant

hand on the door knob;

7. Plate task (Fig 2(G)): kinaesthetically imagine cleaning a plate with only elbow extension

and flexion movement;

8. Comb task (Fig 2(H)): kinaesthetically imagine combing hair with the dominant hand.

9. Pizza task (Fig 2(I)): kinaesthetically imagine cutting a pizza with a pizza cutter with the

dominant hand;

10. Pick&Place Task (Fig 2(J)): kinaesthetically imagine picking a ball and placing it into a

basket with the dominant hand.

During the Stimulus Presentation, each picture was displayed on the screen for 4–6 sec-

onds, followed by 4–6 seconds of rest, and the timing was randomized by the software in order

to prevent participants from adapting. When the picture was displayed on the screen, the par-

ticipant was requested to perform motor imagery of the corresponding task repetitively for

1–2 repetitions. For each participant, the test consisted of 15 consecutive runs. Each run con-

sisted of 4 Rest, 4 Elbow Tasks and 16 other tasks (2 for each of the remaining tasks). Each run

lasted for approximately 3 minutes. Each participant was requested to complete 15 runs and

he/she could rest for as long as was needed between two runs. The participants were required

to follow the stimulus on the screen. While the picture was on the screen, the participants were

required to perform the respective tasks repetitively for 2–3 repetitions. As in many MI studies

reported in the literature, electromyography (EMG) was not recorded [47][48][49]. To ensure

compliance to the protocol, we had one observer monitor the participants to ensure they were

not moving during the task. In the case of the slightest movement, the recorded data were dis-

regarded, and the participant was asked to repeat the experiment.

Participants

Twelve healthy participants, aged between 20 and 33 participated in this study. Their demo-

graphic data are presented in Table 2.

Table 2. Demographic data for the participants.

Participants Gender Age Dominant Hand

H01 M 27 Right

H02 F 31 Right

H03 M 21 Right

H04 M 30 Right

H05 M 26 Left

H06 M 20 Right

H07 M 33 Right

H08 M 23 Right

H09 F 33 Right

H10 M 28 Right

H11 M 24 Right

H12 M 21 Right

https://doi.org/10.1371/journal.pone.0188293.t002
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Feature extraction and classification

The data acquired were analyzed using BCILAB[50], a BCI toolbox based on Matlab. The data

were first resampled at 250 Hz. Then, a finite impulse response (FIR) bandpass filter was used

to filter out the 6–35 Hz frequency band. By band-pass filtering, the data, ocular artifacts and

other undesired frequency components of the EEG data were minimized. This frequency band

covers the mu and beta rhythms, which have been reported to desynchronize during motor

imagery [51]. According to the literature, the band power changes of the mu and beta rhythms

have been used in BCI systems to classify EEG signals related to motor imagery [52–54]. Those

activities are localized in the mu (7–13 Hz) and beta bands (13–30 Hz). Therefore, band power

(BP) of a certain band frequency can be used as a basic feature for classification [51,55]. How-

ever, ERD/ERS signals could be overlapped in time and space by multiple signals from differ-

ent brain tasks. For this reason, in some cases, it may not be sufficient to use simple methods

such as a band pass filter to extract the desired band power. The literature suggests that spatial

filters, like common spatial pattern (CSP), could be appropriate [56]. The performance of spa-

tial filters is dependent on its operational frequency band. Therefore, we also included filter

bank CSP (FBCSP) to avoid this potential problem [57,58].

As each participant had a different reaction time to the stimulus, nine different epoch peri-

ods were extracted from the EEG data to find out the optimal epoch that led to the best EEG

control performance. The different epochs used are presented in Table 3.

In this paper, BP[59], CSP[53] and FBCSP [57] were used as feature extraction algorithms

to extract features, for each EEG epoch. Detailed information is presented in Table 4.

The features were then sent to classifiers. Since we wanted to evaluate the influence of dif-

ferent motor imageries in this paper, classifiers were limited with basic classifiers. In this

study, linear discriminant analysis (LDA) and dual-augmented lagrangian (DAL) method

were used for classification. All the classifiers were regularized during training. For LDA, ana-

lytical covariance shrinkage was used for regularization [60]. For DAL, dual-spectral logistic

norm was used for regularization, with grid searching λ from 2−15 to 210, the step size was 2

Table 4. Feature setting for model training.

Algorithm Frequency Band Feature Dimension

BP 6-32Hz 17

CSP 6-32Hz 6

FBCSP 6-15Hz; 15-25Hz; 25-32Hz 18

https://doi.org/10.1371/journal.pone.0188293.t004

Table 3. Epoch periods used in data analysis.

Epoch ID Epoch Period*

1 0.5–2.5s

2 1-3s

3 1.5–3.5s

4 2-4s

5 2.5–4.5s

6 3-5s

7 1-3s

8 1-4s

9 1-5s

*Refer to the time after the stimulus was shown on the screen

https://doi.org/10.1371/journal.pone.0188293.t003
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times [61]. A binary classifier was generated for the EEG features obtained from Rest Task

data and one of the Tasks (b)-(j) respectively. A 5×5 cross-validation method was used to vali-

date the performance of the classifiers.

We used 3 features (i.e. BP, CSP, and FBCSP) and 2 classifiers (LDA, DAL) which resulted

in 6 models per epoch for each participant. We considered 9 epochs, which resulted in 54 dif-

ferent models (3×2×9 = 54). We selected the best model for each motor imagery task for each

participant. Each participant performed 9 different tasks, and we invited 12 participants. We,

therefore, obtained 108 models in total (9×12 = 108). By doing this, we set a uniform objective

classification standard for all nine different motor imagery tasks. The performance of the mod-

els from these motor imagery tasks is presented in the following sections.

Model training and testing

The main goal of the work was to assess the versatility of the EEG models derived from differ-

ent motor imagery tasks. We studied this in the inter-task problem, where the model generated

from one type of motor imagery task was tested with data from another motor imagery task.

The data were collected to investigate this inter-task problem. Specifically, 30 trials (T) for

each of the 9 motor imagery tasks (i.e. T1 -T9) were collected. For each task, the data were ran-

domized. Furthermore, 60 trials of rest were recorded. After randomization, they were divided

in two groups: training (RTR) and testing (RTE). Therefore, a total number of 330 trials (i.e. 30

trials × 9 motor imagery tasks + 30 rest for training (RTR) + 30 rest for testing (RTE)) were

recorded.

During training, 9 two-class models were created for each participant. Each model, corre-

sponding to a single task, was trained using the 30 trials of rest (RTR) collected for training pur-

poses (class 1) + the 30 trials related to the single task in question (class 2). Specifically, Model

1 (m1_INTER) was trained using T1 and RTR, model 2 (m2_INTER) was trained using T2 and RTR,

etc. Table 5 shows the training datasets for each model. A 5-fold cross-validation was used to

generate the models during training.

For testing, each model was tested with data collected for the other models. Specifically, m1

was tested with 8 testing datasets, the first being T2+RTE, the second being, T3+RTE, the third

T4+RTE, etc. Table 6 shows the data usage in testing datasets.

Table 5. Data usage in training models for inter-task problem.

Model Name m1_INTER m2_INTER m3_INTER m4_INTER m5_INTER m6_INTER m7_INTER m8_INTER m9_INTER

Data Used T1 and RTR T2 and RTR T3 and RTR T4 and RTR T5 and RTR T6 and RTR T7 and RTR T8 and RTR T1 and RTR

https://doi.org/10.1371/journal.pone.0188293.t005

Table 6. Data usage in the inter-task testing.

Model Name Elbow Drawer Spoon Weight Door Plate Comb Pizza Pick& Place

m1_INTER —— T2+RTE T3+RTE T4+RTE T5+RTE T6+RTE T7+RTE T8+RTE T9+RTE

m2_INTER T1+RTE — T3+RTE T4+RTE T5+RTE T6+RTE T7+RTE T8+RTE T9+RTE

m3_INTER T1+RTE T2+RTE — T4+RTE T5+RTE T6+RTE T7+RTE T8+RTE T9+RTE

m4_INTER T1+RTE T2+RTE T3+RTE — T5+RTE T6+RTE T7+RTE T8+RTE T9+RTE

m5_INTER T1+RTE T2+RTE T3+RTE T4+RTE — T6+RTE T7+RTE T8+RTE T9+RTE

m6_INTER T1+RTE T2+RTE T3+RTE T4+RTE T5+RTE — T7+RTE T8+RTE T9+RTE

m7_INTER T1+RTE T2+RTE T3+RTE T4+RTE T5+RTE T6+RTE — T8+RTE T9+RTE

m8_INTER T1+RTE T2+RTE T3+RTE T4+RTE T5+RTE T6+RTE T7+RTE — T9+RTE

m9_INTER T1+RTE T2+RTE T3+RTE T4+RTE T5+RTE T6+RTE T7+RTE T8+RTE —

https://doi.org/10.1371/journal.pone.0188293.t006
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Before running the inter-task problem, the authors wanted to ensure that the considered

BP/CSP/FBCSP+LDA/DAL method was a suitable method for the motor imagery tasks con-

sidered. Therefore, an intra-task problem was first addressed. In this case, each task had to be

tested with data collected from the same motor imagery task (e.g. a model trained with T1

could not be tested with T2 as for the inter-task case as T1 and T1 were datasets related to dif-

ferent tasks, thus not suitable for the intra-task case). For this reason, each of the 30 trials was

divided in training and testing datasets for the intra-task case. Specifically, 24 trials of each

motor imagery task (e.g. T1_TR) together with 24 trials of Rest Task (Rintra_TR) were used for

training. The remaining six trials of the same motor imagery task (e.g. T1_TE) together with 6

trials of Rest Task (Rintra_TE) were used for testing. Table 7 shows the training and testing data-

set for each model.

The coefficient of determination (R2 value)

The coefficient of determination (R2 value) is a statistical measure computed over a pair of

sample distributions, which measures how strongly the means of the two distributions differ in

relation to variance [62]. In a BCI context, the R2 value is computed over signals that have

been measured under two different task conditions. It represents the fraction of the total signal

variance caused by different tasks [62]. It is a measure of how well the task condition is

reflected in the brain activities [62].

The R2 value at each electrode location was computed for all participants and all combina-

tions of different tasks in order to investigate the topographical distribution on the scalp of the

difference between rest and the other imaginary tasks. The frequency that generated the high-

est R2 value was used to generate the topography. The 6-32Hz frequency component was con-

sidered for this representation as motor imagery was investigated.

Results

This section reports the results of the intra-task problem to assess the validity of the BP/CSP/

FBCSP+LDA/DAL method before addressing the inter-task problem which is the main focus

of this work.

Inter-task problem: Cross-validation results using the training dataset

For the inter-task problem the models were generated according to Table 5. Fig 3 summarizes

the distribution of the feature algorithms and classifiers used to obtain the model. Among all

the features and classifiers, CSP together with LDA was the most common combination: it

took 35% of all the 108 models. BP feature with LDA contributed 30% to all the models.

Table 7. Training and testing datasets for the intra-task problem.

Model Name Data used in training Data used in Testing

m1_INTRA T1_TR and Rintra_TR T1_TE and Rintra_TE

m1_INTRA T2_TR and Rintra_TR T2_TE and Rintra_TE

m1_INTRA T3_TR and Rintra_TR T3_TE and Rintra_TE

m1_INTRA T4_TR and Rintra_TR T4_TE and Rintra_TE

m1_INTRA T5_TR and Rintra_TR T5_TE and Rintra_TE

m1_INTRA T6_TR and Rintra_TR T6_TE and Rintra_TE

m1_INTRA T7_TR and Rintra_TR T7_TE and Rintra_TE

m1_INTRA T8_TR and Rintra_TR T8_TE and Rintra_TE

m1_INTRA T9_TR and Rintra_TR T9_TE and Rintra_TE

https://doi.org/10.1371/journal.pone.0188293.t007
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The cross-validation accuracy achieved for each of the nine EEG models and participants is

shown in Table 8. This table reports the cross-validation accuracy with the highest value

obtained from the optimal combination of the epoch period, feature extraction method and

the classifier discussed earlier.

As shown in Table 8, the task with the highest cross-validation accuracy was subject-spe-

cific. H10 achieved the highest mean cross-validation accuracy (0.935±0.033) among the par-

ticipants. This participant achieved the highest cross-validation accuracy for the Pick&Place

Task (0.997± 0.023). H6, on the other hand, had the lowest cross-validation accuracy (0.739

±0.037). The motor imagery task with the highest average cross-validation accuracy is Comb

task (0.792± 0.160). Fig 4 shows the 5×5 cross-validation accuracy averaged across participants.

The cross-validation accuracy ranges from 0.793±0.062 to 0.847±0.076, with the Pizza Task

having the highest cross-validation accuracy and the Drawer Task having the lowest mean

cross-validation accuracy. One-way analysis of variance (ANOVA) was used to check the

cross-validation accuracy difference among different tasks, no statistical difference was found

(p = 0.536).

Inter-task problem: Testing result

The models were generated and tested as described in Table 6 for testing the results of the

inter-task problem. The test accuracy obtained from the inter-task test is summarized in

Fig 3. Distribution of the classification method of the highest cross-validation accuracy.

https://doi.org/10.1371/journal.pone.0188293.g003

Table 8. 5x5 cross-validation accuracy for each participant.

ID Elbow Drawer Spoon Weight Door Plate Comb Pizza Pick &Place Mean &P

H1 0.840 0.757 0.845 0.840 0.817 0.893 0.832 0.893 0.943 0.851&Place

H2 0.705 0.748 0.752 0.747 0.758 0.723 0.712 0.775 0.740 0.740&Place

H3 0.783 0.803 0.755 0.788 0.823 0.793 0.772 0.822 0.830 0.797&Place

H4 0.797 0.743 0.840 0.798 0.802 0.812 0.832 0.905 0.788 0.813&Place

H5 0.835 0.817 0.883 0.855 0.878 0.820 0.853 0.903 0.825 0.852&Place

H6 0.670 0.732 0.772 0.708 0.717 0.768 0.792 0.738 0.753 0.739&Place

H7 0.852 0.848 0.805 0.798 0.850 0.942 0.822 0.907 0.883 0.856&Place

H8 0.810 0.800 0.890 0.830 0.860 0.883 0.765 0.878 0.837 0.840&Place

H9 0.777 0.787 0.788 0.847 0.792 0.782 0.823 0.787 0.885 0.807&Place

H10 0.943 0.952 0.900 0.930 0.928 0.882 0.957 0.930 0.997 0.935&Place

H11 0.775 0.733 0.728 0.780 0.695 0.755 0.733 0.712 0.870 0.754&Place

H12 0.842 0.802 0.815 0.855 0.738 0.733 0.820 0.912 0.790 0.812&Place

https://doi.org/10.1371/journal.pone.0188293.t008
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Table 9. More specifically, the model for each motor imagery task was tested on 30 trials of

eight other motor imagery tasks. For example, the model generated from Elbow Task was

tested with EEG data from all the other tasks, but not from Elbow Task. All test accuracies for

all EEG models were greater than 0.5. Table 9 also shows that Weight Task model has the high-

est average inter-task test accuracy. More specifically, it has the highest average accuracy when

tested on data from other motor imagery tasks.

The mean values reported in the last column of Table 9 summarize the averaged inter-task

test accuracy for models generated from the nine motor imagery tasks. This indicates the abil-

ity of the models to classify EEG data from other motor imagery tasks. The mean values

reported in the last row of Table 9 summarize the averaged inter-task test accuracy for EEG

data from the nine motor imagery tasks, which indicates the versatility of EEG data for the

nine motor imagery tasks. The mean model test accuracy ranges from 0.543±0.023 to 0.605

±0.022. The model generated from the Weight task data has the highest mean inter-task test

Fig 4. Mean 5×5 cross-validation accuracy for different motor imagery tasks.

https://doi.org/10.1371/journal.pone.0188293.g004

Table 9. Inter-task test accuracy summary.

Test Data (30 trials together with 30trials of Rest Task data)

Elbow Drawer Spoon Weight Door Plate Comb Pizza Pick&

Place

Mean±SD

Model

Name

Elbow — 0.561 0.583 0.607 0.578 0.597 0.589 0.635 0.603 0.594

±0.022

Drawer 0.637 — 0.572 0.571 0.583 0.607 0.578 0.588 0.581 0.589

±0.022

Spoon 0.592 0.535 — 0.533 0.538 0.547 0.535 0.549 0.535 0.545

±0.020

Weight 0.641 0.604 0.617 — 0.565 0.596 0.588 0.626 0.600 0.605

±0.024

Door 0.601 0.561 0.556 0.528 — 0.563 0.533 0.558 0.532 0.554

±0.024

Plate 0.597 0.543 0.531 0.539 0.538 — 0.524 0.551 0.519 0.543

±0.024

Comb 0.637 0.536 0.565 0.568 0.546 0.557 — 0.588 0.538 0.567

±0.033

Pizza 0.615 0.524 0.569 0.536 0.543 0.536 0.540 — 0.532 0.549

±0.030

Pick&

Place

0.645 0.563 0.567 0.572 0.554 0.565 0.553 0.586 — 0.576

±0.030

Mean±SD 0.620

±0.022

0.553

±0.025

0.570

±0.024

0.557

±0.027

0.556

±0.018

0.571

±0.026

0.555

±0.026

0.585

±0.032

0.555

±0.034

—

https://doi.org/10.1371/journal.pone.0188293.t009
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accuracy, while the model generated from Plate Task data has the lowest mean test accuracy.

The mean data test accuracy ranges from 0.553±0.025 to 0.620±0.022. The data from Elbow

Task has the highest mean inter-task test accuracy and the data from Drawer Task has the low-

est mean inter-task test accuracy.

A Shapiro-Wilk parametric hypothesis test was performed to test the normality of the test

accuracies for different task data in Table 9. The test accuracies for models Drawer, Spoon,

Plate, Pizza, Pick&Place are not normally distributed (their p values are 0.030, 0.002, 0.030,

0.012, and 0.006 respectively). Kruskal-Wallis test showed the inter-task test accuracy is statis-

tically different (p = 2.6×10−5), see Fig 5.

In the post-hoc analysis, Dunn & Sidák’s approach was used [63]. The model from the

Weight Task has statistically higher inter-task test accuracy, compared to the model from the

Spoon Task, Door Task, Plate Task, and Pizza Task(p<0.05). No statistical difference was

found among Elbow Task, Drawer Task, and Weight Task (p>0.05), see Table 10.

Fig 5. Box plot for the Kruskal-Wallis test result for the inter-task testing accuracy.

https://doi.org/10.1371/journal.pone.0188293.g005
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Coefficient of determination analysis result

The averaged R2 value for different tasks is shown in Fig 6. One of our participants (H5) was

left handed. The channels of his EEG were therefore flipped between left and right hemisphere

in this analysis.

From Fig 6, we can see that most of the EEG activities are located in central and parietal

lobe area. Most of the EEG activities for different motor imagery tasks (at C3 channel) are

located around 12-20Hz. The peak activities for all the motor imagery tasks were always cen-

tered around 18Hz in C3 and P3 channel. Also, some activities were found in the F8 channel

between 6-16Hz, which might be related to the motor planning [64,65]. Since all these two

activities were both been seen around 16Hz, the topography analysis of 16Hz is shown in Fig

7, with H10, who had the highest cross-validation accuracy during the training among our

participants.

In Fig 7, large R2 values are observed at electrode locations near the contralateral motor cor-

tex area in all the motor imagery tasks. This was a result of the event-related desynchronization

of the beta rhythms when motor imagery tasks were executed. The strength of activation and

the topographical distribution, however, were different from task to task.

For H10, the topographical distributions for Rest vs Elbow Task and Rest vs Spoon Task are

similar (see Fig 7(2) and 7(3)). Similar topographical distribution was observed in Door Task

and Plate Task (Fig 7(5) and 7(6)), as well as Pizza Task and Pick&Place Task (Fig 7(8) and 7

(9)). Especially, in Fig 7(8) and 7(9), while imagining to perform the Pizza Task and Pick&-

Place Task, EEG activity was recorded in the frontal lobe area (F8 channel), which might be

related to the motor planning activities in complex motor imaginary tasks. These similarities

suggested fundamental brain activity connections in performing some imagination tasks.

Assessing the validity of the BP/CSP/FBCSP+LDA/DAL method during

intra-task testing

For the intra-task problem, the models were generated and tested as described in Table 6.

Although we performed a 5-fold cross validation in the training, we only reported the testing

accuracy to keep the manuscript concise. The classification accuracy for each motor imagery

task was averaged across participants (see Fig 8).

As shown in Fig 8, the Pick&Place task had the highest average intra-task test accuracy

(0.715±0.148) among all the motor imagery tasks, followed by Elbow task (0.711±0.128). How-

ever, the difference between different tasks is not statistically significant (one-way ANOVA,

p = 0.817). The door task, on the other hand, had the lowest average intra-task test accuracy

Table 10. Dunn & Sidák post-hoc analysis of the inter-task testing accuracy. Checkmarks indicate models whose inter-task accuracies are significantly

different (p<0.05).

Model Names Elbow Drawer Spoon Weight Door Plate Comb Pizza Pick& Place

Elbow
p p

Drawer

Spoon

Weight
p p p

Door

Plate
p p

Comb

Pizza
p

Pick& Place

https://doi.org/10.1371/journal.pone.0188293.t010
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(0.618±0.186). The average intra-tasks testing result shows the test accuracy was significantly

higher than random (accuracy higher than 0.6359, p = 0.05 according to Muller-putz et al.

[66]), except for the door task. All tasks showed higher accuracy than chance level (accuracy

higher than 0.6141, p = 0.1).

Discussions

In Fig 2, all the nine motor imagery tasks focused on upper extremity activities, centered

around elbow joint movement. These tasks can arguably be divided into three main categories:

i) simple joint tasks (SJM, i.e. Fig 2(B), Fig 2(C) and Fig 2(E)); ii) simple elbow joint that are

commonly executed in everyday life and require a relatively low level of synergy of other joints

(DSJM, i.e. Fig 2(F), Fig 2(G) and Fig 2(H)); and iii) and goal-oriented tasks (GOM, i.e. Fig 2

(D), Fig 2(I) and Fig 2(J)), which require trajectory planning and multi-joint synergy.

The EEG performance varied across participants and the type of motor imagery task. GOM

tasks such as Pick&Place Task and Pizza Task had a significantly higher accuracy compared to

the SJM tasks. However, not all GOM tasks investigated in this study had higher cross-valida-

tion accuracy (e.g., Soup Task). In the Pizza Task and the Pick&Place Task, some activities

were found from the F8 channel in lower frequency, which might be related to the motor plan-

ning activity [50][51]. More precise neural recordings would be needed to verify the brain

region involved in order to confirm the activities in these tasks. However, it is surprising to see

the Soup Task did not inducing similar activities in the same frequency band (in Fig 6(C)).

Fig 6. EEG R2 analysis for different motor imagery tasks, averaged among participants. (a) R2 value mapping for

Rest Task vs Elbow Task; (b) R2 value mapping for Rest Task vs Drawer Task;(c) R2 value mapping for Rest Task vs

Soup Task;(d) R2 value mapping for Rest Task vs Weight Task;(e) R2 value mapping for Rest Task vs Door Task(f) R2

value mapping for Rest Task vs Plate Task;(g) R2 value mapping for Rest Task vs Comb Task;(h) R2 value mapping for

Rest Task vs Pizza Task;(i) R2 value mapping for Rest Task vs Pick&Place Task. Motor imagery related activities with high

R2 value was labeled with a black box.

https://doi.org/10.1371/journal.pone.0188293.g006

Fig 7. Topographical distribution of R2 value for H10 at 16Hz. (1) R2 value for Rest vs Elbow Task;(2) R2

value for Rest vs Drawer Task; (3) R2 value for Rest vs Soup Task; (4) R2 value for Rest vs Weight Task; (5)

R2 value for Rest vs Door Task; (6) R2 value for Rest vs Plate Task; (7) R2 value for Rest vs Comb Task; (8)

R2 value for Rest vs Pizza Task; (9) R2 value for Rest vs Pick & Place Task.

https://doi.org/10.1371/journal.pone.0188293.g007
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This phenomenon may be due to the task design. We can see from Fig 6(C) that the highest R2

value is located in the O2 area, which suggests the Soup Task may be primarily related to

vision/target related activity[67].

In the R2 analysis, the peak R2 value for the SJM tasks is generally smaller, and the contrast

of the R2 mapping is lower than DSJM and GOM tasks. The “low-contrast” feature may result

in the lower accuracy in cross-validation and intra-task test for models generated from the

SJM tasks. While the difference is not statistically significant, this “low-contrast” feature might

be a general pattern for upper extremity motor imagery. This could explain why the SJM tasks

have higher inter-task test accuracy among all the other tasks (i.e. the EEG model generated

from the SJM tasks are more versatile). For the SJM tasks, only the elbow joint was involved.

All the three SJM tasks were similar. The only difference was the resistance feedback in these

tasks. For example, in the Weight Task, because of the imagination of the weight, the Weight

Task showed higher P3 activities than C3 activities. That might explain why the EEG model

from the Weight Tasks exhibited higher versatility than DSJM and GOM tasks. For the Weight

Task, there was only a 6% mean accuracy decrease between testing with data from its own task

and the other tasks.

It is interesting to see how imagined interaction with other objects induces parietal lobe

activities[68], such as the R2 value mapping varies in Elbow Task and Weight Task. The move-

ment is physically almost the same, however, by just imaging a dumbbell in the hand excites

brain activities around the P3 area.

It is also important to investigate the possibility of multi-class classification using the tasks

mentioned in this paper in the future.

Conclusion

In this study, we found that EEG models generated from single joint movements motor imag-

ery tasks show higher versatility than other tasks. Among all the tested tasks, the Weight Task

showed a statistically higher versatility than the other tasks (p<0.05) with the average inter-

task testing accuracy was 0.605±0.022. Also, the other two single joint motor imagery tasks

(i.e. Elbow Task and Drawer Task) showed higher versatility compared to non-single joint

tasks. However, the difference was not statistically significant (p>0.05). The inter-task testing

accuracy for the Elbow Task and Drawer Tasks was 0.594±0.022 and 0.590±0.022, respectively.

Among the single joint motor imagery tasks, the difference was not statistically significant

(ANOVA, p>0.05). For applications like rehabilitation, it would be possible for the individuals

to go through an EEG training session that only involves the motor imagery of simple one-

joint movements. The EEG model generated could then be re-used to classify different other

goal-oriented motor imagery tasks.

Fig 8. Average intra-task test accuracies for different motor imagery tasks.

https://doi.org/10.1371/journal.pone.0188293.g008
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