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Abstract

Analysis of data measured on different scales is a relevant challenge. Biomedical studies

often focus on high-throughput datasets of, e.g., quantitative measurements. However, the

need for integration of other features possibly measured on different scales, e.g. clinical or

cytogenetic factors, becomes increasingly important. The analysis results (e.g. a selection

of relevant genes) are then visualized, while adding further information, like clinical factors,

on top. However, a more integrative approach is desirable, where all available data are ana-

lyzed jointly, and where also in the visualization different data sources are combined in a

more natural way. Here we specifically target integrative visualization and present a heat-

map-style graphic display. To this end, we develop and explore methods for clustering

mixed-type data, with special focus on clustering variables. Clustering of variables does not

receive as much attention in the literature as does clustering of samples. We extend the vari-

ables clustering methodology by two new approaches, one based on the combination of dif-

ferent association measures and the other on distance correlation. With simulation studies

we evaluate and compare different clustering strategies. Applying specific methods for

mixed-type data proves to be comparable and in many cases beneficial as compared to

standard approaches applied to corresponding quantitative or binarized data. Our two novel

approaches for mixed-type variables show similar or better performance than the existing

methods ClustOfVar and bias-corrected mutual information. Further, in contrast to ClustOf-

Var, our methods provide dissimilarity matrices, which is an advantage, especially for the

purpose of visualization. Real data examples aim to give an impression of various kinds of

potential applications for the integrative heatmap and other graphical displays based on dis-

similarity matrices. We demonstrate that the presented integrative heatmap provides more

information than common data displays about the relationship among variables and sam-

ples. The described clustering and visualization methods are implemented in our R package

CluMix available from https://cran.r-project.org/web/packages/CluMix.

Introduction

In real data situations various factors of interest are measured on different scales, e.g. quanti-

tative gene expression values and categorical clinical features like gender, disease stage etc. In
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many cases high-dimensional data are analyzed first, and further patient characteristics are

only added “informatively” to presented results. This is, however, unsatisfactory from a sys-

tems biology point of view. There is a growing number of integrative approaches that com-

bine different data sources from the beginning of the analysis, instead of post-hoc combining

the results derived in separate steps, e.g. integrative clustering [1], multiple factor analysis

with mixed data [2], or Bayesian approaches [3, 4]. In this work we follow a similar direction,

however, our focus lies more in the visualization, driven by the idea to show the “complete

picture” in a heatmap-style presentation. Biclustering is a common approach to detect struc-

tures among samples and variables simultaneously, which means essentially to find “blocks”

within heatmaps. To the author’s knowledge, however, biclustering methods either apply to

quantitative [5] or, in the field of pattern mining, to categorical data [6], but not to a mix of

different data types. The R package caOmicsV [7] provides a heatmap display for multiple

“omics” and phenotypical data. However, the different datasets have to be provided at gene

level, for instance DNA methylation, mutations or DNA copynumber variations have to be

specified per gene, which is not straight forward. Further, no clustering is applied to samples

or features that would allow to discover structures in the data. The integrative clustering

approach [1] also provides heatmaps, while the purpose is to find groupings amongst sam-

ples, using information from different types of high-dimensional datasets simultaneously.

Structures among variables are only displayed within the different datasets. In contrast, we

also want to explore similarities between all variables in one unified presentation and further

include low-dimensional characteristics, which can be used for explorative analysis and

hypothesis generation. For example, one might wish to find subgroups of patients based on

all relevant parameters, and simultaneously explore relationships between those parameters.

Another example is the inspection of associations between variables in the process of statisti-

cal modelling, prior to deciding about their inclusion or exclusion from a regression model.

Finally, integrative illustration plays an important role in presenting results, showing e.g.

prognostic factors of different types and their relationship between each other and to the out-

come of interest.

In order to create a heatmap for variables measured on different scales, special similarity

measures are necessary defining i) distances between samples (e.g. patients) based on features

of different types, and ii) distances between the different variables. For clustering samples

using mixed-type variables, we choose to use Gower’s similarity coefficient [8]. For clustering

variables of different types, we propose two new strategies: 1) The CluMix-ama (association

measures approach) method consists in combination of different similarity measures. A novel

strategy based on category reordering is suggested for measuring the association between a

multi-categorical and any other type of variable. 2) The CluMix-dcor (distance correlation)

approach is based on a novel similarity measure, which is derived using the concept of general-

ized distance correlations [9]. Instead of always using the Euclidean distance as in the original

definition of the distance correlation [10, 11], we apply distances corresponding to the respec-

tive type of variable. In particular, we will use the Euclidean distance for ordered and quantita-

tive variables and the discrete distance for nominal variables.

Both methods are compared to the ClustOfVar approach [12] and clustering based on bias-

corrected mutual information (BCMI) [13] by simulation studies. Using hierarchical clustering

for mixed data, standard heatmaps as for continuous values can be drawn, with the difference

that separate color schemes illustrate the differing sources of information. On the basis of the

mixed data similarity matrices further simple plots can be constructed that show relationships

between variables. The utility of the visualization methods is illustrated with a real data exam-

ple. The mixed data clustering and visualization tools are implemented in our R package Clu-
Mix. Fig 1 gives an overview over the functionalities of the package.

Clustering with mixed-type data
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Methods

Table 1 summarizes the most important symbols used in the Methods section to facilitate

reading.

Clustering samples

We want to cluster samples (e.g. patients) based on properties that can be measured on differ-

ent scales, i.e. quantitative, ordinal, categorical or binary variables. There is plenty of literature

on clustering samples, even for mixed numerical and categorical data, see Table 2 for an over-

view of the considered methods.

Most methods, like latent class clustering [14], k-prototypes clustering [15], fuzzy clustering

[16] and others [19], aim in partitioning the data into a fixed number of clusters, which is,

especially for large datasets, computationally more efficient than hierarchical clustering, where

the complete dissimilarity matrix is required. Having a mixed-data heatmap in mind, however,

Fig 1. Functionality of the CluMix R package. Distance matrices are derived separately for samples and

variables. They build the basis for hierarchical clustering and integrative visualization of mixed data.

https://doi.org/10.1371/journal.pone.0188274.g001

Table 1. Overview over most important symbols.

n number of samples

p number of variables

K number of categories for nominal or ordinal variables

S / D similarity / distance matrix

xik value of sample i for variable k

sk(xik, xjk) / dk(xik, xjk) similarity / distance between samples i and j based on variable k

s(xi, xj) / d(xi, xj) similarity / distance between samples i and j based on all variables

skl / dkl similarity / distance between variables k and l

ρ correlation coefficient

eRkl
generalized distance correlation between variables k and l

https://doi.org/10.1371/journal.pone.0188274.t001
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we prefer hierarchical clustering schemes based on dissimilarity matrices, where no fixed num-

ber of clusters has to be chosen a priori. In the field of machine learning several approaches

exist for evaluating distances between samples using mixed data [17, 18]. However, those

approaches are rather complex, and are not tailored for ordinal variables. Instead, we choose

the general similarity coefficient proposed by Gower [8] for defining distances between sam-

ples. Similarity between samples i and j with values xi and xj, i, j = 1,. . .,n, based on p variables,

is defined as

sðxi; xjÞ ¼
Xp

k¼1

skðxik; xjkÞdkðxik; xjkÞwk

Xp

k¼1

dkðxik; xjkÞwk

,

where δk(xik, xjk) indicates whether a comparison of i and j is possible on variable k, k = 1,. . .,p,

i.e. δk(xik, xjk) = 0 if i and/or j have a missing value for k, and δk(xik, xjk) = 1 otherwise. Optional

weights wk can be specified in order to raise importance of certain variables that a priori are

considered more relevant. If no such preferences exist, wk is set to 1 for all k = 1,. . .,p. The

score sk(xik, xjk) captures the similarity between samples i and j w.r.t. variable k. In short, the

score is defined for

• qualitative variables: skðxik; xjkÞ ¼
1; i and j agree in k

0; i and j differ in k

(

• quantitative variables: sk(xik, xjk) = 1 − |xik − xjk|/Rk,

where Rk is the observed range of variable k.

With the extension of Podani [20] it is possible to also incorporate ordering information of

variables on ordinal scale

• ordinal variables: skðxik ; xjkÞ ¼ 1 �
jrkðxikÞ� rkðxjkÞj

maxmfrkðxmkÞg� minmfrkðxmkÞg, where rk(xmk) is the rank of

value xmk of sample m within all observations for variable k.

The method is implemented in the R package FD [21].

From the similarity values s(xi, xj) we calculate distances d(xi, xj) = 1 − s(xi, xj). Once a suit-

able distance matrix is derived, all standard clustering algorithms starting from pairwise dis-

similarities can be applied for exploring structures in the data. For visualization purposes we

find hierarchical clustering most suitable. In our analyses we use Ward’s method [22] for the

calculation of between-cluster distances, but any other linkage method is possible as well. Also

partitional clustering approaches can be applied, for example Partitioning Around Medoids

(PAM), a more robust and flexible version of the classical k-means algorithm, where a dissimi-

larity matrix can be chosen by the user [23].

Table 2. Methods for clustering or defining distances between samples with mixed data. The columns indicated whether hierarchical clustering is suit-

able (in contrast to partitioning), whether distance matrices can be retrieved, whether the funcionality is available in R (to the authors’ knowledge) and whether

ordinal variables are treated in a special way. Only clustering based on Gower’s similarity coefficient is applied throughout the manuscript.

clustering / distance method hierarchical distance matrix implemented in R ordinal variables

latent class clustering [14] ✓ ✓

k-prototypes [15] ✓

fuzzy clustering [16]

Mahalanobis-type distance [17] ✓ ✓

Value difference Metric [18] ✓ ✓

Gower’s similarity coefficient [8] ✓ ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0188274.t002
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Clustering variables

Besides clustering samples, we mainly aim in defining similarities between the variables them-

selves, in order to be able to visualize simultaneously relationships between samples and vari-

ables, as common in standard heatmaps. Approaches using mutual information [24] or factor

analysis for mixed data [2] could be used to assess associations between features. But those

methods on the one hand are quite complex, and on the other hand it is not clear whether the

derived variable similarities reflect associations in the spirit of a correlation, which we are most

interested in. Nevertheless, we consider the recent bias-corrected mutual information (BCMI)
[13], that is implemented in R package mpmi, for clustering variables by defining distances as

1 − BCMI. We further evaluate the non-similarity based approach ClustOfVar [12]. Here we

propose two alternatives, where the first is a combination of single association measures for

different pairs of data types. We call this strategy the CluMix-ama approach. The second

approach makes use of distance correlation for calculating distances between variables, and is

called in the following the CluMix-dcor approach. See Table 3 for an overview of the consid-

ered methods.

The CluMix-ama approach. We start with the choice of suitable association measures for

different data type comparisons. The selected similarity coefficients should use as much infor-

mation as possible (e.g. categorization of quantitative variables shall be avoided), but be as

robust as possible (e.g. against outliers and non-linearity). Our decisions on specific measures

were based on literature research [25, 26] and a small simulation study. In some cases where

no similarity coefficient is readily available, e.g. for measuring the relationship between a con-

tinuous and a categorical feature with more than two categories, extensions of existing mea-

sures are suggested. The following coefficients are used for measuring the similarity between

variables k and l with respective scales

• quantitative versus quantitative/ordinal: absolute Spearman correlation coefficient (i.e. the

Pearson correlation on ranks rk and rl of values xk and xl of variables k and l)
skl = |ρSpearman(xk, xl)| = |ρPearson(rk, rl)|

• ordinal versus ordinal and quantitative/ordinal versus binary: absolute Goodman and Krus-

kal’s γ coefficient [27]

skl = |(nc − nd)/(nc + nd)|

where nc and nd are the numbers of concordant and discordant pairs of observations w.r.t. k
and l.

• quantitative/ordinal versus nominal: No suitable coefficient of association between a rank-

order variable and a nominal factor with more than two categories without any natural

ordering could be found in the literature. To evaluate the association between those kinds of

Table 3. Like Table 2, but for methods for clustering or defining distances between variables of mixed types. The last four methods in the table are

applied and compared throughout the manuscript.

clustering / distance method hierarchical distance matrix implemented in R ordinal variables

factor analysis for mixed data [2] ✓ ✓ ✓

mutual information [24] ✓ ✓ ✓

BCMI [13] ✓ ✓ ✓

ClustOfVar [12] ✓ (✓) ✓

CluMix-ama ✓ ✓ ✓ ✓

CluMix-dcor ✓ ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0188274.t003
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variables, we apply the idea that a nominal variable could be considered as ordinal, if we

would only know the “correct” ordering. As an example, consider a nominal factor X with

categories A, B and C, and a quantitative variable Y that is associated with X in the way that it

shows similar values in samples with levels A and C, but elevated values in samples with level

B. Hence, we could measure this association by calculating the Spearman correlation coeffi-

cient (if Y is quantitative) or Goodman and Kruskal’s γ (if Y is ordinal) for X0 and Y, where

X0 is X transformed to an ordered factor with levels A< C< B. To define the “correct”

ordering of categories of X with respect to variable Y, we consider the average ranks of Y val-

ues within the respective categories of X. Since in the case of no real relationship between X
and Y this strategy would yield too optimistic estimations of association, we first perform a

Kruskal-Wallis test to screen for any difference in means of Y within the categories of X.

Only if the test result is significant (p< 0.05) we go on with the reordering as described. In

the opposite case, we calculate the Spearman correlation or respectively Goodman and Krus-

kal’s γ using the original X, which would represent a “random” ordering of categories and

should lead to a coefficient close to 0.

• nominal/binary versus nominal/binary: There are measures of association of cross-table data,

like e.g. Pearson’s contingency coefficient or Cramer’s V coefficient. However, in simula-

tions we found more suitable a strategy similar to the one described above, where an order-

ing is “imposed” into the categorical variables. This idea was already described e.g. in [28]

and [29], and is also used in correspondence analysis [30]. The “correct” ordering of catego-

ries is achieved by “diagonalizing” the cross-table between the two factors, with the goal to

obtain in the diagonal large frequencies. Goodman and Kruskal’s γ coefficient is then calcu-

lated for the reordered cross-table. Since again in the case of no association this strategy

would lead to over-optimistic results, a chi-square pre-test of association is performed prior

to optimizing the cross-table. In case of a non-significant test result (p> 0.05), the γ coeffi-

cient is calculated for the original contingency table.

Even though for clustering not absolutely necessary, it would be beneficial for the chosen

distances to have metric properties, which implies in especially that the triangle inequality

holds for each triplet of distances. Gower [31] shows that if a similarity matrix S = (skl) is posi-

tive semi-definite (p.s.d.), then the distance matrix D ¼ dkl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � skl

p
is Euclidean, which of

course implies that it is metric. Combining the proposed measures of association to a similarity

matrix S, it is easy to find an example where S is not p.s.d. In order to still fulfill the triangle

inequality and hence all the distances to be comparable, we computationally find a similarity

matrix S0 that is p.s.d. and is “closest” to the original matrix S in the sense that the weighted

Frobenius norm of the difference of the two matrices is minimized [32]. This method is imple-

mented in the function nearPD in R package Matrix [33]. By Gower’s theorem then follows

that the distance matrix D composed by inter-variable distances dkl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � skl

p
is Euclidean.

Based on the distance matrix D, grouping of variables can be conducted again by standard

hierarchical or partitional clustering.

The CluMix-dcor approach. The distance covariance and the distance correlation are

novel measures of dependence, which were originally proposed for the univariate setting by

Feuerverger [34] and later extended to multivariate observations by Székely [10, 11]. Since the

appearance of [10, 11], considerable interest in statistical applications of the distance correla-

tion coefficient has arisen. Notably, distance correlation has been used for inferring gene regu-

latory networks [35], testing associations between the copy number variations of different

genes [36] and assessing associations of familial relationships, lifestyle factors and mortatility

[37].

Clustering with mixed-type data
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The distance correlation coefficient RðX;YÞ is a measure of dependence between a p-

dimensional random vector X and a q-dimensional random vector Y, where p and q are arbi-

trary. The distance correlation is always positive with 0 � RðX;YÞ � 1 and it equals 0 if and

only if the vectors X and Y are independent. This property implies that the distance correlation

can detect any dependence between X and Y. Recently, Lyons [9] generalized this concept to

metric spaces. Given any two metric spaces (i.e. appropriate sets on which proper distances are

defined), one can derive a generalized distance correlation between random variables on these

two different sets. When the metric spaces satisfy an additional property, called strongly nega-

tive type, we even retain the property that this generalized distance correlation is 0 if and only

if the two random variables are independent. By reducing the values of these random variables

to the distances, this approach allows to measure dependence between two random variables

on completely different sets. In this article, we will restrict ourselves to measuring dependence

between two variables, where any of those two variables may be either quantitative, ordinal or

nominal. In particular, similar to what was used for defining distances between samples, for

k 2 {1,. . .,p}, we let

• dkðxik; xjkÞ ¼
0; xik ¼ xjk
1; else;

(

if the k-th variable is nominal,

• dk(xik, xjk) = |xik − xjk| if the k-th variables is quantitative,

• dk(xik, xjk) = |rk(xik) − rk(xjk)| if the k-th variables is ordinal, where rk(xik) and rk(xjk) are the

ranks of values xik and xik within all observations for variable k.

We define the centered distance matrices for the k-th and l-th variable, respectively, as

Aij ¼ dkðxik; xjkÞ �
1

n

Xn

i¼1

dkðxik; xjkÞ �
1

n

Xn

j¼1

dkðxik; xjkÞ þ
1

n2

Xn

i;j¼1

dkðxik; xjkÞ;

Bij ¼ dlðxil; xjlÞ �
1

n

Xn

i¼1

dlðxil; xjlÞ �
1

n

Xn

j¼1

dlðxil; xjlÞ þ
1

n2

Xn

i;j¼1

dlðxil; xjlÞ:

Now, by multiplying these matrices containing distances between the samples, we obtain a simi-
larity measure between the variables. In particular a sample version of the generalized distance

covariance [9, pp. 3287] between the k-th variable and the l-th variable is defined as the non-

negative squareroot of

bU kl ¼
1

n2

Xn

i;j¼1

AijBij:

This sample measure is known to be severely biased [38]. For better performance, we will use a

bias-corrected version of bU kl in the fashion of [38]:

eU kl ¼
n � 3

n
ð
Xn

i;j¼1

A�ijB
�

ij �
n

n � 2

Xn

i¼1

A�iiB
�

iiÞ; ð1Þ

Clustering with mixed-type data
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where the modified distance matrix A�ij is

A�ij ¼

n
n � 1

Aij �
dkðxik; xjkÞ

n

� �
for i 6¼ j;

n
n � 1

1

n

Xn

j¼1
dkðxik; xjkÞ �

1

n2

Xn

i;j¼1
dkðxik; xjkÞ

� �

for i ¼ j;

8
>>><

>>>:

and B�ij is defined analogously. Different from bU kl,
eU kl may take negative values. By normalizing

eU kl, we obtain a generalized distance correlation:

eRkl ¼ signðeU klÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jeU kljffiffiffiffiffiffiffiffiffiffiffiffiffi
eU kk
eU ll

q

v
u
u
t : ð2Þ

Here eU kk and eU ll refer to the squared generalized distance variance of the k-th and the l-th

variable, respectively (these are calculated by plugging in the distances from one and the same

variable into Eq (1)). As long as only quantitative variables are involved, eRkl reduces to a bias-

corrected version of the standard distance correlation as defined by Székely [10, 11, 38].

Using the fact that both the Euclidean distance and the discrete distance on a countable set

are of strongly negative type, we can deduce that [9, Theorem 3.11] eRkl converges almost

surely to 0 if and only if the k-th and the l-th variable are independent. Hence, the dissimilarity

measure dkl ≔ 1 � eRkl is a meaningful measure for clustering mixed variables.

One can deduce from Eq (2) that the distance correlation is scale-invariant. Hence, for cal-

culating the distance correlation coefficient eRkl, it does not make a difference if we replace

the metric used for quantitative variables by dk(xik, xjk) = |xik − xjk|/Rk and the metric used for

ordinal variables by
jrkðxikÞ� rkðxjkÞj

maxmfrkðxmkÞg� minmfrkðxmkÞg
, where Rk is the range of the k-th variable and rk(xik)

and rk(xjk) are the ranks of values xik and xjk for variable k. These distances are exactly the

summands showing up in the Gower’s distance, which we use for clustering samples. This

analogy can lead to a saving of computation time when simultaneously clustering samples and

variables.

Non-similarity-based clustering. The ClustOfVar method [12], implemented in the

R package with same name, is based on principal component analysis and was specifically

designed for clustering variables. The authors provide a partitioning algorithm that is based on

between-variable similarities. They use squared canonical correlation for this purpose. In a

basic simulation study we observed, however, that, if similarity is to be measured in the spirit

of a correlation, those similiarties often underestimate truly underlying strong relationships.

The authors themselves state that their alternative hierarchical clustering method usually

performs better. This method does not work with a pre-specified complete distance matrix

plugged into the usual hierarchical clustering algorithm, but rather decides on agglomerating

sub-clusters to clusters based on the adequacy between the variables within a cluster and a

synthetic quantitative variable that is “representative” for the cluster. The synthetic variables

are calculated by principal components analysis for mixed data (PCAMIX), and a measure

for the mentioned adequacy is the respective first eigenvalue of the PCAMIX decomposition.

Clustering with mixed-type data
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Results: Simulation studies

Validation of similarity measures between variables

In order to evaluate the between-variable similarities calculated for the CluMix-ama approach,

datasets with different kinds of variables were simulated in the following way. First, random

normally distributed variables were generated with a specified Pearson correlation between

each other. Categorical factors were then created in “perfect agreement” with the quantitative

variables. For example, to create a binary variable from a continuous variable X that should

have the same amount of association as X itself to another continuous variable Y, X was catego-

rized by a median cut. Similarly, to get a factor with four levels, X was cut at its quartiles, and

so on. In this way datasets with known relationships between the different variables were cre-

ated. For the selection of suitable similarity coefficients for the CluMix-ama approach, for each

pair of different variable types several association measures were tested, see S1 Fig. The coeffi-

cients suggested in the Methods section (indicated in bold in S1 Fig) show the least “over-opti-

mism” in the case of no relation and capture best strong relationships.

Next, we explored in more detail how well the imposed (Pearson) correlations were cap-

tured by the association measures applied to different combinations of data types. We simu-

lated 1000 datasets for every combination of several imposed correlations between variables

(ρ = 0, 0.25, 0.5, 0.75, 0.95) and sample sizes (n = 40, 96, 200, 400—we chose sample sizes

divisible by 8, such that the variable categorization into K = 8 classes was perfectly balanced).

The results are shown in Fig 2, exemplary for correlation values of ρ = 0 and ρ = 0.75. The

larger the sample size, the closer we get to the imposed values of correlation. For small sam-

ple sizes, we observe some over-estimation of the truly non-existing relationship (ρ = 0,

upper panel) for the newly proposed strategy of category reordering to assess relationships

between nominal factors and variables of any other type. But, thanks to the pre-test of associ-

ation the results still seem acceptable (for instance, over-estimation is not much more severe

than e.g. for Spearman correlation when relating two quantitative variables). Standard mea-

sures for comparing nominal variables (e.g. Cramer’s V) would actually be more over-

optimistic in the case of no real association. Further, for larger values of ρ those measures

sometimes strongly under-estimate the association (see S1 Fig). Strong associations (lower

panel) are captured well in general by the proposed measures. Results for ordinal and nomi-

nal variables with K = 8 instead of four categories are very similar (data not shown). For the

CluMix-dcor approach, we do not provide a similar plot. This is for the reason that, even for

two quantitative variables, the Pearson correlation and the distance correlation between two

variables measure two different quantities and can in general not be converted into each

other. We note that for the bivariate normal, the distance correlation is always smaller than

or equal to the Pearson correlation [10, Theorem 7], the same holds for many other paramet-

ric distributions [39].

Variables clustering validation

In another simulation study, we explored whether clustering of variables by the suggested

methods yield the expected results when the true classifications are known. Datasets with vary-

ing sample sizes (n = 25, 50, 100) and numbers of variables (p = 50, 100, 200) were simulated.

Two equally sized groups of variables were defined by separately drawing from multivariate

normal distributions with specified intra-group covariance structure. Variables inside a group

had pairwise correlations decreasing from varying maximal correlation (ρ = 0.25, 0.5, 0.75) to

0. Optionally, some noise was introduced by setting 0%, 20%, 40% of the inter-group correla-

tions to a value of 0.5 instead of 0.
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The resulting continuous datasets were clustered using the standard Euclidean distance,

as a reference. As a second reference, completely binarized data (cutting values at the median

for each variable) were clustered using the simple matching coefficient distance. Subse-

quently, a certain fraction of variables (10%, 25%, 50%, 75%, 100%) was categorized in the

same way as in the previous simulation studies, thus retaining the same underlying true sam-

ple and variable classifications. For the categorization, it was randomly decided how many

categories (K = 2,. . .,8) a new variable should have, and whether it should be ordinal or nom-

inal. The exclusively quantitative data and its partly or completely categorized variants were

clustered with the presented approaches for clustering mixed-type data, namely the CluMix-

ama, CluMix-dcor, ClustOfVar and BCMI approaches. Hierarchical clustering with Ward’s

agglomeration method was applied and resulting dendrograms were cut in order to detect

the two classes of variables. For each setting, simulations were repeated 100 times. Misclassi-

fication rates (MCR = (a12 + a21)/(a11 + a12 + a21 + a22), with entries aij in classification

tables) were calculated for evaluation and comparison of the different clustering strategies

and simulation settings.

The misclassification rates for all simulation settings are shown in S2 and S3 Figs. An exam-

ple is given in Fig 3 for the setting with 50 samples, 100 variables, within-group correlation of

0.5, and 20% of between-group correlations of 0.5 instead of 0. Our two new approaches for

mixed-type data and ClustOfVar yield very similar results in terms of recovering the true

Fig 2. Boxplots of variable similarities for 1000 simulated datasets in different settings. Variables were simulated with an

underlying (Pearson) correlation of ρ = 0 (blue boxes) and ρ = 0.75 (orange boxes), indicated by horizontal lines. The quantitative

variables were categorized in perfect agreement, such that the association should be the same between respective variables. The

different panels show similarity values calculated for different combinations of data types, as indicated on top and to the left of each

column/row of plots. Within each panel, results for different sample sizes (n = 40, 96, 200, 400; boxplots from left to right) are shown.

https://doi.org/10.1371/journal.pone.0188274.g002

Clustering with mixed-type data

PLOS ONE | https://doi.org/10.1371/journal.pone.0188274 November 28, 2017 10 / 23

https://doi.org/10.1371/journal.pone.0188274.g002
https://doi.org/10.1371/journal.pone.0188274


underlying grouping of variables. For completely quantitative data, those mixed-data cluster-

ing methods perform nearly as good as Euclidean clustering. However, the purpose and

strength of those methods is of course clustering data including also categorical variables. For

such datasets, comparison with clustering completely binarized data by standard methods is

more useful. From Fig 3 can be seen that the first three mixed-data approaches generally out-

perform binary clustering. Only for datasets with exclusively categorical variables dichotomi-

zation seems more appropriate. Clustering based on bias-corrected mutual information in this

situation performs worse than the other mixed-data approaches and, apart from datasets with

few categorical variables, also worse than clustering binary data. S2 and S3 Figs suggest that

mutual information works better with larger sample sizes and rather strong correlations

among variables. For a better comparison of the methods over all simulation settings, we calcu-

lated median differences in MCRs between each method and clustering binarized data, see Fig

4. Median differences below the zero line indicate better performance for the respective

mixed-data approach as compared to binary clustering. Again we see that the first three stud-

ied methods perform very similarly, while BCMI performs worse, except for large samples

sizes and strong correlations. For larger sample sizes (left panel), all four mixed-data

approaches outperform binary clustering. For small to moderate sample sizes we observe this

benefit only if the fraction of non-quantitative variables does not exceed around 75%. In these

situations the CluMix-ama and the CluMix-dcor approach usually yield somewhat better

results than ClustOfVar. Also for low within-cluster correlation and no between-cluster corre-

lation (right panel), there is a slight advantage of the two new clustering approaches in case of

larger fractions of categorical variables in the data. However, in this situation again dichotomi-

zation seems the best option. If there is some amount of between-cluster correlation (“noise”),

all methods work equally bad (compare S3 Fig). This is not too surprising, since between-clus-

ter correlation of 0.5 was chosen for 20% or 40% of the variables, which is hence larger than

the within-cluster correlation. For moderate within-cluster correlation, however, the mixed-

data approaches outperform binary clustering in the presence of noise. When within-cluster

correlation is large, all methods work perfectly.

Fig 3. Misclassification rates from clustering variables of 100 simulated datasets each, using the CluMix-ama, CluMix-dcor,

ClustOfVar and BCMI approach. Datasets were simulated as described in the Methods section for evaluating clustering of

variables. This plot shows results of the simulation setting with 50 samples, 100 variables, within-group correlation of 0.5, and 20% of

between-group correlations of 0.5 instead of 0. MCRs (y-axis) were calculated based on clustering with Euclidean distances for the

purely quantitative datasets (white), with the three approaches for mixed data (purple: CluMix-ama, yellow: mCluMix-dcor, green:

ClustOfVar, orange: BCMI) for datasets with varying amounts of categorical variables (0%, 25%, 75%, 100% from left to right), and

with simple matching coefficient for completely binarized data (grey).

https://doi.org/10.1371/journal.pone.0188274.g003
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Results: Real data examples

Mixed-data versus standard approaches on real data

We wanted to further explore the potential benefit of applying specific mixed-data clustering

methods in real situations as compared to standard approaches. For this general purpose we

studied clustering of samples, since there are real world examples with a given class member-

ship for samples, whereas a “true” grouping of variables is barely ever known. In three datasets

with variables of different types we first pre-selected quantitative variables that are associated

with the respective binary outcome of interest. Then we clustered the samples in order to

recover the two classes by i) Euclidean distances using only the quantitative variables in the

dataset, ii) simple matching distance after dichotomization of the data, iii) the mixed-data

approaches latent class, k-prototype and Gower. The performance of the methods is compared

by balanced error rates (BER = 0.5 � (a12/(a11 + a12) + a21/(a21 + a22)), where aij are the entries

of the classification confusion matrix), which is more suitable than the misclassification rate in

case of unequal class sizes. The three example datasets are:

Breast cancer treatment response: This breast cancer dataset [40] including 133 patients was

used for the development of a gene expression-based classifier for pre-operative treatment

response. For our analysis, we select the 10 most differentially expressed genes between

‘pathologic complete response’ (34 patients) and ‘residual disease’ (99 patients), and the cat-

egorical variables estrogen receptor status, progesterone receptor status, tumor grade and

molecular subclass.

Breast cancer survival: From the dataset of the Netherlands Cancer Institute for prediction of

metastasis-free survival in 144 lymph node positive breast cancer patients [41] we use the

Fig 4. Median difference in error rates between each mixed-data method and binary clustering. For all simulation settings,

misclassification rates from clustering binarized datasets by simple matching cofficient as a reference were subtracted from

corresponding MCRs when using each of the three mixed-data variables clustering approaches. Shown are the medians of those

differences (purple square: CluMix-ama, yellow triangle: CluMix-dcor, green circle: ClustOfVar, orange star: BCMI). In the left panel,

different sample sizes (n = 25, 50, 100; panel columns) and numbers of variables (p = 50, 100, 200; panel rows) were considered,

while keeping within-group correlation fixed at 0.5 and fraction of non-zero between-group correlations (with value 0.5) at 20%. In the

right panel, settings varied w.r.t. within-group correlations (corr = 0.25, 0.5, 0.75; panel columns) and fraction of between-group

correlations with value 0.5 instead of 0 (noise = 0%, 20%, 40%; panel rows), while keeping numbers of samples and variables fixed at

100, respectively. Datasets were simulated with varying amounts of categorical variables (0%–100%; from left to right within each

sub-figure).

https://doi.org/10.1371/journal.pone.0188274.g004
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landmark of 6-year survival as binary outcome for our analysis (89 patients did and 35

did not survive 6 years; 20 patients censored before reaching 6 years were removed from

the analysis). From the published 70 gene signature we select the 10 most differentially

expressed genes and categorical variables estrogen receptor status, tumor grade and age

class.

Chemical manufacturing process: This dataset of 58 measurements on 176 samples is avail-

able in the R package AppliedPredictiveModeling [42] and contains information about

a chemical manufacturing process, in which the goal is to understand the relationship

between the process and the resulting final product yield. From measured quantitative char-

acteristics we select the 10 that are most associated with good/bad yield (44 good, 132 bad

yield), and further the five binary variables in the dataset.

Table 4 shows balanced error rates for the described data and clustering methods. In those

examples the use of mixed-data clustering approaches in most cases yielded slightly better

results than more common strategies, where either categorical variables are omitted or

the data are brought on the same scale. Clustering based on Gower’s similarity coefficient,

which is used throughout this paper, performed better than the two mixed-data partitioning

algorithms.

Exploration of ALL dataset

To give some use case examples for the clustering of mixed-type data and to demonstrate the

visualization techniques implemented in our R package CluMix, we analyzed a public dataset

of 128 patients with acute lymphoblastic leukemia (ALL) [43], which is also available as the R

data package ALL. The dataset includes clinical information (age, sex, relapse, remission, con-

tinuous complete remission for whole follow-up (CCR), transplant status, ALL type (B-ALL/

T-ALL)), as well as molecular parameters (translocations t(9;22) and t(4;11), molecular ALL

classification), and microarray gene expression measures. First, a similarity matrix for the

available clinical and cytogenetic parameters was constructed using the CluMix-ama approach.

The similarity matrix was visualized by a heatmap to give an overview over relationships

between the different features, see Fig 5. The color intensity indicates the strength of associa-

tion for each pair of variables. Further, related variables are grouped together by hierarchical

clustering. This display is in general useful e.g. in regression analysis, when strongly related

predictors shall be identified in order to avoid redundant information or collinearities in the

model. Strongest associations are observed between the molecular biology of ALL and the two

chromosomal translocations t(9;22) and t(4;11). Presence of translocation t(9;22) (Philadelphia

chromosome) is the strongest indicator for the BCR/ABL subtype in ALL. Similarly, transloca-

tion t(4;11) defines the ALL-1/AF4 molecular subtype. Bone marrow transplantation is highly

indicated in patients with translocation t(4;11), which can also be seen by the corresponding

strong association in the heatmap. Further, the type of ALL (B-ALL or T-ALL) is related to

the molecular biology, which was expected, since most molecular ALL subtypes are more

Table 4. Balanced error rates when clustering three datasets (rows) into two classes of samples using different approaches (columns). The respec-

tive smallest BER is highlighted in bold.

quantitative only dichotomized mixed-data clustering

latent class k-prototype Gower

Cancer treatment response 0.317 0.274 0.274 0.269 0.262

Cancer survival 0.356 0.319 0.314 0.384 0.314

Manufacturing process 0.371 0.375 0.338 0.336 0.308

https://doi.org/10.1371/journal.pone.0188274.t004
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prominent in B-ALL as compared to T-ALL. The indicator, whether a patient is cytogenetically

normal, is also naturally associated with the main chromosomal translocations in ALL.

Another block of high similarities comprises indicators about remission following treatment,

CCR and relapse. Those follow-up indicators usually can be expected to be interrelated.

Using the same similarity matrix for variables, we further propose a novel type of illustra-

tion that might be useful in regression analysis. We assume achievement of remission after

treatment as an outcome variable and a the molecular subtypes as potential predictor variable

of most interest. From the complete variable similarity matrix the corresponding rows for

those two variables are extracted. The similarity values are then shown in a scatter plot, such

that each point in the plot illustrates the similarity of the respective third covariate to both the

outcome and the predictor, see Fig 6. The outcome and predictor variables themselves are also

Fig 5. Heatmap of similarities between clinical parameters in ALL. Similarities between variables available in the ALL

dataset were calculated by the CluMix-ama approach. Stronger relationships between variables are indicated by shorter

distances in the dendrograms and darker blue color in the heatmap.

https://doi.org/10.1371/journal.pone.0188274.g005
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included in the plot, and obviously take values of 1 at the y- and x-axis, respectively. The x-

coordinate of the outcome and the y-coordinate of the predictor correspond to the association

between both, and hence give an impression about whether the relationship might be of con-

siderable strength. The positions of all the other variables allow conclusions about their rela-

tion to both the outcome and the predictor: The position of points in y-direction gives a first

impression about which covariates might have an effect on the outcome. Variables located

very close to the outcome variable’s position could potentially be considered as surrogate out-

come. As seen from Fig 5, again the strong relation of remission to relapse and CCR become

apparent. Features in the bottom right area of the figure are strongly related to the selected pre-

dictor variable, but not associated with the outcome. Those would probably not add substantial

value to a regression model. If there are variables very close to the predictor variable’s position,

this may suggest collinearity. In the example, this seems to be the case for ALL type and cyto-

genetic features. This makes sense, since the specific translocations define certain molecular

subtypes, and almost all patients with T-cell ALL have a NEG subtype. And, last but not least,

the figure can help to identify confounding variables, since similarities to both the predictor

and the outcome are accessible at a glance. Potential confounders would be located in the top

right corner. In this case it seems that transplantations were only conducted in patients with

certain molecular subtypes, such that both covariates are confounded. Note that distances

between points in the plot do not directly correspond to variable similarities.

Next, we used the same dataset to show an example of an unsupervised way to explore

global structures among patients and variables, combining both clinical parameters and high-

dimensional gene expression data. The microarray data was first reduced by unspecific filtering

to the set of the 100 most varying genes. To ease visual inspection, the information within this

Fig 6. Similarity of each variable with the remission indicator plotted against respective similarities with molecular ALL

subtype. From the complete variable similarity matrix (derived by the CluMix-ama approach), the values for two variables of interest,

namely remission and molecular subtype, are extracted and shown in a scatter plot, such that each point in the plot illustrates the

similarity of a third covariate to both variables of interest. Plotting symbols are replaced by respective variable names. The color

indicates numerical (black) and categorical (purple) variables. This kind of illustration may help to identify surrogate, collinear and

confounding variables.

https://doi.org/10.1371/journal.pone.0188274.g006
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gene list was further summarized by k-means clustering to eight gene clusters and the cluster

centers were then added to the clinical parameters. Patients were clustered using the Gower

method. For variables clustering we considered the three approaches described in the Methods

section. The certainly most common visualization task to the derived mixed-data distance

matrices is the generation of a heatmap, showing structures among variables and patients at

the same time. In our mixed-data heatmap, see the right panel of Fig 7, different color schemes

are used in order to highlight different types of variables. For numerical features we suggest a

blue and for ordinal factors a green color scale. Structures in the data should become visible as

areas of light or dark colors, respectively. For non-ordered categorical data we take colors from

a red color palette. While for qualitative data usually colors are chosen that do not visually sug-

gest any ordering between categories, one could also argue to make use of the category order-

ing found in the CluMix-ama approach when calculating similarities between rank ordered

and qualitative variables. In this way categories displayed by light/dark red colors can coincide

with light/dark colors in variables closest to the categorical variable. Hence, structures in the

data become apparent more easily. In Fig 7, patients are observed to group mainly into B-ALL

and T-ALL. Within B-ALL patients, further subgroups reflecting different molecular ALL sub-

types are visible. The next level in the patient dendrogram hierarchy is dominated by gender.

The separation in B-ALL and T-ALL is supported by five of the eight gene clusters. Some of

those clusters additionally seem to be associated with the molecular subtypes. For example,

cluster 8 apparently contains genes that are mainly up-regulated in the ALL-1/AF4 subtype.

Gene cluster 7 appears to be dominated by sex-related genes. The remaining two gene clusters

Fig 7. Heatmaps of gene expression and clinical patient data in ALL. The left panel results from a standard approach,

where only gene expression data (the 100 most varying genes) are used for clustering. Clinical and cytogenetic information is

added on top as color bars. The right panel shows a corresponding novel mixed-data heatmap. The centers of eight k-means

gene clusters, together with other clinical parameters, were clustered using the CluMix-ama approach. Patients were

clustered using Gower’s distance. Missing values are indicated by white spots.

https://doi.org/10.1371/journal.pone.0188274.g007
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do not show an obvious association with any of the other factors under study. The relations

between variables, already discussed above, can be viewed in more detail in this heatmap. For

example, the association between continuous complete remission and relapse is obviously neg-

ative, and chromosomal translocations t(9;22) and t(4;11) are indicators for the molecular ALL

subtypes BCR/ABL and ALL-1/AF4, respectively. To highlight the benefits of the novel mixed-

data heatmap, the left panel of Fig 7 shows a “standard” heatmap based merely on gene expres-

sion data (here we use again the 100 most varying genes instead of the gene cluster centers).

Clinical and cytogenetic parameters are not used for clustering and are just added on top of

the image. A grouping of patients into B-ALL and T-ALL is still obvious, which seems to be

the main information extractable from gene expression patterns. Further structuring of the

patients with respect to molecular subgroups or gender as in the mixed-data heatmap is not

apparent here. In general, inspection of the additional parameters is quite cumbersome once

there are more than maybe two or three. In contrast, in the mixed-data heatmap they appear as

groups of related features, which facilitates to gain a global overview on the dataset.

When using the CluMix-dcor approach or ClustOfVar for the mixed-data heatmap

instead of the CluMix-ama approach, we get similar results, see S4 and S5 Figs. However,

some differences can be seen, for example using CluMix-dcor gene cluster 5 groups together

with translocation t(4;11), whereas with the CluMix-ama approach it is in a group together

with age and gene cluster 4. With ClustOfVar only four gene clusters are directly linked to B/

T-ALL, whereas gene cluster 8 shows to be closer related to the t(4;11) translocation and the

molecular ALL classification. It is usually hard to tell which clustering results “make more

sense”, since the “true” grouping of variables is unknown. One can only try to explain which

groups of variables are plausible based on the biological background. Here indeed carriers of

the t(4;11) translocation seem to have specifically high expression of genes in gene cluster 8.

On the other hand, for example the direct link between translocation t(9;22) and molecular

subtype BCR/ABL becomes more obvious when clustering with the CluMix-ama and Clu-

Mix-dcor approaches as compared to ClustOfVar.

We also produced a heatmap using directly the selected 100 most variable genes instead of

gene clusters (see S6 Fig). Patient clustering is then dominated by the separation into B- and

T-ALL, whereas further subgroups, i.e. reflecting molecular classification or gender, are not

apparent anymore. This is probably due to the fact that the vast majority of genes is related to

B- or T-ALL. Introducing variable weights is an option here to give more importance to the

minority of clinical and cytogenetic parameters, see S7 Fig for an example. The clustering of

variables shows similar groupings as before using gene clusters. Here we can identify directly

the genes associated with certain other parameters, without having to go back from clusters

to their respective individual members, e.g. B-cell related genes CD19, CD79B or genes from

the HLA family (present in gene cluster 1 in Fig 7 and S4 Fig), T-cell related genes CD3D, LCK
and MAL (in gene cluster 6), or genes DDX3Y and RPS4Y1 located on chromosome Y and

thus related to gender (gene cluster 7).

Discussion

We described ways how datasets including parameters measured on different scales can be

used in cluster analysis—both individual samples and measured variables—while data do not

have to be brought on the same scale, which usually would mean loss of information. The main

focus of this work lies on i) development and evaluation of new strategies for clustering vari-

ables, which we feel is still not a sufficiently well addressed topic in the literature, and ii) inte-

grative visualization, of the preprocessed data itself or of results from statistical analyses. The

latter can still be complex in the case of high-dimensional data of possibly different sources.
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For clustering samples we used similarity matrices based on Gower’s coefficient of associa-

tion. In terms of recovering true underlying classes of samples in simulated data (not shown)

and real data examples it performs equally well or better than partitioning algorithms, like k-

prototype clustering.

For clustering variables i) a new method based on similarity matrices created by combination

of association measures (CluMix-ama), ii) a new method based on dissimilarity matrices

defined by distance correlation (CluMix-dcor), iii) a hierarchical clustering approach based on

PCA for mixed-type data (ClustOfVar), and iv) clustering based on bias-corrected mutual infor-

mation (BCMI) were evaluated. For approach i) a novel association measure for comparing

rank-ordered to qualitative variables based on category reordering was introduced. The differ-

ent association measures are combined in a way that the resulting distance matrix has Euclidean

properties. For approach ii) we derived a new association measure for comparing mixed vari-

ables based on the concept of generalized distance correlations. Different from competing mea-

sures, this coefficient is 0 if and only if the underlying random variables are independent.

Simulation studies for the new CluMix-ama approach showed that with the proposed mea-

sures of association between variables the true underlying correlations of variables w.r.t. their

similarities could be captured well. Further simulation studies were conducted to compare the

different mixed-data clustering strategies in their ability to recover true underlying structures in

the data. In the case of exclusively quantitative data, standard distance measures like the Euclid-

ean distance still would be the first choice. But for mixed-type data such methods are not appli-

cable without data transformation. The simulations showed that in general the use of specific

methods for mixed-type variables can be favorable over applying standard approaches to cate-

gorized versions of the data—at least for up to around 50% categorical variables in the dataset

and for large numbers of samples and/or variables. Approaches i)-iii) for clustering mixed-type

variables showed very similar performance. Our two novel methods CluMix-ama and CluMix-

dcor perform comparable or, especially in case of larger fractions of non-quantitative variables,

better than the existing ClustOfVar approach, and in general they perform better than BCMI.

The two new approaches CluMix-ama and CluMix-dcor provide distance matrices. In con-

trast to the ClustOfVar approach, this gives the user complete flexibility in terms of which kind

of clustering algorithm to apply. Further, similarity matrices are beneficial for visualization pur-

poses. Also BCMI provides a similarity matrix. However, mutual information can be greater

than 1, and hence correspondence with correlation values is less clear than for CluMix-ama

and CluMix-dcor. If in a dataset linear associations are expected or of most interest, the Clu-

Mix-ama approach could be the method of choice, since it was designed to capture correlation-

like relationships. For non-linear or even non-monotone relationships, the CluMix-dcor

approach might be the best option, since it captures anything differing from independence

between variables. If and to which extent such “non-standard” relationships should be reflected

in the resulting distance matrix and how the different methods perform in this sense is subject

to further research. A further appealing feature of the CluMix-dcor approach is the fact that we

calculate distance correlations based on similarities equivalent to the ones used also for cluster-

ing samples. Thus, we obtain a unified approach for simultaneous clustering of samples and

variables. The proposed methods provide distances where the triangle inequality holds. Never-

theless, it is not clear if certain combinations of data types, e.g. two quantitative variables as

compared to one quantitative and one binary variable, systematically yield larger or smaller dis-

tances. This issue has to be further investigated and potential corrections have to be developed.

The real data application showed unsupervised illustration of the data. The proposed inte-

grative visualization approach could also be used for supervised settings, e.g., combined

visualization of results of supervised feature selection together with further covariates and the

outcome of interest (see S8 Fig for an example). Regarding computation time, the CluMix-
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dcor approach is the fastest for datasets of sizes similar to our simulation studies, and also for

larger sets of variables. When increasing sample size, on the other hand, ClustOfVar is more

efficient. In our current implementation, the heatmap is limited to a maximum of 200 vari-

ables, even though similarity matrices can be calculated for more variables. Hence, dimension

reduction is still necessary when working with high-dimensional datasets. Anyway, in most

cases feature selection or summarization is necessary to be able to visually distinguish struc-

tures in the data.

The use of the presented similarity measures can be extended in several ways. For samples

clustering there is also a weighted version of Gower’s distance, which enables to prioritize vari-

ables. The weights could be derived, for example, from previous shrinkage regression analysis.

Besides explorative analysis, the underlying clustering based on mixed-type data can find

other potential applications within the scope of statistical inference. Similarities between sam-

ples, assessed using features on different scales, can for example be used for classification tasks.

Clustering of variables provides a hierarchy of related features, which can serve as starting

point for hierarchical testing approaches.

Conclusion

The ability to define similarities and to cluster observations and variables of mixed data types

is valuable for the analysis and illustration of complex datasets. This work contributes to the

methodology of mixed-type variables clustering and emphasizes on integrative visualization

strategies.

Supporting information

S1 Fig. Comparison of association measures for different data type combinations. For each

comparison 1000 pairs of variables were simulated in the following way: two quantitative vari-

ables for 200 samples were simulated to have a Pearson correlation of (from left to right) 0, 0.3,

0.6 or 0.9, as indicated by the red lines. Ordinal, nominal and binary factors were created by

categorizing the continuous variables in “perfect agreement”, e.g. by a median cut for the

binary factors and quartile cuts for nominal and ordinal factors (resulting in 4 categories). For

each combination of variable types, as indicated by the respective titles, three to four different

common or new measures of association were applied, where the respective coefficient selected

for CluMix-ama in each case is indicated in bold (Pearson = Pearson correlation, Spearman =

Spearman correlation, Kendall = Kendall’s tau, GKgamma = Gooman and Kruskal’s gamma,

ClustOfVar = similarity measure based on squared canonical correlation as used in ClustOf-

Var approach, SomersD = Somers’ D, ContCoef = Pearson’s contingency coefficient,

CramersV = Cramer’s V, reorderGK / reorderSp = Goodman and Kruskal’s gamma / Spear-

man correlation applied to “optimal” ordering of categories, see main text). Very similar

results were observed when using simulation settings with i) more categories for the nominal

variables, ii) some fraction of missing values, iii) smaller sample sizes, iv) unbalanced category

sizes for nominal variables (data not shown).

(TIFF)

S2 Fig. Misclassification rates from variables clustering of 100 simulated datasets each,

varying sample size and number of variables. Datasets were simulated as described in the

main article using within-group correlation of 0.5 and 20% of between-group correlations of

0.5 instead of 0. Three approaches for clustering variables were applied: CluMix-ama (top left

panel), CluMix-dcor (top right panel), ClustOfVar (bottom left panel) and BCMI (bottom

right panel). Simulation settings varied w.r.t. sample size (n = 25, 50, 100; panel columns), and
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numbers of variables (p = 50, 100, 200; panel rows). Misclassification rates (MCR) (y-axis)

were calculated based on clustering with Euclidean distances for the purely quantitative data-

sets (orange), with approaches for mixed data for datasets with varying amounts of categorical

variables (0%—100%; white to dark blue), and with simple matching coefficient for completely

binarized data (green).

(TIFF)

S3 Fig. Misclassification rates from variables clustering of 100 simulated datasets each,

varying correlation and noise. As S2 Fig, but with fixed numbers of samples and variables of

100, respectively. Simulation settings varied w.r.t. within-group correlations (corr = 0.25, 0.5,

0.75; panel columns), and fraction of between-group correlations with value 0.5 instead of 0

(noise = 0%, 20%, 40%; panel rows).

(TIFF)

S4 Fig. Heatmap of gene clusters and other patient data in ALL using CluMix-dcor for

clustering variables. The 100 most varying genes were clustered by the k-means method

into eight clusters. The respective cluster centers, together with other clinical and cytogenetic

parameters, were clustered using the CluMix-dcor approach. Patients were clustered using

Gower’s distance. Color codes are explained in the legend below. Missing values are indicated

by white spots.

(JPEG)

S5 Fig. Heatmap of gene clusters and other patient data in ALL using the ClustOfVar

approach for clustering variables. As S4 Fig, but using ClustOfVar instead of CluMix-dcor

for clustering variables.

(JPEG)

S6 Fig. Heatmap of 100 most variable genes and other patient data in ALL. The 100 most

varying genes were clustered together with other clinical and cytogenetic parameters using

the ClustOfVar approach. Patients were clustered using Gower’s distance. Color codes are the

same as in S4 and S5 Figs.

(JPEG)

S7 Fig. Heatmap for ALL data where variable weights were used. As S6 Fig, but clinical and

cytogenetic factors were given five times more weight than genes in the calculation of Gower’s

distances between samples.

(JPEG)

S8 Fig. Heatmap of variables selected for prediction of relapse in ALL. As an example of

visualizing results of supervised analyses, a model for predicting relapse in ALL patients was

built. Firstly, genes associated with relapse were pre-selected. Secondly, a penalized regression

model was built with the 42 previously selected genes with unadjusted p-value < 0.01, together

with clinical and cytogenetic parameters. The model resulted in final selection of patient age,

whether complete continuous remission had been achieved (CCR), and expression of 14 genes.

Those selected features are shown in the heatmap, where the CluMix-ama approach was used

for clustering variables. A column color bar indicates the status of the response variable relapse.

(TIF)
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