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Abstract

Though Bayesian methods are being used more frequently, many still struggle with the best

method for setting priors with novel measures or task environments. We propose a method

for setting priors by eliciting continuous probability distributions from naive participants. This

allows us to include any relevant information participants have for a given effect. Even when

prior means are near-zero, this method provides a principle way to estimate dispersion and

produce shrinkage, reducing the occurrence of overestimated effect sizes. We demonstrate

this method with a number of published studies and compare the effect of different prior esti-

mation and aggregation methods.

Introduction

Research activities trade off between accuracy of estimates and cost of information. Limita-

tions on time and funding constrain sample sizes and thereby reduce the information available

from any individual study. Additional, extra-experimental information regarding effect sizes

would allow researchers to plan appropriate sample sizes and improve Bayesian analyses by

constraining and informing prior distributions.

Choosing prior information can be a contentious process. Non-uniform (i.e., informed)

prior distributions are often criticized for their subjectivity and may be difficult to estimate in

the absence of relevant literature. While empirical Bayesian methods are con tinually improv-

ing [1], these methods avoid the near-universal benefit to analytical efficiency gained from

including additional prior information. Infinite and uniform prior distributions like those

traditionally favored by empirical Bayesians can also be too informative, granting excess credi-

bility to extreme (and sometimes impossible) values of estimated parameters [2]. For sparse

data or small sample sizes, uniform prior distributions can produce inappropriate parameter

estimates.

Even when using frequentist analysis or uninformed priors in Bayesian analysis, additional

information about the study can improve sample size planning. Many hypothesis-driven stud-

ies focus on establishing that a particular parameter does (or does not) differ reliably from

zero. To use an example from the current research, perhaps desire for an object reduces the

perceived distance to that object [3]. If desire influences perception, a thirsty person should
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claim that a bottle of water a fixed distance from them is closer than a less thirsty person does,

on average. To test the theory that desire alters estimates of distance, a researcher does not

have to accurately predict participants’ estimated distance to a water bottle, he or she only has

to provide evidence that the perceived distance to a water bottle is reliably less on average for

thirsty people than for their less-thirsty reference group. By randomly assigning individuals to

thirst or satiety, the researcher can ignore other factors that influence perceived distance (e.g.,

spatial reasoning, the actual distance, etc.) and build a model that predicts estimated distance

with only an indicator as to the thirst of a given individual.

Ideally, a researcher would look to previous research to estimate an expected effect size,

both to use in a Bayesian analysis and to plan for a sample of sufficient size to reliably estimate

the hypothesized non-zero effect. Uncontested prior information is not always available: A

novel outcome measure or widespread disagreement within the literature would both make

the choice of prior (or expected effect size) contentious. Rather than planning studies based on

guesses about the range of observable effect sizes—or worse, hoping for optimistically-large

effect sizes—researchers would benefit from an inexpensive and objective method for obtain-

ing impartial estimates of effect size. Better planning would reduce the resources spent investi-

gating large effects, allowing more resources to be allocated to accurately estimate small or

highly variable effects or saved when the existing resources would be insufficient to gather the

necessary information relevant to a parameter of interest.

Estimating reasonable priors is a forecasting problem and amenable to crowdsourcing or

other group aggregation strategies. While no individual is likely to produce well-calibrated

parameter estimates in the way that a scientific study would, individuals do have substantial

experience making predictions about an uncertain world. Many studies demonstrate that com-

bining individual subjective probability estimates can produce improved forecasts [4]. While

the unweighted linear average of individual forecasts is one successful strategy [5], more recent

research has demonstrated the effectiveness of multilevel models at simultaneously recalibrat-

ing individual subjective probability estimates and generating an aggregated forecast [6].

This is, at least in part, because multilevel structure allows for efficient use of information

when we have little information about individual forecasts compared with the group average

[7]. Rather than relying on completely uninformed prior distributions or guesses about effects

sizes, easily-collected individual estimates could be aggregated and used to both plan studies

and increase the information included in data analysis.

The current article discusses two ways that prior distributions on effect sizes can be elic-

ited and used to improve psychological studies that are tested by comparing two groups on a

continuous outcome. Though testing and discussion are limited to comparisons between

two groups, this method could be scaled to any number of analyses. We elicit effect sizes

from participants using abstract and concrete prompts and explore aggregation of these esti-

mated quantities using both maximum likelihood estimation and hierarchical Bayesian

modeling. These methods could be widely implemented with existing technology for mini-

mal cost.

Materials and methods

Participants

We recruited 48 undergraduates from the Psychology Department participant pool at the Uni-

versity of Maryland, College Park. Participants received partial course credit for taking part in

the study. The University of Maryland Institutional Review Board approved all study proce-

dures under Protocol Number 09-0493.
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Procedure

Participants who signed up for the study received a link to a Qualtrics survey. This link guided

participants through a short training on our elicitation method, followed by a series of ques-

tions that asked participants to give estimates of effect sizes and then corresponding probabil-

ity estimates of the elicited quantities. Following successful completion of the study,

participants saw a “thank you” message and received course credit.

Elicitation

For each experimental question, participants saw a total of three separate prompts:

1. An abstract prompt that posed the central, theoretical question of a given study;

2. A concrete prompt that explained the relevant control-condition context and introduced

the outcome and measurement scale; and,

3. A concrete prompt that explained the relevant treatment-condition context and repeated

the outcome and measurement scale.

In response to the abstract prompt, participants produced a single response on the 0–100

scale using a slider, with 0 anchored at, “this statement is definitely not true,” and 100

anchored at, “this statement is definitely true.” We used the following abstract prompts:

1. The font of a survey about negative personality traits alters the number of negative person-

ality traits that respondents admit to having [8].

2. Desire for an object changes the perceived distance to that object [3].

3. Thinking about luxury material goods increases depressive feelings [9].

4. Superstitious belief increases golf performance [10].

5. Infants can map increasing line lengths to a mental number line [11].

6. Additional competitors reduce individual motivation to compete [12].

7. Verb tense used to describe past actions can influence memory for those past actions [13].

8. Physically enclosing an upsetting object reduces negative emotions associated with that

object [14].

Each prompt corresponds to studies in an article included in a recent examination of

articles in the journal Psychological Science [15]. These questions all presumably merit inves-

tigation by virtue of their appearance in a high-impact journal. The corresponding concrete

prompts each included two elicitation steps. For each condition of each prompt, partici-

pants estimated three outcome measurements: Their best guesses for the outcome in a par-

ticular condition, their minimum guesses, and their maximum guesses. We required that

these responses be weakly monotonic, such that the best guess could not be smaller in mag-

nitude than the minimum or larger in magnitude than the maximum. After giving these

estimates, participants gave cumulative probability estimates corresponding to three new

quantities that we based on the initial elicited values. These new values were defined as

c1 ¼ Lþ H� L
6
; c2 ¼

H� L
2
; c3 ¼ H � H� L

6
, where H is the maximum elicited value for a given

estimate and L is the minimum. Again, we required that the probability estimates be weakly

monotonic, such that p(c1)� p(c2)� p(c3). We used the following concrete prompts, with

the alternative text that defines the manipulation for each prompt appearing in parentheses:
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1. Out of 30 possible traits, how many negative traits would the average person admit to hav-

ing (while reading the traits in unclear text)?

2. How far away would the average person (who had just eaten pretzels) estimate a bottle of

water that is truly three feet away?

3. On a range of 0 to 20, how depressed is the average person (after viewing pictures of luxury

good)?

4. Out of 10 attempts, how many putts at a distance of 3 feet would the average person sink

(after hearing that they are using a lucky ball)?

5. How long would infants look at a series of five pictures in which the number of shapes

decreases/(increases) in each successive picture?

6. How long on average will an individual in a group of 10/(100) people take to complete a

timed, 10-question math quiz?

7. One a scale of 1 to 10, where higher numbers indicate higher hostility, how hostile would

an average person rate a Black man’s actions after being asked what they did/(were doing)

in a past interaction with a Black man?

8. On a scale of 1 to 5, where higher numbers mean more negative feelings, how negatively

would an average person feel after reading a news article about the death of a child (and

then enclosing that article in an envelope)?

Aggregation

We modeled elicited probabilities in two ways. The first used maximum likelihood estimation

to find the best point estimates for each participant’s mean and standard deviation parameters

independently for each condition. To derive maximum likelihood estimates, we assumed

Gaussian forms for participant prior distributions and calculated μ and σ for each participant,

question and condition by minimizing squared error loss for the differences between elicited

probabilities and calculated probabilities corresponding to a given quantile prompt (i.e., c1, c2,

and c3) from the generated μ and σ. We then aggregated the participant parameters by taking

the independent medians of the μ and σ parameters, producing a single, normally-distributed

prior for each condition in each experiment [16, 17]. Though the assumption of Gaussian

beliefs is quite strong, we avoid any interpretation of a “best guess” by using more information

from the elicitation method, allowing us to weight participants by their confidences in the con-

sensus distribution.

We estimated (and simultaneously aggregated) participant-varying parameters using a hier-

archical Bayesian model (HBM, Fig 1). Code and data for these models are available at https://

github.com/jchrszcz/papers/tree/master/chrabaszcz_csp. We fit these models using Stan [18,

19] and performed all analysis with R [20]. In these models, we defined the likelihood as a mix-

ture of a Beta distribution with parameters that depend on the c1, c2, and c3 prompts and corre-

sponding probability estimates (qij and pij, respectively, in Fig 1) that each participant saw

and a Bernoulli distribution that did not depend on these prompts. The Bernoulli mixture is

included to remove exact zero and one values from elicited probabilities, which are incompati-

ble with the study design. We include a mixture parameter,~�, to separately model the proba-

bility of producing responses of 0, 1 or a valid response from the estimated Beta distribution.

The Dirichlet prior on ϕ corresponds our expectation that fewer responses will be exactly 0 or

1. Participants respond to quantile values that are greater than the elicited minimum and less
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than the elicited maximum for each question, so providing probability estimates that are

incompatible with more extreme quantile values should never occur. Elicited probabilities

(with the contaminant zeros and ones accounted for) are predicted using F−1-transformed

combinations of the participant-varying quantile prompts: the m and s parameters. While

prompts were fixed as part of the elicitation process, we modeled the m and s parameters as

samples from normal distributions with centers μ and σ and standard deviations τ and γ, the

estimated variances on participant-wise parameters. This allowed us to use the μ and σ hyper-

parameters as the consensus distribution for each condition and question. For all following

calculations, we use the median of these hypermaters to reflect the parameter value.

We fit a separate model for each question. The only parameters consistent across all partici-

pants and both conditions for each question are ϕ and ρ, which measure the probability of

responding exactly zero or one. We elicit probabilities corresponding to finite effect size esti-

mates which are assumed to be normally distributed with a mean and standard deviation that

vary by participant and condition for a given question, so responses of exactly zero or exactly

one should never be observed. The model we used is a Bayesian version of an inflated regres-

sion model, which are used to model data assumed to arise from a mixture of two error distri-

butions. In this case, we assume that participant probability estimates will have residuals that

Fig 1. Graphical model [21] of the hierarchical Bayesian model applied to each question independently.

https://doi.org/10.1371/journal.pone.0188246.g001
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result either from a Bernoulli distribution (which accounts for the zero and one responses) or

a Beta distribution (which applies for all other response values).

We scaled all quantile prompts (c1, c2, and c3) for each question separately prior to fitting

the model, then reversed the transformation to generate unstandardized estimates for each

question. This scaling allowed us to speed convergence by assuming a normal prior distribu-

tion with zero mean and one standard deviation independently for each condition mean and a

half-normal prior distribution with zero mean and one standard deviation for eacg condition

standard deviation [22]. It also enabled us to use consistent prior distributions across the dif-

ferently-scaled questions under consideration.

Results

Abstract elicitation produced a range of belief centered approximately at chance for most ques-

tions. Participants were slightly more credulous than average for questions 2, 3, and 8 and

more skeptical on questions 5 and 6 (Fig 2). These simple averages provide a calibration check

for the more complicated models. If participants held strongly divergent beliefs about the stud-

ies as a function of the elicitation method, then we would either doubt the methods and model-

ing or require an explanation for the discrepancy. Though we believe the models used to form

consensus distributions for each question are giving more accurate estimates than the raw

responses to the abstract prompt, both methods suggest that participants have a range of prior

Fig 2. Densities of participant responses to abstract prompt. Superimposed quantities give the mean probability for the estimated truth

of each statement.

https://doi.org/10.1371/journal.pone.0188246.g002
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belief and that, on average, people believe that the experimental effects will be either very small

or highly variable.

We analyzed raw participant responses to concrete prompts in three different ways. One

initial approach is to examine the graphical distributions of “best guesses” from the first elicita-

tion step (Fig 3). This method has at least two problems. We have no way of comparing confi-

dence in these estimates. Presumably some participants are more certain of their estimates

than others, but we have no way of knowing the relative confidence in these point estimates.

We also have no way of knowing what a “best guess” reflects. If participants have a symmetri-

cally-distributed belief regarding the elicited values, then the best guess will represent both the

mean and median of the distributions. This is not necessarily the case, however; participants

could implicitly use an asymmetric cost function or have skewed distributions of belief regard-

ing the elicited parameters. Aggregating participant belief into a prior distribution on an effect

size is intractable without further information in any of these scenarios. Despite these prob-

lems, Fig 3 is consistent with responses to the abstract prompt. The densities correspond to

each condition show substantial overlap and, in most cases, high variability. These graphs pro-

vide a second indication that prior estimates of effect size will be more variable than large.

Another way to look at participant responses is to model them using maximum likelihood

estimation (MLE). We can see in the cumulative normal curves for each participant and the

associated median aggregation curves for each condition that participants hold a range of

prior beliefs regarding the effects of these manipulations (Fig 4). MLE produces consensus

Fig 3. Densities of raw best guess responses to concrete elicitation, colored by condition and faceted by study question. The

horizontal axis is logarithmically scaled to minimize the visual effect of extreme estimates.

https://doi.org/10.1371/journal.pone.0188246.g003

Crowdsourcing priors

PLOS ONE | https://doi.org/10.1371/journal.pone.0188246 November 16, 2017 7 / 16

https://doi.org/10.1371/journal.pone.0188246.g003
https://doi.org/10.1371/journal.pone.0188246


distributions that vary widely between questions. Some of the participant curves demonstrate

rather extreme values for the modeled parameters. A drawback of MLE is that each participant

is modeled independently of the others. This particular model carries with it the assumption

that we learn nothing about other participants from a given participant’s responses [7, 23],

despite the fact that we have quite a bit of information about the participant averages relative

to the information from a given individual.

By assuming estimated means and standard deviations for each participant are drawn from

shared distributions in the HBM, we can partially pool our estimates to both produce more

realistic individual parameter estimates and aggregate them based on the shared distribution

parameters. Fig 5 shows the cumulative normal curves for participants and the implied con-

sensus distributions using HBM with partially-pooled multilevel structure. Relative to MLE,

Bayesian participant estimates are smoothed toward the grand mean of each parameter (Fig

6). The hyperparameter consensus distributions from the Bayesian model are reasonably close

to those from median aggregation with MLE (Table 1). These estimated effect sizes are reason-

ably consistent with the mean abstract elicitation probabilities, which provides some minimal

assurance that participants are consistent across elicitation methods and that the aggregation

procedure is not pathologically mis-calibrated.

Table 1 shows the difference in conditional means, pooled standard deviations, and effect

sizes for each question based on the data and two aggregated estimates. Both MLE and HBM

produces mean and standard deviation estimates that are within an order of magnitude of the

Fig 4. Cumulative normal curves generated from maximum likelihood estimates for each participant and condition, faceted by

question. Participant curves for both conditions are in gray, while the curves corresponding the median mean and standard parameters in

each condition are used to create consensus curves, colored by condition.

https://doi.org/10.1371/journal.pone.0188246.g004
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empirical estimates in most cases. Both aggregation models produce smaller average estimated

effect sizes compared with the empirical observations, a product of proportionally larger esti-

mated standard deviations.

Both the maximum likelihood and hierarchical Bayesian methods of modeling the data

showed reasonable correspondence to the data. The maximum likelihood model was able to

explain greater than 99% of the variance in roughly 97% of elicited distributions. Fig 7 shows

the distribution of the sums of squared error for each question. All Stan models had R̂ of less

than 1.1 and effective n of more than a few hundred based on models of five independent chains

each, indicating sufficient mixing between chains and sufficient independent samples of mar-

ginal distributions for each parameter to support inference (Fig 8 for R̂ distributions by model).

Each chain was initialized with pseudo-random draws from the priors based on CPU time.

The HBM produced aggregated parameter that are visually similar to the average abstract

prompt responses, average “best guess” responses, and median-aggregated MLE estimates. We

also produced a very simple simulation to show that the HBM can recover known parameters.

Fig 9 compares the posterior distribution of the HBM to to the true parameter values (red

points) for each of the top level parameters. In this figure, the model is fit to three responses

for two conditions for each of twenty simulated subjects whose responses are generated using

the priors listed in Fig 1. With the exception of σ, which is biased too close to zero a half-nor-

mal prior given the small simulated sample size, we find reasonable correspondence between

the true and estimated parameters.

Fig 5. Cumulative normal curves generated from a Bayesian multilevel model fit independently to each question. Participant curves

for both conditions are in gray, while the curves corresponding the median mean and standard parameters in each condition are used to

create consensus curves, colored by condition.

https://doi.org/10.1371/journal.pone.0188246.g005
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Though our focus is not on the specific studies but on the general process of planning and

interpreting experimental studies, we examined the power of these eight studies with the exist-

ing samples sizes and assuming true effect sizes based on the observed effect size or the priors

elicited and aggregated with MLE or HBM. Table 2 gives these quantities. Empirical estimates

of effect size yield low power in half of the observed samples. The empirical effect sizes are

based on relatively small samples, though, which yield biased effect size estimates [24]. If we

base our power calculations on the effect sizes from our survey responses and ignore the study

information, the power for these studies is even lower. Our elicited and aggregated effect sizes

suggest the need for much larger samples than do the empirical effect size estimates.

Table 2 also gives the probability of mis-estimating the sign of each effect (Type S errors)

and the magnitude of overestimation (Type M errors) for each study based on retrospective

power estimates and prior effect sizes [25]. Across estimation methods, most of the studies

Fig 6. Example pooling coefficients for m and s parameters in the control condition of question 4. The pooling coefficient is a

measure of how much a given parameter is shrunk toward the grand means, in this case μ and σ: 0 is no pooling and 1 is infinite pooling.

https://doi.org/10.1371/journal.pone.0188246.g006

Table 1. Difference in conditional means, pooled standard deviation, and effect sizes as estimated by the published study and aggregated partici-

pant forecasts using MLE and HBM. Standation deviation (SD), Effect size (ES).

Empirical MLE HBM

Q Mean SD ES Mean SD ES Mean SD ES

1 0.01 0.28 0.05 -3.61 11.63 -0.31 -0.70 32.39 -0.02

2 -2.90 9.58 -0.30 0.47 2.97 0.16 2.54 17.90 0.14

3 0.36 0.90 0.40 2.11 8.41 0.25 2.96 22.78 0.13

4 1.85 2.86 0.65 1.17 5.21 0.22 0.93 11.32 0.08

5 3.80 10.86 0.35 1.86 24.55 0.08 45.83 627.11 0.07

6 4.20 12.66 0.33 6.89 192.04 0.04 173.62 2696.71 0.06

7 1.11 8.31 0.13 0.01 4.76 0.00 0.60 11.43 0.05

8 -0.46 1.29 -0.36 -0.48 2.24 -0.22 -0.60 5.57 -0.11

https://doi.org/10.1371/journal.pone.0188246.t001
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Fig 7. Sums of squared error by participant, collapsing across conditions, for each of the eight questions.

https://doi.org/10.1371/journal.pone.0188246.g007

Fig 8. Distributions of R̂ for each model.

https://doi.org/10.1371/journal.pone.0188246.g008
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under consideration have low chances for sign errors. The effect sizes are likely to be overesti-

mated, however; while the Type M error magnitude is modest based on empirical estimates,

HBM aggregation suggests that most effects are estimated at a minimum of nearly double the

true value.

Elicited effect sizes could be used to plan sample sizes for future studies. Table 3 shows the

sample sizes included in each study and those required to reach the recommended 80% power

using the effect sizes estimated from the studies and our aggregation methods [26]. These sam-

ple sizes reflect the effect sizes in Table 2. Sample sizes would generally need to be larger, and

sometimes much larger, to achieve the recommended power based on the empirical estimates

(which are likely optimistic). MLE- and HBM-aggregated priors suggest even larger samples.

HBM estimates are less extreme than those from MLE; while the lower recommendations

from HBM are not as low as those from MLE, HBM also limits recommendations to thousands

Fig 9. True parameter values (red) for each parameter compared with the HBM posterior estimates for the four top-level

hyperparameters fit to one set of twenty subjects simulated from fixed parameters.

https://doi.org/10.1371/journal.pone.0188246.g009

Table 2. Power (Pwr), probability of sign error (Sn), and proportion of magnitude error (Mag) for each of the eight studies.

Empirical MLE HBM

Question Pwr Sn Mag Pwr Sn Mag Pwr Sn Mag

1 0.057 0.242 9.236 0.4 0.001 1.559 0.051 0.372 20.082

2 0.811 3 × 10−6 1.114 0.318 0.001 1.752 0.263 0.002 1.924

3 0.789 9 × 10−6 1.135 0.409 0.001 1.539 0.142 0.018 2.766

4 0.909 5 × 10−6 1.057 0.197 0.008 2.23 0.068 0.143 5.787

5 0.362 0.001 1.639 0.063 0.183 6.923 0.062 0.191 7.064

6 0.804 4 × 10−6 1.124 0.06 0.201 7.817 0.084 0.078 4.416

7 0.162 0.012 2.556 0.05 0.482 148.826 0.066 0.151 6.289

8 0.884 9 × 10−7 1.069 0.475 2 × 10−4 1.438 0.156 0.013 2.604

https://doi.org/10.1371/journal.pone.0188246.t002
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rather than the tens of thousands of participants that MLE implies would be required for suffi-

cient power in experiment seven.

For samples as small as those observed, the elicited effect sizes can have substantial influ-

ence on test statistics. Table 4 presents the t-values estimated in each study, compared with

those estimated including the prior information from our elicitation and aggregation methods.

The MLE and HBM esimated t-values are calculated by calculating an unequal-variances t

value using a weighted average between empirical means and standard deviations and those

estimated using MLE and HBM. The empirical values are given the full weight of the reported

sample size, while the MLE and HBM estimates are weighted as a single observation. In all of

these examples, a t-value with a magnitude of 2.00 (and as low as 1.96) would be significant at

the p = .05 level, which is the traditional decision point in psychological sciences. In our small

sample, most studies no longer feature a significant difference between the means of the con-

trol and experimental groups. That is not to say there is no difference in means; simply that

these studies are not informative about the differences when prior information is taken into

account.

Discussion

Our goal is to assess a method of gathering inexpensive effect size estimates for use in psycho-

logical research. The current aggregation method via HBM yields a wide range of prior belief

as expressed by our participants that is consistent with, but likely more accurate than, simpler

aggregation methods. This procedure is useful and potentially applicable in all cases about

which participants can reasonably be informed.

Table 3. Sample size required to reach 80 percent power for based on the empirical and consensus-

modeled effect sizes.

Q N Empirical MLE HBM

1 33 3,517 81 16,951

2 90 86 309 388

3 50 49 124 466

4 28 19 157 1,165

5 24 64 1,372 1,468

6 74 71 6,090 1,891

7 56 439 1,655,985 2,866

8 80 61 169 673

https://doi.org/10.1371/journal.pone.0188246.t003

Table 4. t-values as reported by the original studies and as recalculated using our elicitation and

aggregation methods.

Q Empirical MLE HBE

1 2.26 -0.21 -0.01

2 -2.00 -2.78 -2.73

3 2.00 1.46 0.80

4 2.14 2.86 2.50

5 2.37 1.56 0.21

6 2.02 2.76 0.18

7 8.00 0.95 0.96

8 -2.24 -2.10 -2.05

https://doi.org/10.1371/journal.pone.0188246.t004
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We elicit sufficient information from participants to model their beliefs as a Gaussian func-

tion. This potentially allows for a variety of different aggregation methods. We have focused

on hierarchical Bayesian modeling for a few reasons. HBM can model both the participant-

wise parameters and aggregate them simultaneously. Partial pooling for information between

participants’ parameters represents a reasonable default aggregation method for experimental

studies, though other methods that make explicit use of decision analysis may be more appro-

priate in some circumstances. HBM with boundary-avoiding priors also produces consensus

estimates that are quite similar to median aggregation using MLE. This convergence is reassur-

ing, though HBM also gives much more sensible participant-wise parameters estimates in

cases where those are of interest. Individual participant parameter estimates are sometimes

quite extreme using MLE, owing in part to the relatively little data used to fit each individual’s

parameters. These extreme estimates are the justification for using the median instead of the

mean to aggregate in MLE; they are also justification for preferring partial pooling in HBM,

which produces fewer extreme estimates. This is important for accurately estimating the vari-

ability of effect size belief, which in turn influences how informed the estimated effect size will

be in subsequent analysis and how large of a sample would be required to reliably detect an

observed effect size. Though aggregated estimates for MLE and HBM were very similar, some

substantial differences exist in participant-wise parameters. In cases where individual differ-

ences matter, such as when investigating expertise, robustness, consensus on inferences, or

other phenomena that involve estimation of individual predictions, HBM should produce

more calibrated estimates.

This elicitation method is not limited to comparisons between two groups. A similar tech-

nique could be used to generate priors for nearly any linear model. The only limitations are

practical: It is much more difficult to elicit participant beliefs when they must be conditioned

on other elicited beliefs, as they would have to be to correspond to a model with multiple inde-

pendent predictors.

The methods we have discussed are not without limitations. The most important modeling

assumption we make is the Gaussian form of participant beliefs. Participants might not even

have a distribution of belief, let alone beliefs that take on the distribution we have assumed.

Gaussian distribution of belief is a convenient assumption that should be more thoroughly val-

idated. Other methods with different assumptions like kernel density estimation or Gaussian

process modeling could be used to generate participant estimates. These techniques generally

require more data to get reliable fits than the model under discussion, introducing different

limitations. We also assume that our participants are able to make informed predictions about

the studies of interest. Participants live in the world and have some experience with scenarios

like those we describe, so this does not seem unreasonable. This method of generating priors

would not be applicable in scenarios where participants would not have any relevant experi-

ence. We further assume the prompts used in elicitation do not substantially bias reported

beliefs. This could be mitigated by using separate forms for elicitation, though more compli-

cated elicitation is counter to the goal of gathering inexpensive prior information to improve

analysis of experimental data.

Conclusion

Psychological research would benefit from unbiased estimates of effect sizes prior to gathering

expensive, experimental data. This information would improve study planning by reducing

the tendency toward optimism in estimating effect sizes when calculating the necessary sample

size to detect reliable effects. The same information can be incorporated into Bayesian analy-

ses, providing maximally-informed parameter estimates without potentially biasing the
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analysis by using optimistic priors while improving efficiency relative to empirical Bayesian

analysis.
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