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Abstract

Parkinson’s Disease (PD) is a progressive neurodegenerative movement disease affecting

over 6 million people worldwide. Loss of dopamine-producing neurons results in a range of

both motor and non-motor symptoms, however there is currently no definitive test for PD by

non-specialist clinicians, especially in the early disease stages where the symptoms may be

subtle and poorly characterised. This results in a high misdiagnosis rate (up to 25% by non-

specialists) and people can have the disease for many years before diagnosis. There is a

need for a more accurate, objective means of early detection, ideally one which can be used

by individuals in their home setting. In this investigation, keystroke timing information from

103 subjects (comprising 32 with mild PD severity and the remainder non-PD controls) was

captured as they typed on a computer keyboard over an extended period and showed that

PD affects various characteristics of hand and finger movement and that these can be

detected. A novel methodology was used to classify the subjects’ disease status, by utilising

a combination of many keystroke features which were analysed by an ensemble of machine

learning classification models. When applied to two separate participant groups, this

approach was able to successfully discriminate between early-PD subjects and controls

with 96% sensitivity, 97% specificity and an AUC of 0.98. The technique does not require

any specialised equipment or medical supervision, and does not rely on the experience and

skill of the practitioner. Regarding more general application, it currently does not incorporate

a second cardinal disease symptom, so may not differentiate PD from similar movement-

related disorders.

Introduction

The research problem

Parkinson’s Disease (PD) is a progressive neurodegenerative movement disease affecting

approximately 2% of people at the age of 65 and is the most second most commonly occurring

neurodegenerative disease in the elderly (after Alzheimer’s Disease), with more than 6.3 mil-

lion people worldwide with PD [1]. In PD sufferers, loss of dopamine-producing neurons

results in a range of both motor and non-motor symptoms and currently there is no cure, no
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means of slowing the disease progression, and no means of prevention. From the perspective

of patient quality of life, PD is one of the most severe of all chronic diseases.

At present, diagnosis relies on observation of a combination of visible symptoms by a

specialist (typically a neurologist), however PD is commonly either misdiagnosed or the

diagnosis is missed completely. Pagan [2] found that, based on a UK autopsy study, there

was a misdiagnosis rate of 24% and that this strongly depended on who was performing the

diagnosis and whether or not they were applying diagnostic criteria based on clinical guide-

lines. Specialists who were not movement disorder experts had a correct diagnosis rate of

only 75% and diagnoses by primary care doctors had a correct diagnosis of just 53%. In con-

trast, movement disorder specialists were mistaken by only 6% to 8%, which raises an obvi-

ous issue–in order to be referred on to a movement specialist, the patient’s primary health

practitioner must first recognise and diagnose the symptoms. In addition, a patient may

have the disease for 5 to 10 years before it is diagnosed [3] and, by the time of diagnosis, typ-

ically 70% of the neurons in the affected part of the brain (the substantia nigra) have already

been lost [4].

With regard to disease diagnoses more generally, there are various physical and functional

biomarkers which can be used to provide both diagnostic and predictive information (for

example in predicting responses to therapies and drugs). Human–computer interaction (HCI)

researches the interfaces between people and computers, producing markers that can be used

to measure the state of the user, for example, physiological, cognitive and mental states [5]. In

principle, any device which users interact with, and which produces an output that can be

measured and stored, could be utilised as part of HCI—devices such as computers, smart-

phones, tablet computers, gaming platforms and wearable devices. However, technology-

based assessments must also provide valid and accurate results, be independent of rater’s train-

ing, and allow easy and repetitive use [6].

PD results in a range of both motor and non-motor symptoms, with the effects on move-

ment including slowness, sidedness, jerkiness and tremors. The hypothesis of this research

study was that PD could be detected in its early stages in a person by changes in the character-

istics of finger movement as they typed on a keyboard, and that such changes could be used to

distinguish and classify people with PD from those without the disease.

There have been previous HCI studies into the diagnosis of PD using features of move-

ment and gait, speech analysis, gripping and lifting tasks, finger tapping tests, hand and fin-

ger movement, and handwriting. To date, such studies have all shown limitations in one or

more facets—in the sensitivity and specificity of results, the level of specialist supervision or

intervention needed, or the requirement for specialised equipment—which have prevented

their application more generally as tools to detect or diagnose PD.

Significance of the research

Generally, by the time of diagnosis of PD, the disease is already well advanced, significant neu-

ron loss and damage has already occurred, and any possibility of delaying further disease pro-

gression or providing neuroprotection is unlikely. The goal must be to diagnose and treat PD

well before the irreversible destructive changes have taken place [2], ideally at least 5 years ear-

lier than is currently the case. In addition, because the most severe symptoms occur in the

advanced stages of the disease, strategies aimed at early detection and treatment will have the

most benefit [7].

The objective of this research was to identify those characteristics of finger movement

which are affected by PD and, through the application of machine learning (ML), to be able to

accurately classify the disease status of the participants in the investigation.

Detection of Parkinson’s Disease using characteristics of finger movement
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Symptoms of Parkinson’s Disease

The cardinal features of PD are tremor, bradykinesia, postural instability, muscle rigidity and

motor blocks [8], however there are also a wide range of other motor and non-motor

symptoms.

Rest tremor is the most common and easily recognised symptom of PD, present in 70% to

75% of cases. The tremors occur at a frequency of 4 to 6 Hz and are prominent at the distal

part of an extremity such as the hands [8] and can also involve lips, chin, jaw and legs. Rest

tremors typically disappear with action and during sleep.

Bradykinesia is characterised by a slowness of initiating voluntary movement and in sus-

taining repetitive movements with progressive reduction in speed and amplitude [9] and is the

most characteristic feature of PD. Bradykinesia is symptomatic of all basal ganglia disorders

[8] and is typified by difficulty with performing sequential and simultaneous tasks. According

to Jahanshahi et al. [10] the initial manifestation of PD is often slowness in performing the nor-

mal activities of daily life, especially those tasks requiring fine motor control.

Particularly in its early stages, PD is characterised by a predominantly unilateral (asymmet-

rical) appearance of the motor symptoms [11]. This sidedness can be so conspicuous that it

often serves as a clinical parameter to differentiate the disease from other neurodegenerative

Parkinsonian syndromes, for example, in multiple system atrophy, diffuse Lewy body disease

and progressive supra-nuclear palsy, there is usually no side predominance [12].

Rigidity in PD sufferers is characterised by increased resistance, present throughout the

range of movement of a limb. When accompanied by an underlying tremor it results in a cog-

wheel phenomenon, which continues throughout an entire range of movement. The rigidity

may occur at the neck, shoulders or hips (proximally) or wrists and ankles (distally) [8].

Issues with early diagnosis

The problems with diagnosing PD arise because there is no definitive test, and currently the

disease diagnosis must be based on clinical and observational criteria only. Many of the symp-

toms of PD are imprecise and also common to other diseases, both neurodegenerative and

non-neurodegenerative in nature. Evaluation may be performed using the Unified Parkinson’s

Disease Rating Scale (UPDRS) [13], a tool based on a score derived from the neurological eval-

uation that is performed by a physician, and hence it is a subjective measure which leads to a

lack of objectivity, repeatability and sensitivity in the scale [14].

Parkinson’s disease is usually preceded by a premotor phase that can last for years, or even

decades, between the onset of neurodegeneration and manifestation of the classic clinical

motor symptoms. The most common pre-diagnostic symptom of Parkinson’s Disease within 2

years before diagnosis is tremor, with 41% of individuals reporting symptoms to their medical

practitioner compared with less than 1% of controls, and the incidence of tremor is already

higher at 5 and 10 years before diagnosis [3]. Despite the reliance on motor symptoms for the

standard diagnosis of PD, premotor symptoms hold promise for the early diagnosis of PD and

considerable progress has been made in recent years in establishing premotor symptoms as a

means of identifying PD much earlier [2]. Biomarkers hold promise for reliable early PD diag-

nosis, while neuroimaging and sonography show enormous potential for high degrees of sensi-

tivity and specificity in diagnosing early PD [2].

Biometrics and keystroke dynamics

The use of keystrokes as a means of identification has a long history. Das et al. [15] used key-

stroke dynamics while typing a computer login string to identify users with 90% to 99% accu-

racy. Their technique involved key hold times and latency, using a Gaussian mixture model

Detection of Parkinson’s Disease using characteristics of finger movement
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and a neural network. This, and many other similar studies [16,17,18,19], demonstrate that

keystroke characteristics can be used very accurately to classify the features of particular users.

Keystroke dynamic features can be extracted using the timing information of the key press

and release events. The hold time of individual keys and the latency between keys (the time

interval between pressing one key and a succeeding key) are typically exploited [20]. In addi-

tion to ordered pairs (two successive keystrokes), n-tuples of a sequence of keystrokes have

also been investigated and keystroke biometrics research has utilised many machine learning

and classification techniques.

Existing studies into Parkinson’s biomarkers

It is known that many PD biomarkers can be analysed using various forms of human-com-

puter interaction, including movement and gait analysis, speech analysis, the precision grip

and lift test (PLGT), finger tapping tests (FTT), hand and finger movement, and handwriting.

In non-PD subjects, finger tapping frequency declines with advancing age, men tap faster

than women, and tapping with the dominant finger is faster than that of the non-dominant

finger. The basal ganglia facilitate sequential movement and the sequence of movements, how-

ever in PD patients bradykinesia and disturbances of rhythm formation occur which can be

assessed by FTT. Using an accelerometer and touch sensor, Yokoe et al. [21] measured 14

parameters of FTT movement, showing clear differences between PD and non-PD patients. By

classifying these into both velocity and amplitude parameters and rhythm-related parameters,

they found that maximum opening velocity was the most sensitive measure and most closely

aligned with the UPDRS FTT score.

People with PD tend to have slower reaction times than non-effected people of similar age

and this can be investigated with regard to the sequence of mental steps that occur between the

time that a stimulus is presented and the subsequent physical response [22]. Reaction times

can be separated into either a simple response (such as pressing one key) or a complex

response (pressing a sequence of keys). Low et al. [22] found that, especially when complex

responses are required, the reaction times of PD patients were slower, both in the delayed

onset of pre-motor processes and the motor responses themselves. Another effect of PD is

increasing difficulty in performing sequential and bi-manual movements [23]. Pal et al. [24]

suggested that analysis of sequential hand and finger movements may provide for indication

of PD, then Giancardo et al. [25], prompted by the use of keyboard typing characteristics in

biometrics, utilised the typing of people on a computer keyboard as a means of observing and

potentially quantifying motor impairment such as in PD. Using a time series analysis of key-

stroke hold times and a support vector machine (SVM) they showed significant differences

between PD patients and controls, but a related follow-on study of typing characteristics with

a larger group [26] only achieved an accuracy of 78%. Notably, none of these studies appeared

to consider the asymmetry of movement (between left and right hands), although such sided-

ness is a significant feature in early PD.

A conclusion from previous studies is that PD affects multiple aspects of hand and finger

movements and that many of these may be detected (both singly and in combination) through

changes in the response characteristics as people type a sequence of text on a computer

keyboard.

Materials and methods

Human-computer interaction

The existing research concerning PD diagnosis through the various motor symptoms has

shown that there are a range of features present during typing on a keyboard, including–

Detection of Parkinson’s Disease using characteristics of finger movement
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• Reaction speed (the equivalent of a finger tapping test)

• Slowness of movement (both keystroke hold times and latency times between sequential

keys), both for same-sided and opposite-sided fingers

• Indications of sidedness (asymmetry of responses between left and right hands)

• Degradation in repetitive movement and typing of sequences of letters (n-tuples)

• Variability of movement and signs of hand and finger tremors

• Jerkiness of motion (hesitations and pauses)

• Changes throughout the day (diurnal effects of tiredness)

• Changes over time as the disease progresses

It should be noted that in bradykinesia there is both a slowing of the initiation of movement

(the response time, defined here as the time from the brain intending to initiate a movement

until the resulting movement occurs), as well as in the speed of such movement. Even though

response time cannot be directly measured from keystrokes, the differences in latency between

successive keystrokes provide an insight into both the response times and any asymmetry

between left and right sides (e.g. the difference between a ‘LR’ ordered pair and an ‘RL’ one).

In this investigation, the keystroke dynamics of participants typing on a computer keyboard

were captured as they typed normally throughout the day. This was a significant aspect of the

investigation, as it meant that the participants were not limited to a directed typing task, the

keystroke monitoring was completely un-intrusive upon their normal routine, and no external

supervision was involved. The procedure involved each participant installing a small software

application (‘Tappy’), on their Windows computer, which recorded each keypress event and

its timing, along with the key’s position on the keyboard and whether it was a left or right-

handed key. The specific keystroke timing events that were captured are shown in Table 1 and

the manner in which these timings occur during typing the sequence of letters comprising the

word ‘Goad’ is shown in Fig 1. The method involved monitoring all the participants’ typing,

irrespective of the application they were using at the time (e.g. typing emails and documents),

and not being limited to a ‘typing test’ of predetermined passages of text. This design decision

Table 1. Keystroke events as successive keys are pressed and released.

Keystroke

Data

Definition Comments

Timestamp The time of day (hh:mm:ss.sss). The time at which each keystroke began.

Hold Time The elapsed time (ms) between the Key

Down and Key Up events when pressing

and releasing a key.

Hold Time is a measure of how quickly the

finger is tapped and can also indicate the

relative force of tapping. Hold Times are

typically in the range of 60 to 140 ms.

Latency The elapsed time (ms) from the Key Down

of one key until the Key Down of the

subsequent key.

Latency between successive keystrokes can

be separated into same-hand (LL and RR)

and opposite-hand (LR and RL). Since the

space key can be pressed by either hand, it

was treated separately (LS, RS, SL, SR).

Latency is typically anywhere in the range of

50 to 800 ms (anything greater than that was

considered to be a pause in typing).

Flight Time The elapsed time (ms) between releasing a

key and pressing the subsequent key.

Flight Time = Latency − Hold Time

https://doi.org/10.1371/journal.pone.0188226.t001
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was made in order to facilitate data capture over a longer timeframe, as well as to avoid any

stress on the participant to perform well, which could itself change their keystroke dynamics.

Study participants

This study was approved by the Human Research Ethics Committee (HREC) at Charles Sturt

University, protocol number H17013, and was conducted according to The National Health

and Medical Research Council Australia requirements [27], including the informed consent of

all participants and the anonymity of both participants and their data. Over the period of July

2016 to March 2017 potential research participants visited the research website, which pro-

vided details of the project, the need for volunteers and the eligibility criteria (aged between 50

and 80). Those interested in participating then downloaded and installed the keystroke capture

application and entered details regarding their age and disease status (Table 2). During the

software installation steps the participant was required to accept the Informed Consent before

they could proceed further.

Data collection and processing

The overall data flow for the project is shown in Fig 2, where the custom Tappy application

ran as a background process on each participant’s PC and enabled system-wide real-time

recording of keystroke data.

Not all keystrokes were recorded, just those in the keyboard area corresponding to the five

columns for left-hand fingers and the five for right-hand fingers (Fig 3), but excluding all

numeric keys. The ‘Tappy’ software utilised the Windows SetWindowsHookEx API function to

globally hook the keyboard timing events. This approach resulted in a keystroke timing accu-

racy to within 3 ms [25]. The individual keystroke timings were saved continuously to a CSV

Fig 1. Example of keystroke timings while typing the word ‘GOAD’.

https://doi.org/10.1371/journal.pone.0188226.g001
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file on the participant computer, then incrementally uploaded to a web server once a day via

FTP.

An essential consideration in capturing the keystroke data from the participants’ PC’s was

to protect the confidentiality of user information. In order to achieve this, participants were

completely anonymous, no personal details were recorded and their data was anonymised by

using a randomly generated, 10 character identifier. Tappy did not record the actual characters

typed, nor record any numeric keys at all, merely classifying whether each key was left or

right-hand and the column position on the keyboard. For example, each of the keys E, D and

C were identified as simply ‘Left, Column 3’. These steps resulted in the dataset comprising

non-identifiable data [27].

Data analysis

The complete dataset comprised 217 participants (termed ‘Group A’), however only some of

those were included the subsequent analysis, comprising

• Those with at least 2000 keystrokes

• Of the ones with PD, just the ones with ‘Mild’ severity (since the study was into the detection

of PD at its early stage, not later stages)

• Those not taking levodopa (Sinemet1 and the like), in order to prevent any effect of that

medication on their keystroke characteristics.

This produced an analysis subset of 53 participants (including both PD and non-PD), with

the characteristics shown in Table 3 and the range of ages in Fig 4.

Machine learning

Strategy. In this study, rather than considering the keystrokes as a time series of events,

they were treated as a sequence of ordered pairs (n-tuples)–

ða1; a2; a3; a4;a5; . . . anÞ � ðða1; a2Þ; ða2; a3Þ; ða3; a4Þ; . . . ðan� 1; anÞÞ ð1Þ

where ai are the sequence of individual keystrokes.

This approach eliminated the need to have participants type continuous text for a particular

duration. Machine learning (ML) models were applied to the analysis dataset, with the goal of

Table 2. Participant details which were recorded.

Data Element Details

Parkinson’s (Y/N) Whether or not they had already been diagnosed with PD.

When diagnosed (Year) How long had they had the disease for.

Tremors (Y/N) Approximately 70% of PD patients have tremors.

Sidedness (Left, Right, None) 60% of PD patients are affected more on one side than the

other. This potentially correlates with asymmetry of

keystroke features.

UPDRS rating (1 to 5) The Unified Parkinson’s Disease Rating Scale (if known).

Impact (Mild, Medium, Severe) The disease severity currently and impact on their daily life.

Medication Y/N (Levodopa/Carbidopa,

MAO-B inhibitor, Dopamine agonist, Other)

Whether or not they were taking PD medication. In

particular, levodopa lessens the motor symptoms and could

mask the keystroke characteristics.

Age (Birth year) Used to correlate the effects of normal aging on the

characteristics (e.g. slowing of movement).

Gender (M, F) There could be gender-specific differences.

https://doi.org/10.1371/journal.pone.0188226.t002
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achieving the maximum accuracy in correctly classifying each participant as either having, or

not having, PD. As well as maximising the area under the curve (AUC) [29], the specificity

(minimum number of false positives) was also an essential criteria.

Fig 2. Data collection and processing flow.

https://doi.org/10.1371/journal.pone.0188226.g002
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Preliminary analysis had identified that individual features were not a reliable indicator, so

the ML strategy focussed on using the combination of multiple features for the classification,

rather than analysing individual features. An ensemble method comprising multiple machine

learning models was developed (using Python along with the Scikit-Learn library [30], the goal

Fig 3. The areas of the keyboard included in keystroke capture.

https://doi.org/10.1371/journal.pone.0188226.g003

Table 3. Overall characteristics of Tappy participant cohort, Group A.

Characteristic All Participants Analysis Subset

Count Percent Count Percent

Disease Status PD 162 75% 20 38%

Non PD 55 25% 33 62%

Total 217 53 100%

Gender Male 116 53% 26 51%

Female 101 47% 27 49%

PD Tremors Yes 97 60% 10 50%

No 65 40% 10 50%

Severity Mild 68 42% 20 100%

Medium 70 43%

Severe 24 15%

Sidedness Left 49 30% 7 35%

Right 60 37% 8 40%

None 53 33% 5 25%

There were a total of 27 features extracted from the raw keystroke data (Table 4) by a custom VB.NET application combined with the Math.NET numerics

library [28]. Those particular features which were chosen were based on the known movement characteristics of people with PD, as discussed earlier in this

report, and included means, standard deviations, skewness and kurtosis. For example, variability in finger movement would be evidenced by variance and

skew, jerkiness and hesitation by kurtosis, and so on. The features were then categorised into two groups, one relating to finger movement in the vertical

plane (‘Hold’) and the other relating to keystroke n-tuple sequences (‘Latency’), for the subsequent machine learning phase. Features were not necessarily

independent—there was some covariance between them and there was also redundant data.

https://doi.org/10.1371/journal.pone.0188226.t003

Detection of Parkinson’s Disease using characteristics of finger movement

PLOS ONE | https://doi.org/10.1371/journal.pone.0188226 November 30, 2017 9 / 20

https://doi.org/10.1371/journal.pone.0188226.g003
https://doi.org/10.1371/journal.pone.0188226.t003
https://doi.org/10.1371/journal.pone.0188226


Fig 4. Distribution of participant ages (all participants, both PD and controls).

https://doi.org/10.1371/journal.pone.0188226.g004

Table 4. The keystroke features that were extracted for analysis.

Feature

Group

Feature Comments

Hold Hold time (left fingers) Hold time is the elapsed time between pressing and

releasing each key (that is, movement in the vertical

plane).
Hold time (right fingers)

Each of the above has mean,

standard deviation, skewness &

kurtosis

Mean difference between left and

right

This is a measure of asymmetry

Latency Left to right key latency Latency is the elapsed time between the ordered pairs

(n-tuples) of pressing one key and pressing the next

key (generally different fingers and often involving

fingers of opposite hands).

Right to left key latency

Left to left key latency

Right to right key latency

Each of the above has mean,

standard deviation, skewness &

kurtosis

Mean difference between LR and RL

Mean difference between LL and RR

These are measures of asymmetry,

https://doi.org/10.1371/journal.pone.0188226.t004
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being to combine them into a meta-classifier with a better generalization performance than

each individual classifier alone [31,32].

Pre-processing. The data was first prepared by creating an n by m array (with n being the

number of subjects and m the number of features), fitting any missing values (using mean

imputation) and normalising the data so that all values were within the range of 0 to 1. The rel-

atively large number of features involved (27 features) compared to the dataset size (53 sam-

ples), meant that ‘the curse of dimensionality’ was likely [33], with the potential result of

overfitting the training data. This was addressed by the separation the features into two groups,

‘Hold’ (with 9 features) and ‘Latency’ (with 18 features), then applying a dimensional reduc-

tion technique, linear discriminant analysis (LDA) [34,35], to each.

Another area where ML is prone to overfitting is leakage between the training and test data,

where the model captures the patterns in the training data well, but fails to generalise well to

unseen data [36]. This risk was minimised by randomly separating the data into ‘training’ and

‘test’ datasets, along with k-fold cross validation (using a k value of 10) to ensure that all data

was represented.

Classification. An ensemble of 8 different models was used, comprising a range of classi-

fier types, as shown in Table 5. Each individual model was chosen based on tests of its classifi-

cation performance on the participant datasets. The justification for using a large ensemble

was that, even though there was a significant difference between models in their classification

accuracy of individual participants, the accuracy increased as the models were combined with

others into a meta-classifier.

The machine learning flow is shown in Fig 5. Each model was firstly applied to both the

Hold and Latency feature groups to generate a set of prediction classifications (PD or non-PD)

and predicted probability values for each data sample.

Then, for each of the Hold and Latency groups, the predicted probability results of all the

models were averaged (a ‘mean probabilities classifier’), and the final classification step com-

bined those results by weighting the predicted probabilities of each group according to their

respective classification accuracy. The predicted classifications for the Latency feature group

had a higher overall accuracy than that for the Hold group, so the probabilities were combined

as a series of weighted means–

PPD ¼ ð
Pn

i¼1
PMHi
þ
Pn

i¼1
ð0:5þWt:ðPMLi

� 0:5ÞÞÞ=2n ð2Þ

where PPD is the probability of Parkinson’s for a particular subject (with PPD� 0.5 classified as

having the disease). MHi and MLi are the classification models for the Hold and Latency

Table 5. Machine learning models used in the classification ensemble.

Model References and comments

1. Support vector machine (SVM) [37]

2. Multi Level Perceptron (MLP) Sensitive to feature scaling, so data normalisation was needed [38]

3. Logistic Regression Model (LRM) [39]

4. Random forest (RFC) [40]

5. Nu-Support Vector Classification

(NSVC)

A refinement of SVC, with control of the number of support vectors

and training errors

6. Decision tree classifier (DTC) [41]

7. K-nearest neighbours (KNN) Memorises rather than learns a discriminative function. [42]

8. Quadratic discriminant analysis

(QDA)

[43]

https://doi.org/10.1371/journal.pone.0188226.t005
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feature groups respectively (Table 4), P is the calculated probability for each model, n is the

number of ensemble models (8) and Wt = 1.2 is a weighting factor for the latency feature

group.

Data reliability and cross-validation. Only those participants with at least 2000 key-

strokes were included, which provided a high degree of confidence in the precision of the fea-

ture values, including skewness and kurtosis (which are prone to high variability at smaller

sample sizes) and the resulting dataset, termed Group A, totalled 53 participants. The data was

split into training and test datasets in a 0.65:0.35 ratio, however this reduced the size of both

portions and potentially impacted the classification accuracy. The solution, as previously men-

tioned, was to implement a cross-validation (CV) procedure, using k-fold cross validation

Fig 5. Machine learning flow.

https://doi.org/10.1371/journal.pone.0188226.g005
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[36]. The advantage of this method was that all samples could be used for both training and

validation, and results from the ten k-folds were then averaged to produce a single estimation.

The results of the ML classifications were evaluated on the criteria of maximum sensitivity

(true predictions of PD), maximum specificity (minimum false positives) and maximum area

under the curve (AUC). Extensive analysis and testing of the performance of the ensemble

classifier was also undertaken by–

• Using different voting approaches (in particular, by comparing the performance of the

‘mean probabilities classifier’ to a ‘majority classifier’)

• Excluding particular features (either individually or in combination) and reducing the num-

ber of features included in the Hold and Latency groups

• Reducing and/or changing the particular classification models

• Varying the pre-processing (e.g. PCA, LDA and others), and also the techniques used (e.g.

bootstrapping)

• Varying the hyper parameters for each model

• Varying the weighting value, Wt in Eq 2.

The outcome of the testing was that optimum results were achieved by including all 8 ML

models in both the ‘Hold’ and ‘Latency’ meta-classifiers, and using a weighting value of 1.2 for

‘Latency’. There was a significant improvement in accuracy by including LDA as a pre-pro-

cessing step. All 27 features were retained and the default parameters for each Scikit-Learn

model were used.

Results validation using an independent dataset

In addition to using the Group A participant data for training and prediction, the ML tech-

nique was also applied to a completely independent public dataset (Group B)–the ‘neuroQW-

ERTY MIT-CSXPD’ dataset [44], which was developed in a study by Giancardo et al. [26] and

contained keystroke data from 85 subjects as shown in Table 6. A subset of this Group B data,

Table 6. Details of the Group B validation dataset.

Characteristic Details Comments

Participants 85 subjects total, mild and medium PD

severity, plus controls

Keystroke sample

size

Approximately 1500 and 3000

keystrokes

This included numeric, navigation & punctuation keys. Once all these were removed, the

total keystroke sizes were at the lower end of that required for statistical accuracy of the

features

Timings Timestamp, press time, release time,

hold time, key

These were able to be converted to equivalent Tappy data elements & timings

Parkinson’s Disease Validated by a specialist This ensured the accuracy of the disease classification

Age, gender Not available

Diagnosis year Not available

LDopa medication Those participants on LDopa had not taken it for 18 hours prior to the test

Tremors Not available This prevented the dataset being used for tremor classification

Sidedness Not available This prevented the dataset being used for sidedness classification

UPDRS-III score Validated by movement disorder

specialists

Mild severity is UPDRS < 20

Typing speed Not relevant

Finger tapping test

score

Both single finger (STap) & alternating

finger (AFTap)

These scores were from separate finger tapping tests, not from typing

https://doi.org/10.1371/journal.pone.0188226.t006
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comprising 50 participants (those with just Mild severity, not taking Levodopa, and with at

least 500 keystrokes) was used to validate the accuracy of the ML predictions.

Results and discussion

Group A Participants

The machine learning ensemble was run on the Group A datasets (using 65% of the data for

training and 35% for testing) and achieved a classification accuracy of 100% compared to the

participants’ true disease status (Table 7), and an area under the curve (AUC) of 100% (Fig 6).

A one-way ANOVA was conducted to compare the probability values of those predicted as

having, or not having, PD. There was a significant difference between them at the p< 0.01

Table 7. Group A machine learning classification, PD and non-PD.

PD / Non-PD 20 / 33

True positives 20

True negatives 33

False positives 0

False negatives (missed detection) 0

Sensitivity = TP / (TP + MP) x 100 100%

Specificity = (1 –(FP / (FP + TN))) x 100 100%

Accuracy = ((TP + TN)/Total) x 100 100%

https://doi.org/10.1371/journal.pone.0188226.t007

Fig 6. Area under the curve (AUC) for Group A results. (The clinician results shown are from Schrag et al. [45]).

https://doi.org/10.1371/journal.pone.0188226.g006
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level [Welch’s F(1, 12.224) = 86.71, p< 0.001], indicating a high ability of the ML classification

technique, even with a limited sample size (Fig 7).

Group B Participants

The predicted classifications for the independent dataset, Group B, were also calculated, in this

case using the entire Group A data as the training set. This achieved an accuracy of 94% com-

pared to the participants’ true disease status (Table 8) and an AUC of 97% (Fig 8).

A one-way ANOVA showed a significant difference between the classification probabilities

at the p< 0.01 level [Welch’s F(1, 18.465) = 57.80, p< 0.001], indicating a high ability of the

ML classifier to differentiate between those with PD and those without (Fig 9).

Fig 7. The range of Group A classification probability values. PD and non-PD, showing the 99% confidence interval for each.

https://doi.org/10.1371/journal.pone.0188226.g007

Table 8. Group B machine learning classification, PD and non-PD.

PD / Non-PD 12 / 38

True positives 11

True negatives 36

False positives 2

False negatives (missed detection) 1

Sensitivity = TP / (TP + MP) x 100 92%

Specificity = (1 –(FP / (FP + TN))) x 100 95%

Accuracy = ((TP + TN)/Total) x 100 94%

https://doi.org/10.1371/journal.pone.0188226.t008
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A reason for the differences in the detection accuracy of Group B compared to Group A is

likely to be simply because of the much smaller number of keystrokes for the Group B subjects

(some with only 500 keystrokes), in contrast to Group A subjects (who all had at least 2000

keystrokes). Despite this limitation, the Group B results still exceeded those of clinicians and

demonstrated the applicability of the ML ensemble.

Comparison of detection accuracy with existing diagnostic techniques

Using data from Schrag et al. [45], Figs 6 and 8 also show the equivalent diagnostic accuracy

(sensitivity and specificity) achieved by clinicians, which demonstrates that the ML results not

only significantly outperformed non-specialist clinicians, but had a much lower false positive

rate compared to PD specialists, (with the details shown in Table 9).

In comparison to other HCI techniques which have been developed recently, for example,

smartphone forearm pronation/supination tests, the ML technique of this research not only

gave superior results, but was also the only technique which did not require supervision.

Application and future research

This research has been the first HCI technique to achieve a diagnostic accuracy significantly

greater than that of non-specialist clinicians. It was also more accurate than any existing quan-

tifiable test and was able to detect PD in its early stages, specifically where there were just mild

Fig 8. Area under the curve (AUC) for Group B results.

https://doi.org/10.1371/journal.pone.0188226.g008
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symptoms present, and where the typical characteristics of PD (for example, tremors and sid-

edness) were not necessarily evident.

The techniques utilised in this investigation resulted in a combined meta-classifier model

that could be saved and applied directly to new data, which means that it could potentially

form the basis of a diagnostic suite of HCI tools for Parkinson’s Disease, for use by family prac-

tice physicians and general practitioners.

There are several aspects of the study for which further investigation is intended, in particu-

lar to increase the participant numbers (‘training set’ size) in order to further enhance the reli-

ability of the technique. Subsequent investigations will also investigate the detection of tremors

in PD patients (as a second cardinal symptom), the relative importance of the keystroke

Fig 9. The range of Group B classification probability values. PD and non-PD, showing the 99% confidence interval for each.

https://doi.org/10.1371/journal.pone.0188226.g009

Table 9. Diagnosis accuracies achieved in this research, compared to clinicians and other techniques.

Diagnosis Type Sensitivity Specificity AUC

Tappy (this investigation) 92% to 100% 95% to 100% 97% to 100%

Non-specialist clinicians 74% 79% -

Specialists (neurologists & movement specialists) 93% 65% -

Smartphone accelerometer—forearm pronation & supination (FPSMT), [46] 86% 89% -

NeuroQWERTY study [26] 71% 84% 81%

Alternating finger tap test (AFTT) 72% (est) 69% (est) 75%

Single finger tap test (SFTT) 59% (est) 58% (est) 61%

https://doi.org/10.1371/journal.pone.0188226.t009
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features used and, through a longitudinal study, the manner in which features change over

time as the disease progresses.

Conclusion

In this investigation, keystroke timing information from 103 subjects, including 32 with just

mild PD severity, was captured as they typed on a computer keyboard over an extended

period. It showed that PD does affect various characteristics of hand and finger movement,

which can be detected from keystroke features. A novel methodology was used to classify the

subjects’ disease status, by utilising a combination of extracted features from those keystrokes

which were then analysed by an ensemble of machine learning classification models.

This approach was able to discriminate between early-PD subjects and controls with a sen-

sitivity of 92 to 100%, a specificity of 95 to 100%, and an AUC of between 0.97 and 1.00. These

results are significantly more accurate than that achieved by previous HCI studies and it is the

first technique to exceed the diagnostic accuracy of non-specialist clinicians, which suggests

that it can provide an objective, accurate detection of PD, especially in its early stages where

motor symptoms such as tremors or sidedness may not yet be observable. At present the tech-

nique does not incorporate a second cardinal PD motor symptom (such as tremors or rigidity

for example) so, by itself, cannot differentiate between PD and other movement-related

conditions.

Less than 400 words of typing is needed for reliable detection, the technique does not

require any specialised equipment or attachments, does not need medical supervision, does

not rely on the experience and skill of the practitioner, and can take place in the patient’s

home or office environment as they type normally on a computer.
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