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Abstract

Transfer entropy (TE) provides a generalized and model-free framework to study Wiener-

Granger causality between brain regions. Because of its nonparametric character, TE can

infer directed information flow also from nonlinear systems. Despite its increasing number

of applications in neuroscience, not much is known regarding the influence of common

electrophysiological preprocessing on its estimation. We test the influence of filtering and

downsampling on a recently proposed nearest neighborhood based TE estimator. Different

filter settings and downsampling factors were tested in a simulation framework using a

model with a linear coupling function and two nonlinear models with sigmoid and logistic

coupling functions. For nonlinear coupling and progressively lower low-pass filter cut-off

frequencies up to 72% false negative direct connections and up to 26% false positive con-

nections were identified. In contrast, for the linear model, a monotonic increase was only

observed for missed indirect connections (up to 86%). High-pass filtering (1 Hz, 2 Hz) had

no impact on TE estimation. After low-pass filtering interaction delays were significantly

underestimated. Downsampling the data by a factor greater than the assumed interaction

delay erased most of the transmitted information and thus led to a very high percentage

(67–100%) of false negative direct connections. Low-pass filtering increases the number of

missed connections depending on the filters cut-off frequency. Downsampling should only

be done if the sampling factor is smaller than the smallest assumed interaction delay of the

analyzed network.

Introduction

Understanding the connectivity and directional interaction of different brain areas is highly

relevant in order to gain further insight into brain function. In electrophysiological research

Granger causality [1] and its multivariate extensions such as partial directed coherence [2],

have been applied for this aim, resulting in extensive progress in understanding information

flow in the healthy [3–6] and pathological brain alike [7–11]. One disadvantage of classical

Granger causality is the need for a linear autoregressive model. Therefore, Granger causality

cannot always properly identify nonlinear interactions. While Wold’s theorem states that even
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nonlinear covariance stationary time-series can be represented as an infinite order moving

average process [12], this MA process might lead to an infinite order VAR process in the

observables. Only if this infinite order VAR can be sufficiently approximated by a finite order

VAR, i.e. the influence of past time points quickly decays, then classic Granger causality can

correctly detect causal influences. However, as one does not know a priori whether a finite

order VAR suffices, classic Granger causality might not be the optimal choice for detecting

nonlinear interactions.

Due to its high complexity, the brain is believed to be nonlinear on many spatial and tem-

poral scales. One prominent example of a nonlinear phenomenon in the human brain is syn-

chronization of recorded electrophysiological neuronal activity [13–16]. Synchronization

requires, that the participating systems are self-sustained oscillators, which are described by

nonlinear differential equations [15]. Other nonlinear phenomena include stochastic reso-

nance [17], multistability [18] and even chaos [19]. Although linear relationships are generally

more robustly detected they are probably only a small part of the rich dynamics of the human

brain. Using nonlinear analysis tools may thus prove to be insightful in order to understand

the brain’s more complex behavior, especially since advances in computational capabilities

over the last decade made them more applicable. In order to deal with such nonlinearities in

electrophysiological data (for general reviews see [20,21]), the measure of transfer entropy

(TE) has been developed [22]. Since its introduction, TE has been widely applied in neurosci-

entific modeling studies, animal studies and human studies[23–31].

For many neuroscientific research purposes it is common to preprocess the acquired data.

Although TE is being continuously developed and used as a tool for neuroscientific research

[32–35], little is known about the influences of filtering and downsampling on its estimation.

This, however, is especially important for the analysis using TE. In contrast to Granger causal-

ity, which has also spectral representations, so far, no spectral decomposition is possible using

TE. Thus the, so far, only way to limit estimation of information transfer using TE on a specific

frequency band is to filter the data prior to the analysis. For Granger based methods filtering

and downsampling have a tremendous effect on falsely detected connections [36]. Barnett

and Seth [37] explained the increase of false negatives and false positives after filtering by an

increase of the autoregressive model order. While filtering might have a strong influence on

estimation of Granger causality, the population statistics are invariant if a causal invariant

filter is used [37]. In contrast, downsampling even distorts the population statistics [38]. Since

Barnett et al. [39] proved that TE is a generalization of Granger causality, with both being

completely equivalent for jointly Gaussian distributed processes, one might expect a similar

negative influence of preprocessing on TE estimation as for Granger causality. However, the

estimators for Granger based methods and TE are highly different, with the former usually

being a parametric approach where it is necessary to optimize model fitting [1] and the latter

estimating probability distributions [22]. Only recently nonparametric Granger causality mea-

sures have been introduced [40]. Though one has to keep in mind that, while these measures

are nonparametric in the sense that they are not estimated from an autoregressive model, but

from the cross-power spectrum, they are still linear measures as the cross-power spectrum is a

second order statistic. Also, new state-space methods for Granger causality have been recently

introduced, which offer smaller estimation biases and higher statistical power in comparison

to standard autoregressive modelling [41,42]. In conclusion, preprocessing might have differ-

ent effects on estimating predictive information transfer in (parametric) Granger causality and

TE.

For the purpose of this study, a range of preprocessing parameters including different filter

types, filter settings and downsampling factors were tested. As TE is capable of detecting not

only linear but also nonlinear dependencies, we tested TE with a modified version of the linear
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Kus-model [43] as well as two nonlinear models with a logistic [44] and a sigmoid coupling

function [45]. We hypothesize that filtering leads to an increased degree of detected spurious

information flow dependent on the filter properties, i.e. the cut-off frequency and order,

and the analyzed system’s dynamics, i.e. the degree of nonlinearity. Additionally, we speculate

that filtering has a negative influence on the estimation of the interaction delay dependent

on the filter order. This simulation study aims to provide guidelines on how to preprocess

electrophysiological data in order to reliably estimate transfer entropy.

Methods

Ethics statement

The patient of whom data was used in this study gave written informed consent to the record-

ing of EEG data. The data collection was approved by the local ethics committee of the medical

faculty in cologne (study no. 14–129) and conducted in accordance with the Declaration of

Helsinki.

Transfer entropy

For the remainder of this paper, let us define {x1,. . .,xT} and {y1,. . .,yT} as finitely sampled time

series generated by measurements of coupled neurobiological systems, e.g. electrical activity of

brain areas. These time series are understood as realizations xt, yt of discrete random variables

Xt, Yt at discrete times t = 1. . .T. The random variables generate random processes X, Y. Nor-

mal case letters indicate scalar values while bold letters refer to their vector valued state space

representations. A state is a vector that collects all past realizations of a current observable nec-

essary for prediction. The dx-dimensional state vector xdx
t at time t is defined as:

xdx
t ¼ ½xt� ðdx � 1Þτ; xt� ðdx � 2Þτ; . . . ; xt� τ; xt�; ð1Þ

with time delay τ.

The average information content of a continuous random variable X can be defined as the

Shannon entropy H(X) according to:

HðXÞ ¼ �
Z

pðxÞ loga pðxÞdx; ð2Þ

with p(x) the probability density function of the random variable X. The base is usually chosen

to be a = 2 in order to interpret the information content in bits. While for discrete variables,

H(X) is always positive semidefinite, H(X) may be negative for continuous variables. Based on

the Shannon entropy the mutual information I of two variables X and Y is defined as the

shared information content between both variables according to:

IðX; YÞ ¼ HðXÞ þ HðYÞ � HðX;YÞ; ð3Þ

Where

HðX;YÞ ¼ �
Z Z

pðx; yÞ loga pðx; yÞdx dy; ð4Þ

is the joint entropy and p(x,y) is the joint probability distribution of X and Y [46].

Wiener [47] defined a process X being causal to a process Y if Y is better predicted by incor-

porating past information of X than by using only past information of Y. TE is a straightfor-

ward information theoretic approach on Wiener’s principle of causality. It can be defined as

the mutual information of the past state of the source process (X-) and the present of the target
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process (Y) conditioned on the past state of the target process (Y-):

TEðX ! YÞ ¼ IðX� ;YjY � Þ; ð5Þ

where

IðX � ;YjY � Þ ¼ HðX� jY � Þ � HðX� jY;Y � Þ ð6Þ

and

HðX� jY � Þ ¼ HðX � Þ � IðX� ;Y � Þ: ð7Þ

The transfer entropy estimator used in this study is the one implemented in the MATLAB

toolbox TRENTOOL [48]:

TESPOðX ! YÞ ¼
Z

yt

Z

yt� 1

Z

xt� u
pðyt; y

dy
t� 1; xdx

t� uÞ log
2

pðytjy
dy
t� 1; x

dx
t� uÞ

pðytjy
dy
t� 1Þ

dytdyt� 1dxt� u; ð8Þ

with the conditional probability p ytjy
dy
t� 1; x

dx
t� u

� �
defined as

pðytjy
dy
t� 1; xdx

t� uÞ ¼
pðyt; ðy

dy
t� 1; x

dx
t� uÞÞ

pðydy
t� 1; x

dx
t� uÞ

; ð9Þ

where u is the delay of information transfer and dx and dy are the dimensions of x and y,

respectively. The subscript SPO indicates that self-prediction of the target time series is opti-

mized, i.e. that yt-1 is most predictive of yt. Eq (8) can be rewritten as a sum of four Shannon

entropies:

TEðX ! YÞ ¼ Hðydy
t� 1; xdx

t� uÞ � Hðyt; y
dy
t� 1; xdx

t� uÞ þ Hðyt; y
dy
t� 1Þ � Hðydy

t� 1Þ: ð10Þ

Note that this estimator is bivariate, i.e. it analyzes pairs of time series. This may lead to spu-

rious detections of information transfer due to multivariate effects like common drive or cas-

cade effects. However, if the delay of information transfer is known, multivariate effects can be

flagged by applying a graph theoretical approach [49]. As TRENTOOL is designed for trial

based data all analyses in this study were done using simulated trials, i.e. multiple short inde-

pendent realizations of stochastic processes, rather than a single realization of long duration.

According to Wibral et al. [50] interaction delays can be reconstructed by estimating TE

over a range of possible interaction delays u. It has been mathematically proven that TE(X!Y)

is maximal for two discrete-time random processes X and Y coupled from X to Y with a non-

zero delay δ when u is equal to δ [50]. For our study a range of u = 1–100 lags was analyzed.

For the sampling frequency of 1250 Hz used in this study, this translates to a range of 0.8 ms to

80 ms, which is a reasonable range for mammalian conduction delays in the central nervous

system [51–53].

A prerequisite for Wiener’s principle of causality is the optimization of self-predictability of

the target process Y. This is guaranteed by reconstructing the state space of the observables

according to Takens’ delay embedding theorem [54] instead of analyzing the single univariate

observables of the source and target time series. The two parameters dx and τ in Eq (1) are

optimized by applying a local constant predictor:

x̂dx ;t
tþΔt ¼

1

jUεðx
dx ;t
t Þj

X

ðxdxτ
θ

∈ Uεðx
dx ;τ
t ÞÞ

x
dx ;t
yþΔt; ð11Þ

according to Ragwitz and Kantz [55], where x̂tþDt indicates a prediction of the state xt Δt time

The influence of preprocessing on transfer entropy
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steps ahead, Uεðx
dx
t Þ is the number of state vectors within the local spherical neighborhood Uε

of xt with a diameter ε and xϴ represents the past states of xt in Uε. In order to determine a

suitable neighborhood one can either fix the diameter ε or the number of neighbors within Uε.

For this study we fixed the number of neighbors to the TRENTOOL’s default value 4. This

value has been suggested by [56] to be a good tradeoff between possible statistical and system-

atic errors when estimating TE. The dimension dx and time delay τ were scanned over a range

of 1 to 9 and 0.1 to 1 times the autocorrelation decay times (ACTs), respectively. The ACT is

defined as the number of samples at which the autocorrelation function drops to 1/e [48]. The

combination of d and τ that minimizes the root mean squared prediction error for one time

step

RMSPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

t¼1
ðx̂dx ;t

tþΔt � x
dx ;t
tþΔtÞ

2

T

s

ð12Þ

is chosen for further analysis.

In order to estimate the individual probabilities given on the right hand side of Eq (10),

TRENTOOL applies the nearest neighbor technique of Kraskov, Stögbauer and Grassberger

[57]. In general, nearest neighbor techniques quantify the number of nearest neighbors of

every point in a d-dimensional space, given a predefined neighborhood diameter ε. As differ-

ent dimensional spaces are involved in TE estimation (dx and dy in Eq (10)), the Kraskov-Stög-

bauer-Grassberger algorithm corrects for the arising bias by fixing the number of neighbors

for the highest dimensional space, i.e. the second term in Eq (10), and projects the resulting

distances to all lower dimensional spaces. Incorporating the Kraskov-Stögbauer-Grassberger

algorithm, the TRENTOOL estimator as given in Eq (8) can then be written as

TESPOðX ! YÞ ¼ cðkÞ þ hc n
y
dy
t� 1

þ 1

� �

� c n
yty

dy
t� 1

þ 1

� �

� c n
y
dy
t� 1

xdxt� u
þ 1

� �

i; ð13Þ

where ψ is the digamma function, k is the fixed number of neighbors in the highest dimen-

sional space, nij is the number of neighbors in the spaces spanned by the subspaces i and j, and

h.i denotes the average over time.

Models

The generating models behind real electrophysiological recordings, especially for integrated

quantities such as local field potentials (LFPs) from electroencephalography (EEG) or intra-

cranial measurements, and the way how different neuronal populations encode and trans-

mit information are usually not well understood [58]. To account for different types of

electrophysiological data we applied a simulation framework using three different models:

1) the linear Kus-model [43], 2) a coupled logistic map model (CLMM) [44,59,60] and 3) a

coupled sigmoid equations model (CSEM) [45]. The three different models are explained in

detail in the following sections. We decided to use the linear Kus-model as it allows to use

real EEG data as input and thus resembles large scale neural activity. The CLMM was chosen

in order to specifically test the influence of filtering on TE estimation for highly nonlinear

coupling dynamics. The CSEM was used to simulate small scale neural activity, i.e. single

neuron activity. For both CLMM and CSEM we tested the influence of three different low-

pass filters. The modeled delay δ was estimated from the simulated data by scanning over a

range of u = 1–10 samples for the Kus-model and the CLMM. For the CSEM we also tested

if the filter application might lead to a larger delay deviation so that we scanned a larger

range of u = 1–100 samples.

The influence of preprocessing on transfer entropy
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For the remainder of this paper let Xi be the ith channel of a system of coupled stochastic

dynamic equations, γ = 0.4 the coupling factor, δ = [4,6,8] the delay of information transmis-

sion in samples, η a Gaussian white noise process with unit variance, V = 0.25�σ2 a pre-factor

to scale η to one quarter of the variance σ2 of the first channel and f a coupling function. For

every model and tested preprocessing technique we simulated 100 data sets each consisting of

20 trials.

Modified linear Kus-model. The original Kus-model is a network of six channels mod-

eled by linearly coupled stochastic difference equations and one uncoupled channel consisting

of Gaussian white noise [43]. The advantage of this model is its overall simplicity on the one

hand and the possibility to implement real electrophysiological data on the other hand. In

order to compare the different models, we used a similar structure for all models and in order

to limit computational time we restricted the simulation to four channels plus one noise chan-

nel. Similar to the study of Florin et al. [36] for Granger causality, the original delays were

altered from unit lag to 4 and 8 lags to test for the influence of different downsampling factors,

and additionally to test for the effect of filtering on the TE estimation of interaction delays.

The final model was hierarchically organized as shown in Fig 1

2.4s of EEG data plus Gaussian white noise is used as input (channel 1). The data is then

time-shifted by the interaction delay of δ = 4 samples and independent white noise is added to

generate channel 2 and so forth for channels 3 and 4. Channel 5 is independent white noise.

External white noise (not shown) is added to all channels. Direct and indirect couplings are

indicated by solid and dashed arrows, respectively.with the set of equations

X1ðtÞ ¼ dðtÞ þ VZ1ðtÞ

X2ðtÞ ¼ 0:4X1ðt � 4Þ þ VZ2ðtÞ

X3ðtÞ ¼ 0:4X2ðt � 4Þ þ VZ3ðtÞ

X4ðtÞ ¼ 0:4X2ðt � 8Þ þ VZ4ðtÞ

X5ðtÞ ¼ VZ5ðtÞ:

ð14Þ

For the input to the first channel, 2.4 seconds (≙ 3000 samples) of a previously recorded

single channel EEG recording (d) of a Parkinson’s patient, sampled at a frequency of 1250 Hz

were used. At every time step t, independent Gaussian white noise ηi scaled to one quarter of

the variance of d was added to each channel to simulate internal noise. External noise was sim-

ulated by adding Gaussian white noise with zero mean scaled to one quarter of the variance of

d to every channel. In contrast to the external noise, the internal noise becomes part of the

dynamics of each connected channel. For each trial we used the same EEG data set as input

but new internal and external noise was generated. The overall structure of the model allows

for the generation of an arbitrary number of independent realizations of stochastic processes

resembling electrophysiological data. Also, the combination of only one EEG channel with

white noise, in contrast of using several EEG channels, controls for unknown causality struc-

tures in the model. Thus, only the predefined information flow is present in the network.

CLMM. The purpose of the CLMM was to explore the influence of filtering on TE estima-

tion using a network of nodes with different degrees of nonlinear coupling. The CLMM con-

sisted of uni-directionally coupled stochastic difference equations. The coupling scheme for

the model is shown in Fig 2.

The input to the model was Gaussian white noise normalized to an interval between zero

and one. The 13 channels were coupled by the logistic map [44]

f : xt;nþ1 ¼ axt;nð1 � xt;nÞ; ð15Þ

The influence of preprocessing on transfer entropy
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where i denotes the channel, n the number of subsequent iterations of the logistic map and t

the time. The parameter α was set to 3.576, which corresponds to weak chaotic behavior.

The logistic map was used because of its simplicity and well understood parameter depen-

dent non-divergent long time behavior. It is commonly used in simulation frameworks as a

model of choice (see [61,62] for examples in the context of TE and [59,60] for simulation of

neuronal activity). Our model was composed of three main branches with four channels each

and an additional channel to which every branch projects with a different interaction delay.

In order to simulate the drive of three complex signals with different interaction delays to a

Fig 1. Coupling scheme for the modified Kus-model.

https://doi.org/10.1371/journal.pone.0188210.g001
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common output, the channel Xi receives input from each of the three branches and was thus

considered to be part of every branch. Note that the three successive iteration steps resulted in

the logistic coupling function to be of order two, four and eight. Fig 3a–3c shows the graphs of

the CLMM’s coupling function for the three iteration steps.

Mathematically the channels were coupled according to the following equations:

Xns1ðtÞ ¼ Z1ðtÞ

Xm2ðtÞ ¼
0:4f mðXm1ðt � 6ÞÞ þ VZ2ðtÞ

gþ V

Xm3ðtÞ ¼
0:4f mðXm2ðt � 8ÞÞ þ VZ3ðtÞ

gþ V

Xm4ðtÞ ¼
0:4ðf mðXm2ðt � 6ÞÞ þ f mðXm3ðt � 4ÞÞÞ þ VZ4ðtÞ

2gþ V

XiðtÞ ¼
0:4ðf 1ðX12ðt � 2ÞÞ þ f 2ðX22ðt � 6ÞÞ þ f 3ðX32ðt � 8ÞÞÞ þ VZ5ðtÞ

3gþ V
;

ð16Þ

where fm denotes m = 1 iterations of the logistic map for the first branch, m = 2 iterations for

the second branch and m = 3 iterations for the third branch of the model.

Similar to the Kus-model internal Gaussian white noise was added as well as external

Gaussian white noise both scaled to one quarter of the variance of the input signal. As the

Fig 2. Coupling scheme for the CLMM. The first index of each channel denotes the number of times the

logistic map is iterated, while the second index denotes the channel index within each of the three resulting

branches. As Xi receives input from X12, X22 and X32 it is considered to be part of all three branches. Gaussian

white noise ns is used as input (channel Xns1). The data is then time-shifted by the interaction delay of δ = 6

samples, passed to the logistic coupling function and independent white noise is added to generate channel

X*2 and so forth. External white noise (not shown) is added to all channels.

https://doi.org/10.1371/journal.pone.0188210.g002
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logistic map is only defined for an interval of 0 to 1, the internal as well as the external noise

distribution were normalized to fit the interval. For the same reason X was rescaled at every

time step t by dividing by the largest possible value namely Bγ+V with B being the number of

inputs.

Coupled sigmoid equations model (CSEM). The CSEM consisted of five uni-direc-

tionally coupled channels. Similar to the Kus-model the target channels were coupled by a

linear combination of the past values of the source channels. All inputs to a channel were

summed up, scaled by a prefactor of 0.4 similar to the other models and passed to a sigmoid

function

f : yt ¼
2

1þ e� axt
� 1; ð17Þ

with parameter a = 6, which controlled the steepness of the sigmoid. The minimum and

maximum of the sigmoid function was -1 and 1, respectively (Fig 3d). This model was cho-

sen because of its biological importance, as the sigmoid function’s inflection point is a crude

simulation of a neuron’s firing threshold. For the same reason, it is often employed in artifi-

cial neural networks [45]. For this model the interaction delay was scanned over a much

broader range in order to test the influence of filtering on the delay deviation. We tested a

range of u = 1–100 lags, which translates to a delay interval of 0.8 ms to 80 ms. The overall

structure of the model is similar to one branch of the CLMM and is depicted in Fig 4.

Fig 3. Coupling functions for the nonlinear models. a) Coupling function for the CLMM and n = 1 iteration. b) Coupling function for the

CLMM and n = 2 iterations. c) Coupling function for the CLMM and n = 3 iterations. d) Coupling function for the CSEM.

https://doi.org/10.1371/journal.pone.0188210.g003
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The model is mathematically described as

X1ðtÞ ¼ Z1ðtÞ

X2ðtÞ ¼ f ð0:4X1ðt � 6ÞÞ þ VZ2ðtÞ

X3ðtÞ ¼ f ð0:4X2ðt � 8ÞÞ þ VZ3ðtÞ

X4ðtÞ ¼ f ð0:4ðX2ðt � 6Þ þ X3ðt � 4ÞÞÞ þ VZ4ðtÞ:

ð18Þ

Gaussian white noise with zero mean was used as input to the system. Internal and external

white noise with zero mean and variance scaled to one quarter of the input signal’s variance

was added at each time step t and after calculation of the whole model, respectively.

Fig 4. Coupling scheme for the CSEM. Gaussian white noise is used as input (channel 1). The data is then

time-shifted by the interaction delay of δ = 6 samples, passed to the sigmoid coupling function and

independent white noise is added to generate channel 2 and so forth for channels 3 and 4. External white

noise (not shown) is added to all channels. Direct and indirect couplings are indicated by solid and dotted

arrows, respectively.

https://doi.org/10.1371/journal.pone.0188210.g004
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Preprocessing

The main goals of this study were to analyze the influence of filtering and downsampling on

the estimation of TE. For this purpose, three different low-pass filter cut-offs at 320 Hz, 160

Hz, and 80 Hz and two high-pass filter cut-offs at 1 and 2 Hz were tested. For these tests, non-

phase neutral also known as causal infinite impulse response (IIR) Butterworth filters of order

4 were used. We used Butterworth filters as they are the most common filters applied in neuro-

science. They are characterized by a maximally flat frequency response in the pass band and a

monotonic roll off into the stop band, i.e. no ripples in either pass- or stop band [63].

Additionally, three downsampling tests with factors of two, six, and ten were carried out. In

order to have consistent trial lengths of 3000 samples per channel appropriately longer data

sets were simulated before downsampling, i.e. trial lengths of 6000, 18000 and 30000 samples

per channel, respectively. While, in a realistic setting, decimation would naturally lead to a

reduction of data points, we were especially interested in the effects of subsampling and anti-

aliasing filters. Thus, in order to isolate these effects, we kept data length constant. The finite

sample effects on transfer entropy estimation have been previously described in [64,65]. The

filter and downsampling was implemented using the filter and decimate functions of the Signal

Processing Toolbox (v. 6.22) in Matlab (Matlab 2014b). Note that the decimate function also

includes an IIR Chebyshev I filter of order 8 with a cut-off frequency of fc = 0.8fny/r, where r is

the downsampling factor and fny the Nyquist frequency, as an anti-aliasing filter. This low-pass

filter is applied in both forward and backward direction to the data so that it causes no phase

distortion. Therefore, it is a non-causal filter application.

As secondary objective we wanted to compare phase neutral, i.e. non-causal, to non-phase

neutral, i.e. causal, filtering procedures. For this comparison, we additionally used phase neu-

tral filtering and tested three groups of low-pass filtered data with cut-off frequencies of 320

Hz, 160 Hz and 80 Hz and two groups of high-pass filtered data with cut-off frequencies of 1

and 2 Hz. For this comparison the Kus-model was used. We applied phase neutral filtering

using the filtfilt function in Matlab, which applies the filter forward and backwards on the sig-

nal, thus restoring any phase distortions of the non-phase neutral Butterworth filter. As phase

neutral filtering using filtfilt temporally aggregates twice as much samples as the filter function

and thus effectively doubles the order of the filter, filters for phase neutral filtering procedures

were generated as second order filters to match the order of the non-phase neutral filters.

Finally, we hypothesized, that the filter order may have a significant impact on delay estima-

tion, as with increasing filter orders more adjacent time points get aggregated. To test this, 80

Hz low-pass filtered datasets with increasing filter orders from 1 to 9 were compared to an

unpreprocessed control dataset. All filters were IIR Butterworth filters implemented with the

Signal Processing Toolbox in Matlab. The analyzed preprocessing types are summarized in

Table 1.

Statistics

For each individual data set the estimated couplings were tested for statistical significance by

applying a nonparametric permutation test using trial randomized surrogates (for details see

[48]): First TE was calculated for each trial of each original dataset. Then surrogates were gen-

erated by shuffling the target time series between trials. TE was estimated for each trial of sur-

rogate data and the mean difference between TE of the original data and surrogate data was

calculated. Finally, TE results of each trial were randomly swapped between the original data

and the surrogate data and the mean difference is calculated again. If the difference of mean

TE between original and surrogate data fell above the 95 percentile of the distribution of the

differences of permuted results, TE was considered significant at an alpha level of 5%. Note
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that, while theoretically TE should always be positive or zero, due to an estimation bias, esti-

mated values of TE might be slightly negative if true TE values are close to zero [56]. This is,

however, not a problem as long as the estimated TE values are significantly larger than the sur-

rogate TE values.

The number of permutations limits the minimum possible p-value that can be calculated

according to

1

number of permutations
<

p
c
; ð19Þ

where p is the minimum requested probability corrected for the number of statistical compari-

sons c. For this study we used TRENTOOL’s default number of permutations, i.e. 190100.

For the comparison of false detections, i.e. false negative and false positive connections,

between preprocessing techniques and over all data sets Fisher’s exact test was applied, as this

test is generally valid even for small sample sizes. The significance level of 5% was adjusted

using Bonferroni correction to accommodate for multiple testing. The comparison of mean

delay deviations between groups was performed using the nonparametric Wilcoxon rank-sum

test with a subsequent Bonferroni correction at a significance level of 5%. A nonparametric

test was chosen as normality could not be verified using the Kolmogorov-Smirnov test. For

these tests the Statistics and Machine Learning Toolbox (v. 10.0) implemented in Matlab

(Matlab 2014b) was used.

For every model four parameters were extracted from the data:

1. false negative direct connections (FNDC), which are presented as the percentage of total

direct connections simulated per group.

Table 1. Analyzed preprocessing types.

Feature Filter-Type Hz Filter-Order Models

Control Kus, CLMM, CSEM

Downsampling + Low-Pass (non-causal) Chebyshev I Fs: 125 8 Kus, CLMM, CSEM

Ff: 60

Fs: 208 Kus, CLMM, CSEM

Ff: 100

Fs: 625 Kus, CLMM, CSEM

Ff: 300

High-Pass (causal) Butterworth 1 4 Kus, CLMM, CSEM

2 Kus, CLMM, CSEM

Low-Pass (causal) 320 Kus, CLMM, CSEM

160 Kus, CLMM, CSEM

80 Kus, CLMM, CSEM

80 1–9 Kus

High-Pass (non-causal) 1 2 Kus

2

Low-Pass (non-causal) 320 Kus

160 Kus

80 Kus

Fs: sampling frequency, Ff: filter cut-off frequency.

https://doi.org/10.1371/journal.pone.0188210.t001
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2. false negative indirect connections (FNIC), which were calculated from estimated positive

indirect connections pind,est and expected positive indirect connections pind,exp according to

FNIC ¼ 100 1 �
pind;est

pind;exp

 !

: ð20Þ

3. false positive connections (FP), as percentage of the total amount of possible false positive

connections.

4. mean deviation dd from the modeled interaction delay

dd ¼
1

nm

Xn

i¼1

Xm

j¼1
d
ij
est � d

j
exp

�
�
�

�
�
�; ð21Þ

where n indicates the number of generated data sets, m the number of simulated direct con-

nections, d
ij
est the estimated delay and d

j
exp the expected modeled delay for each connection

and data set. A mean delay deviation of zero indicates a perfect estimate of the true interac-

tion delay.

Results

The Kus-model

In Fig 5 the influence of filtering and downsampling on the false detection rate using the Kus-

model is presented. For the control and all filtered data sets FNDC and FP were detected to be

below five percent. However, for FNIC filtering with progressively lower low-pass cut-off fre-

quencies led to a significant monotonic increase from 27% for the control group up to 86% for

the 80 Hz low-pass filter.

Downsampling had the greatest influence on false detections. A sampling factor of ten

resulted in a significant increase of 100% FNDC and nearly 80% FNIC. A sampling factor of

six resulted in a similar but slightly smaller significant increase of FNDC and FNIC with 67%

and 50%, respectively. In contrast, a downsampling factor of 2 only led to a significant increase

of FNIC to 41%.

In Fig 6 the same influences were analyzed with respect to the estimation of the modeled

interaction delay. For the control group and both high-pass filter groups the mean delay devia-

tion was below 2.0 samples. Concerning the effect of low-pass filtering on the estimation of

the mean delay deviation, our results could not demonstrate a clear monotonic increase with

decreasing low-pass filter cut-off frequency as one might have expected. However, for all low-

pass filtered groups the delay deviation was significantly larger than for the control group with

the maximum value of 2.9 [±0.7] samples for the 80 Hz low-pass filter. Downsampling using

factors six and two led to a significant decrease of delay deviation. This is because the observed

deviation from the modeled delay generally led to an underestimated delay. However, since

downsampling leads to a decrease of the modeled interaction delay in terms of samples the

range of possible deviations also decreases. As no modeled connections could be detected after

downsampling with a factor of 10, no delay deviation could be analyzed for this group.

We also tested the influence of filtering using phase neutral, i.e. non-causal, filters on TE

estimation. In Fig 7 causal and non-causal filtering are compared with respect to detected

FNIC. Both filtering procedures showed a monotonic increase in FNIC with decreasing cut-

off frequency. In comparison to causal filtering significantly more FNIC were detected for

non-causal low-pass filtering at 320 Hz and 160 Hz and the non-causal high-pass filtering at 1
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Hz. FNDC and FP were below 5% for each cut-off frequency and showed no significant differ-

ences (S4 and S5 Figs).

Finally, we hypothesized that the filter order may have a significant influence on delay esti-

mation as with higher orders more adjacent time points get temporally aggregated. To test

this, we compared nine 80 Hz low-pass filtered datasets with increasing filter orders from 1 to

9 with an unpreprocessed control group. The results are summarized in Fig 8. Filter orders

from 3 to 9 led to a significant increase of delay deviation in comparison to control. Filtering

always led to an underestimation of modeled interaction delay. Note that for all filter orders

Fig 5. False detections in percent for the Kus-model. LP: low-pass filter, HP: high-pass filter, Dec: decimation. Asterisks

indicate results significantly different from control (Fisher’s exact test, p < = 0.05, Bonferroni corrected).

https://doi.org/10.1371/journal.pone.0188210.g005

Fig 6. Delay deviation in samples for the Kus-model. LP: low-pass filter, HP: high-pass filter, Dec: decimation. Asterisks

indicate results significantly different from control (Wilcoxon rank-sum test, p < = 0.05, Bonferroni corrected). Error bars

indicate standard deviation (SD).

https://doi.org/10.1371/journal.pone.0188210.g006
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FNDC and FP were below 4% (S1 and S3 Figs). FNIC ranged from 50% for filter order 1 to

93% for order 9 (S2 Fig).

The CLMM

In Fig 9 the influence of filtering and downsampling on false detections as well as on the esti-

mation of the interaction delay is shown for the different branches of the CLMM, which reflect

different degrees of nonlinearity. For the FNDC (Fig 9a), a monotonic increase was observed

for progressively lower cut-off frequencies and progressively larger downsampling factors.

This behavior was independent of the degree of nonlinearity, i.e. the number of times the

logistic map was iterated. Note, however, that the increase of FNDC was much smaller for the

third and most nonlinear branch (34%) than for the second (72%) and first branch (52%). As

Fig 7. Comparison of FNIC for causal and non-causal filtering procedures using Butterworth filters. LP: low-pass,

HP: high-pass. Asterisks indicate significant differences (Fisher’s exact test, p < = 0.05, Bonferroni corrected).

https://doi.org/10.1371/journal.pone.0188210.g007

Fig 8. Delay deviation in samples for the Kus-model and increasing low-pass filter orders. Asterisks indicate results

significantly different from control (Wilcoxon rank-sum test, p < = 0.05, Bonferroni corrected). Error bars indicate standard

deviation.

https://doi.org/10.1371/journal.pone.0188210.g008
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Table 2 demonstrates, no single connection was responsible for this effect. However, if we

compare branch X 3 only with X 1 then the strongest difference was observed for the connec-

tions Xm2 to Xi. (94% FNDC for X 1 and 28% for X 3), notably the only connection with differ-

ent modeled interaction delay for all branches. For the control and high-pass filters FNDC

were always below one percent (Fig 9a). Applying low-pass filters of 320 Hz, 160 Hz and 80 Hz

resulted in FNDC of up to 9%, 28%, and 72%, respectively, for the second branch. Interest-

ingly, it was the second and not the third branch that exhibited the overall highest percentages

of filter dependent FNDC. Downsampling with factors 2, 6 and 8 led to significant increases of

FNDC up to 24%, 57% and 87% respectively.

Fig 9. Results for the CLMM. False detections in percent for different branches of CLMM reflecting different degrees of nonlinearity for a) FNDC, b)

FNIC, and c) FP. d) Delay deviation in samples for different degrees of nonlinearity. LP: low-pass filter, HP: high-pass filter, Dec: decimation, X i: ith branch

of the CLMM, All: average results for all degrees of nonlinearity. Asterisks indicate results significantly different from control (a-c: Fisher’s exact test, p < =

0.05, Bonferroni corrected, d: Wilcoxon rank-sum test, p < = 0.05). Error bars indicate standard deviation.

https://doi.org/10.1371/journal.pone.0188210.g009

Table 2. Percent of significant FNDC per branch for the 80 Hz low-pass filter.

Branch X 1 X 2 X 3

Xns1 - -> Xm2 82% 60% 93%

Xm2 - -> Xm3 0% 37% 0%

Xm2 - -> Xm4 8% 71% 4%

Xm2 - -> Xi 94% 93% 28%

Xm3 - -> Xm4 74% 100% 48%

https://doi.org/10.1371/journal.pone.0188210.t002
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For the FNIC (Fig 9b) a similar monotonic frequency dependent increase of detections was

observed as for the FNDC. Also, FNIC did not increase with increasing degree of nonlinearity.

However, even for the control group up to 58% FNIC were detected in the third branch of the

model. In the first branch low-pass filters of 320 Hz, 160 Hz and 80 Hz resulted in up to 62%,

81% and 92% FNIC, respectively. Notably, in comparison to branch 1 and 2 the difference

between low-pass filtering groups was much smaller in branch three. With the exception of

branch 3 downsampling always led to a significant increase of FNIC in comparison to control.

In branch 3 only factors 10 and 6 resulted in a significant increase of FNIC. High-pass filtering

did not influence the occurrence of FNIC.

Fig 9c shows the percentage of FP for the different filter groups and different degrees of

nonlinearity. Independent of the applied filter or the degree of nonlinearity, the FP were dis-

tributed around 2.5%, with the highest percentage of 5.3% for the third branch filtered with a

320 Hz low-pass and the lowest of 0.4% for the first branch filtered with an 80 Hz low-pass fil-

ter. Interestingly, after an initial rise of FP when applying a low-pass filter of 320 Hz, a mono-

tonic decrease was observed when applying a 160 Hz or 80 Hz low-pass filter. This decrease

was observed for all branches, i.e. it was independent of the degree of nonlinearity. However,

this decrease was only significant for the 80 Hz low-pass filter and only for the averaged results

and the first branch of the model. A similar behavior was observed for increasing downsam-

pling factors, where we observed a monotonic decrease of FP. For averaged results and all

branches we observed a significant decrease of FP for a downsampling factor of ten and also

for a factor of 6 in the third branch.

A significant monotonic increase of the mean delay deviation ranging from 1.2 [± 0.6] up

to 3.7 [± 1.4] samples was observed after application of low-pass filters with gradually lower

cut-off frequency (Fig 9d). Larger downsampling factors resulted in a significant monotonic

decrease of delay deviation ranging from 1.2 [±0.3] for a factor of 2 to 0.0 [±0.0] for a factor of

10. This behavior was independent of the degree of modeled nonlinear coupling.

The CSEM

Fig 10a displays the percentage of false detections for the CSEM. Of the applied filters only the

80 Hz low-pass filter resulted in a significant increase of FNDC and FNIC, with 8% and 17%,

respectively. For all groups including the control up to 26% FP were detected. In accordance

with the Kus and CLMM downsampling led to a significant increase of FNDC and FNIC for

downsampling factors of 10 and 6. However, no increase was detected for a factor of 2. Inter-

estingly, downsampling with a factor of 10 led to much fewer FNIC than FNDC (36% and

100%, resp.). A similar trend could be observed for the Kus-model. Again, downsampling

resulted in a monotonic decrease of FP for increasing downsampling factors. However, this

decrease was only significant for a factor of 10.

For the CSEM we estimated the interaction delays over a larger range of u = 1–100 lags in

order to test whether delay deviations stay confined to the temporal vicinity of the true interac-

tion delay or spuriously high deviations appear. Application of a 320 Hz low-pass filter led to a

significant increase of delay deviations from 0.5 [±0.3] samples to 2.4 [±0.4] samples (Fig 10b).

Low-pass filter of 160 and 80 Hz both led to an even stronger delay deviation of 2.8 [±0.6] and

3.1 [±0.9] samples, respectively. Concerning the high-pass filters, no differences could be

detected in comparison to control. We observed an increase of delay deviation to 1.0 [±0.3] for

a downsampling factor of 2 and a significant decrease to 0.1 [±0.0] for the factor 6. As no mod-

eled connections could be detected for the factor 10, no delay deviations were tested. Fig 11

shows the mean TE as a function of tested interaction delays for the control and the 320 Hz,

160 Hz and 80 Hz low-pass filtered datasets. No spurious side peaks for delays larger than the
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modeled delay u = 6 were observed (delays u = 20–100 not shown). Note how filtering with

successive lower cut-off frequencies leads to a decrease of estimated TE. Additionally, note

how filtering results in a smoother decline of TE for u>6. While TE is in theory defined to be

positive semidefinite, negative values are observed here due to the estimation procedure. In

Fig 10. Results for the CSEM. a) False detections in percent for the CSEM. b) Delay deviations for the

CSEM. LP: low-pass filter, HP: high-pass filter, Dec: decimation. Asterisks indicate results significantly

different from control (a: Fisher’s exact test, p < = 0.05, Bonferroni corrected, b: Wilcoxon rank-sum test, p < =

0.05). Error bars indicate standard deviation.

https://doi.org/10.1371/journal.pone.0188210.g010

Fig 11. Influence of filtering on delay estimation. Mean TE as a function of tested interaction delays for the

coupling of channels 1 and 2 of the CSEM after low-pass filtering and for the control. Dotted lines represent

standard deviation. The black bar at u = 6 indicates the modeled interaction delay. Note that, while TE is

defined to be positive semidefinite, estimated TE can be negative due to estimation bias [57].

https://doi.org/10.1371/journal.pone.0188210.g011
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summary no spuriously high delays were detected for this larger scanning range. Similar to the

Kus and the CLMM if a delay deviation was present, the interaction delay was almost always

underestimated.

Discussion

In this study we tested the influence of different preprocessing techniques including different

filters and downsampling factors on the estimation of TE. To this end, we used one linear and

two nonlinear models in order to simulate different kinds of neural activity. The present study

demonstrates that preprocessing can have a tremendous effect on inferring directed informa-

tion flow using TE estimation. The results are discussed in detail in the following paragraphs.

Effects of filtering

We demonstrated that the influence of filtering on TE estimation is highly dependent on the

network’s coupling dynamics. For the case of linear coupling as implemented in the form of

the Kus-model, neither low-pass nor high-pass filtering led to a significant increase of detected

FNDC or FP. However, low-pass filtering resulted in a significant cut-off frequency dependent

monotonic increase of FNIC. A possible explanation for the negative influence of low-pass fil-

tering may be that the amount of information transmitted over several channels was thinned

out with the addition of dynamic noise at every time step and channel. At a critical amount

of transferred information in the original signal low-pass filtering eliminated much of the

remaining information content, which resulted in an increased number of missed connections

or equivalently in a decrease of sensitivity of TE estimation. Thus, while the estimation of

direct connections was robust under filtering, low-pass filtering seems to mainly affect the

detection of indirect connections for a linear system.

For the nonlinear CLMM and CSEM we could demonstrate a monotonic filter cut-off fre-

quency dependent increase of false negatives also for direct connections. For a strong nonli-

nearly coupled system one might expect the joint probability distribution of past states of the

driving signal and present values of the driven signal to be widely spread out, with discrete

isolated peaks, as similar states of the driving signal may lead to vastly different values of the

driven signal (Fig 3). Therefore, similar states of the driving signal would be less predictive for

similar values of the driven signal. In contrast, for linearly coupled signals one would expect

broad peaks in the joint probability distribution as similar states of the driving signal would

lead to similar states of the driven signal through the linear coupling function. Thus, if precise

knowledge of the driver’s and driven system’s states is blurred through temporal aggregation

by a filter function a lot of the transferred information may remain undetected depending on

the time scale of predictability of the nonlinear system.

Using the CLMM we tested whether the effect of filtering was enhanced for progressively

stronger degrees of nonlinearity. However, no general qualitative differences were observed.

For the strongest nonlinear coupling, i.e. the third branch, we found that the increase of

FNDC after low-pass filtering was much smaller than for the weaker nonlinear couplings (35%

for the third branch vs. 72% for the second branch and 52% for the first branch).

For the CSEM in all data sets including the control a large amount (~20%) of FP were

observed. This is not surprising as the sigmoid function acts as an additional filter, which effec-

tively eliminates all predictive information for values of the source time series smaller -1 and

larger 1. Thus, the high number may be the result of a finite sample effect of this specific

model. Taking Bonferroni correction into account, the detected false positives were marginally

considered significant in contrast to true positives found (e.g. CSEM control 1!2: mean p-

value = 0.00006 vs. CSEM control 2!1 mean p-value = 0.04907).

The influence of preprocessing on transfer entropy

PLOS ONE | https://doi.org/10.1371/journal.pone.0188210 November 17, 2017 19 / 28

https://doi.org/10.1371/journal.pone.0188210


Another general source for spurious connections is the connectivity structure of the model

(Fig 4). The triangular motif in the lower half of the model introduced the notion of self-feed-

back to the system. Part of the information node four receives from channel two is transmitted

six samples later via channel three. Thus, if one only observes node four this dynamics would

appear as self-feedback with a delay of six samples. As Hahs and Pethel [66] pointed out spuri-

ous connections can be detected if an anticipatory element is present in the system. Wibral

et al. [50] suggested that this problem should be taken care of by calculating TE between the

signal in question and its own past. In practice it would also be possible to use a multivariate

TE estimator [67].

Using the Kus-model Florin et al. [36] tested the influence of filtering on the estimation of

different Granger-causality based methods. Consistent with our results the authors reported an

overall cut-off frequency dependent significant increase of false negatives, but also an increase

of false positives when applying 80 Hz and 160 Hz low-pass filters in comparison to an unfil-

tered control data set. Note that in that study indirect connections were also defined as FP. In

comparison to squared partial directed coherence (sPDC), which was stated to be the most

robust Granger causality measure, we detected far less FNDC for TE (< 3%) using an 80 Hz

low-pass Butterworth filter in a range of filter orders from 1 to 9 (S1 Fig). For sPDC Florin

et al. observed a monotonic increase from 2% to 28% for filter orders from 2 to 8. For the same

filter parameters Florin et al. also observed a monotonic increase of FP from 1% to 12%. Again,

we could not detect a similar effect for TE. FP were observed to be rather constant for different

filter orders and always below 3.5% (S3 Fig). Incorporating FNIC into FP we observed an ini-

tial drop from 11.2% at filter order 1 to 5.8% at filter order 2. For the remaining filter orders

(3–9) FP remained constant at 3.8% [± 0.5] (S6 Fig). Overall, for linear interactions, TE seems

to be more robust than sPDC when filters are applied.

Low-pass filtering had a significant influence on the estimation of the interaction delay.

Generally, a filter dependent underestimation of interaction delay was observed in all channels

and models. This delay deviation can be explained either by a forward shift of the target or a

backward shift of the source time series. A reason for a forward shift might be the so called

group delay of the applied filter, which is the negative first derivative of the filter’s phase

response (Fig 12). However, if target and source activity get time shifted by the same factor no

difference of interaction delay would be observed. This would be the case if source and target

time series exhibit a highly similar power spectrum. If however the source time series shows

higher power in distinct frequency bands than the target time series, the delay of these fre-

quency bands would have a higher impact on overall transmission delay. As an example, (Fig

13) shows the mean power spectra of channel 2 (source) and channel 3 (target) of the Kus

model low-pass filtered at 80 Hz. While the power spectrum of the target time series is flat in

the range of 5–60 Hz, the source time series shows higher power in the range of 5–40 Hz with

a distinct peak at 10 Hz. Accordingly, these observations might explain the detected transmis-

sion delay.

As the group delay is not only dependent on cut-off frequency but also on filter order we

speculated that the filter order may be a significant factor of a filter’s influence on delay estima-

tion, as with higher filter order more adjacent time points get temporally aggregated. We tested

this by using an 80 Hz low-pass filter with filter orders from 1 to 9 and compared estimated

interaction delays with an unfiltered control dataset. We found significant stronger delay devi-

ations for filter orders between 3 and 9, although, after an initial increase of delay deviation at

filter order 3, it stayed at approximately 2.8 samples for higher filter orders.

Not only the cut-off frequency is of practical importance, but also whether the filter is

applied in a phase neutral manner, i.e. in forward and backward direction, or in a non-phase

preserving manner, i.e. only in forward direction. It has been shown that phase neutral filters
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lead to a higher number of spurious or false connections when applying Granger based causal-

ity measures [36]. This may be because phase neutral filters temporally aggregate past and

future time points, thus destroying the causality structure of the time series. In line with previ-

ous reports concerning Granger causality we could demonstrate that non-causal filtering leads

to a higher number of false negative indirect connections when estimating TE. However, no

significant differences could be detected concerning false negative direct connections or false

positives.

Fig 12. Group delay for different cut-off frequencies of a Butterworth low-pass filter. a) Group delay as a function of frequency for

low-pass filter of 320 Hz (bottom), 160 Hz (middle) and 80 Hz (top). b) Mean group delay over pass-band frequency. lp: low-pass. Error-bars

indicate standard deviation.

https://doi.org/10.1371/journal.pone.0188210.g012
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From a computational point of view low-pass filtering allows for a distinct reduction of the

phase-space dimensionality and thus significantly speeds up computation time. For the Kus-

model filtering with a low-pass filter of 80 Hz led to a nearly six times shorter computation

time. Even for the low-pass filter of 320 Hz computation time was accelerated by a factor of 3.4

(S7 Fig). However, as any filter has the potential to disturb inference on TE one should care-

fully consider if the accelerated computation time is worth taking the risk of detecting spurious

causalities. Though computation time and the ‘curse of dimensionality’ are still highly relevant,

progress in these issues is made continuously [68]. One recent approach is to use non-uniform

embedding for phase-space reconstruction as it reduces redundancy by only incorporating

past values of source and target time series into state vectors that are most predictive for the

target’s present [69,70].

If one is interested in resolving information transfer in distinct frequency bands, one should

refrain from filtering and consider using spectral measures of Granger causality as, so far, no

spectral representation is possible for TE.

Effect of downsampling

We demonstrated that low-pass filtering and successive downsampling with a sampling factor

greater than the highest interaction delay can result in a very high percentage of FNDC. This is

in line with the findings of Breitung and Swanson [71], Florin et al. [36] and Smirnov and

Fig 13. Mean power spectra of channel 2 (source) and channel 3 (target) low-pass filtered at 80 Hz.

The mean is taken over 20 trials x 100 datasets.

https://doi.org/10.1371/journal.pone.0188210.g013
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Bezruchko [72], who got a similar result when analyzing the influence of downsampling on

Granger-causality based methods.

Basically three possibilities can be thought of, how estimation of information transfer is dis-

turbed. The first and most important possibility is the deletion of past states of the driver’s

time series that are most informative for the prediction of the target’s time series present. If the

downsampling factor covers the whole time span of an interaction delay, then no predictive

information transfer can be estimated [73]. Even when the downsampling factor is smaller

than the interaction delay, a significant amount of information may be lost depending on the

information storage capabilities (see [74] for an introduction to information storage), i.e. the

memory of the time series. If the target samples of the driven time series are cut out due to

downsampling, information transfer might still be detected if the transferred information is

stored long enough to be detected in the next available sample. The second possibility to dis-

turb TE estimation is through the use of anti-aliasing low-pass filters. Although they are neces-

sary in order to not violate the Nyquist criterion [46], which states that the sampling frequency

should be at least twice as high as the highest expected frequency in the signal, low-pass filters

can have the same negative influences on TE estimation as discussed in the previous para-

graph. This may be the reason that for the CLMM even for the downsampling factor 2 a signif-

icant increase of FNDC was observed. Finally, downsampling results in a reduction of sample

size. According to [64] and [65] finite sample effects may lead to the detection of spurious cau-

salities. In this study however, sample size was kept constant for different downsampling fac-

tors which excludes finite sample effects as a possible reason for spurious detections. Generally

speaking, we suspect that the effect of downsampling is different from filtering in the same

way as for Granger causality, where it has been shown, that downsampling, but not causal fil-

tering not only influences the estimation, but even distorts the population statistics of TE

[37,38].

Conclusion

Based on the results of this study, we recommend refraining from low-pass filtering and

downsampling data when trying to infer directed information transfer by estimating TE.

However, high-pass filtering does not influence TE estimation to a relevant point and can

thus be used to preprocess data if slow drifts or movement artifacts are present. If filtering is

necessary because of other known high frequency artifacts in the data or to speed up compu-

tation time, one has to keep in mind that causalities may remain undetected, depending on

the filter’s cut-off frequency. Downsampling should only be done if knowledge about the

system’s interaction delays exists and a sampling factor smaller than the longest interaction

delay is chosen. While this study focused on the estimation of TE, future studies should try

to answer the question if and how the population statistics of TE are influenced by filtering

and downsampling.
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