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Abstract

Understanding spatio-temporal dynamics of biotic communities containing large numbers of

species is crucial to guide ecosystem management and conservation efforts. However, tra-

ditional approaches usually focus on studying community dynamics either in space or in

time, often failing to fully account for interlinked spatio-temporal changes. In this study, we

demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal

community dynamics in long-term monitoring data. Tensor decomposition builds on tradi-

tional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple

dimensions. This extension allows for the synchronized study of multiple ecological vari-

ables measured repeatedly in time and space. We applied this comprehensive approach to

explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a

marine ecosystem strongly altered by human activities and climate change. Our case study

demonstrates how tensor decomposition can successfully (i) characterize the main spatio-

temporal patterns and trends in species abundances, (ii) identify sub-communities of spe-

cies that share similar spatial distribution and temporal dynamics, and (iii) reveal external

drivers of change. Our results revealed a strong spatial structure in fish assemblages persis-

tent over time and linked to differences in depth, primary production and seasonality. Fur-

thermore, we simultaneously characterized important temporal distribution changes related

to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation.

Finally, we identified six major sub-communities composed of species sharing similar spatial

distribution patterns and temporal dynamics. Our case study demonstrates the application

and benefits of using tensor decomposition for studying complex community data sets usu-

ally derived from large-scale monitoring programs.
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Introduction

Understanding the spatial and temporal dynamics of biotic communities containing large

numbers of species represents a key challenge in ecology and is crucial to guide ecosystem

management and conservation efforts. However, the interaction between the spatial distribu-

tion and the temporal dynamics of species assemblages is difficult to grasp and requires spe-

cific methods that account for the multidimensional nature of community data. In fact,

community data are intrinsically multidimensional, because each sample taken in a given loca-

tion at a given time can be described by the abundances of multiple species. Hence, data sets

from monitoring programs with repeated sampling at multiple locations can be organized as a

3-dimensional array (i.e., 3rd-order tensor) with species, space and time being its three

dimensions.

Common approaches in community ecology use “two dimensional” multivariate analysis

methods such as Principal Component Analysis (PCA) or Correspondence Analysis to analyse

community data [1,2]. Because most of the statistical methods are developed to analyse matri-

ces, one of the three dimensions of community data is often sacrificed to reduce the 3D array

into a 2D matrix. Depending on the aim of the study, scientists have been simplifying either

the species assemblages into diversity indicators [3], the spatial distribution into barycentre

coordinates [4], or the temporal dynamics by averaging over stable periods [5]. One way to

keep the full information in 3D data sets is the extension of multivariate analysis to k-tables

(such as STATIS [6]) and the simultaneous analysis of a sequence of paired ecological tables

[7–9]. While the extension to k-tables is a clear improvement, which has found numerous

applications among ecologists to study spatio-temporal patterns [10,11], the k-table approach

considers one of the dimensions (often time or space) only as a repetition, restricting the

results by the a-priori choice of the repetitive dimension and impeding the study of the interac-

tion between time and space. Recently, other approaches have been developed to extend spe-

cies distribution models to full communities, like the joint dynamic species distribution model

[12,13] and the hierarchical modelling of species communities [14]. Multispecies distribution

models are promising approaches, but strongly limited in size by the rapidly increasing num-

ber of parameters to be estimated. In contrast, multivariate approaches are free from parame-

ters and can analyse data set with a large number of species in a high number of defined areas,

for long-term time series. However, none of these multivariate methods can simultaneously

study spatial and temporal dynamics, including the interaction between time and space across

species assemblages which is needed for a comprehensive understanding of spatio-temporal

changes of entire ecological communities [15].

Statistical tools able to investigate such multidimensional data sets were developed in the

late 1960s within the fields of psychometrics [16]. Tensor decomposition (TD) methods (also

called multiway multivariate analysis, tensor factorization, or high order principal component

analysis) are becoming an essential tool for data mining and have been successfully applied

within chemistry [17], neuroscience [18], bioinformatics [19], geophysics [20] and geospatial

science [21]. The recent enthusiasm for TD fuelled by growing computing power and the

emergence of big data [22], was followed by the development of new software [23,24]. Cur-

rently, multiple introductions and tutorials are available (e.g. [15,22,25]) and provide the basis

for new applications using TD. An increased adoption of TD methods among ecologists could

be beneficial because community data collected from large-scale ecological monitoring pro-

grams are inherently multidimensional (i.e. have more than 2 dimensions).

Here we demonstrate and promote the use of TD for disentangling spatio-temporal ecologi-

cal dynamics using the North Sea demersal fish community as an informative example. The

North Sea marine ecosystem has suffered from strong anthropogenic pressures [26], such as
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fisheries exploitation [27], and is already markedly impacted by climate change [28]. The need

to manage the many commercially important fish populations providing highly valued ecosys-

tem services [29] has resulted in a rigorous and internationally coordinated monitoring

scheme in the North Sea [30]. The North Sea International Bottom Trawl Survey created a

unique long-term (>30 years) data set covering multiple fish species abundance in time and

space, which is openly available and provides an ideal basis for multiway analysis. Our study

shows how TD can help (i) characterize the main spatio-temporal patterns of species assem-

blages, (ii) identify sub-communities that share similar spatial distribution and temporal

dynamics, and (iii) reveal external drivers of change by applying additional correlation analy-

ses and Monte-Carlo permutation tests.

Materials and methods

Tensor decomposition

A tensor is a multidimensional array; a generalization of a matrix (two-dimensional table) in

more than 2 dimensions. For example, the observed abundance of a species is associated with

a given location and a given time. Community data are made of observations of abundances of

multiple species (also referred as species assemblages), repeated in multiple areas and at differ-

ent times. The data set can be seen as a three-dimensional (or third order) tensor with one

dimension being the species taxa, a second dimension being the areas, and the third dimension

being time (Fig 1A). To get reliable and complete time series, stations (locations of individual

haul) are often aggregated to areas sharing similar features.

Tensor decomposition (TD) shares the same objectives of multivariate analysis, simplifying

the original data set (here formatted as a tensor) and explaining the maximum proportion of

the variance in the data set with a minimum number of components of lower dimensions.

With this trade-off, TD reveals the main pattern (or information) within the data set and sepa-

rates it from noise. Different methods of TD have been developed since the 1960s along with

the development of multilinear algebra. Three methods are among the most popular: Tucker

decomposition [16], canonical polyadic decomposition (also known by the acronyms CAN-

DECOMP or PARAFAC, [31,32]) and Principal Tensor Analysis over k-modes (PTA) based

on high order singular value decomposition [33]. Recent extensive reviews with detailed math-

ematical definitions and differences between these methods are available [15,25]. From a prac-

tical point of view, PTA offers an easy-to-interpret and robust method to decompose a tensor.

Compared to the Tucker decomposition, PTA has the advantage of being independent of the

dimensions of the desired solution (or core tensor). Compared to canonical polyadic decom-

position, PTA has better explanatory power (due to its flexibility of having non-diagonal core

tensor). The definition and algebra of PTA can be found in Leibovici and Sabatier [33]. We

believe that its high similarity with the properties of the well-known PCA may facilitate its

adoption by ecologists.

A PTA is completed following the same three steps as a PCA: (1) scaling, (2) selecting rele-

vant components and (3) visual interpretation of the components with a biplot. First, the scal-

ing and transformation of the original data is an essential preliminary step for the analysis of

community data [34]. In the multidimensional context, the question is how to compute the

distance between individuals and on which dimension(s) to center and/or scale the abundance

values. The answer depends on the data set and the focus of the study. In our case, the abun-

dance values were highly right skewed so we log(x+1)-transformed the abundance values and

choose to use Euclidean distances as a basis for the PTA (similar to a PCA). Then, we centred

(mean of 0) and scaled (standard deviation of 1) the abundance of each species to consider the

rare and abundant species equally. Second, the dominant modes of variability, summarized in
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principal tensors (PTs), are selected with a scree plot, showing the percentage of the variance

explained by each successive PT (S1 Fig). Similar to successive eigenvalues from PCA, a visual

inspection of the scree plot indicates the number of significant PTs, i.e. the best trade-off

between minimum number of PTs and the maximum percentage of variance explained [35].

Third, interpretation of PTs is made based on the projection of the dimensions on the selected

PT (similar to a biplot in a PCA). PTA results in the simultaneous projection of the three

dimensions (species, time and space) on simpler axis (PTs). The projection of time and space

Fig 1. Presentation of the data set and its multidimensional nature. (A) Community data represented as

a three-dimensional tensor. Each pixel represents the abundance level (relative to the average abundance of

each species in the survey) of the fish species in the North Sea in its 3 dimensions: species, time and space.

(B) Map of the study area showing the 7 predefined areas (called roundfish areas) which serve as the spatial

scale of our study.

https://doi.org/10.1371/journal.pone.0188205.g001
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on the PT was plotted in a heatmap to represent the dominant spatio-temporal dynamics

inherent in the data set.

However, the large number of species analysed in parallel renders the interpretation of the

species projection derived by PTA difficult. Hence, we augmented the analysis by computing

Euclidean distances between fish species from the projection of species scores on the PTs and

subsequently conducted a Hierarchical Cluster Analysis (HCA) based on Ward’s criterion. We

selected the significant number of groups from the HCA based on a graphical interpretation of

the dendrogram. The robustness of the selected number of clusters was tested by comparison

with the alternative K-Means Cluster Analysis (S3 Fig). Using cluster analysis, we derived a

simplification of the dynamics of the multitude of individual species into fewer sub-communi-

ties sharing similar spatio-temporal patterns. We also used information about species’ traits, in

terms of behaviour and life history, to characterize these sub-communities (data from [36]; S1

Table). We tested if sub-communities had significant differences in the distribution of traits

with a Kruskal-Wallis test (for continuous traits) and Chi-square test (for qualitative traits).

Example data set–the demersal fish assemblage of the North Sea

Abundance data of the North Sea demersal fish assemblage were compiled by the ICES (Inter-

national Council for the Exploration of the Sea) Database for Trawl Surveys (DATRAS; http://

datras.ices.dk/; data downloaded on the 16th of February 2016). Data were collected by the

North Sea International Bottom Trawl Survey [30], an international effort to monitor fish pop-

ulations and communities. Each contributing research vessel applies a standard otter trawl as

sampling gear. Individual hauls are standardized to catch per unit effort, which represents the

average catch per unit of time of trawling. To assure representative sampling of the fish com-

munity, at least two hauls are regularly conducted in pre-specified spatial rectangles (ICES sta-

tistical rectangles) of one degree longitude and 0.5 degree latitude each [30].

For our analysis, we only used data collected during the first quarter (January-March) of

the year, in order to avoid seasonal bias and benefit from the longest time series available (31

year continuous period from 1985 to 2015). We investigated spatio-temporal changes of the

fish community on the scale of the seven predefined areas (called roundfish areas by ICES,

RAs; Fig 1B) which sub-divide the North Sea based on ecological aspects of the fish fauna,

including spawning, feeding and species composition [3,37]. Hence, our data set represents

reliable relative annual abundance estimates per RA based on the aggregation of at least 16

hauls. Our approach sacrifices spatial information collected on the smaller rectangle basis

(ICES statistical rectangles) for a better estimation of the abundance on each spatial unit. Nev-

ertheless, conducting the analysis on a higher spatial resolution resulted in similar outcomes

(S2 Fig).

We conducted pre-processing checks for misnaming or misidentification of species,

removal of non-fish organisms and pelagic fish species that are not representatively sampled

by the gear [38]. Furthermore, we excluded sporadic species that occurred less than once every

year in at least one area. By this procedure, we removed 50% of the total number of species

recorded. However, these species amounted to less than 1% of the total abundance. Our final

data set contained annual abundance expressed in catch per unit effort of 65 individual species

for the period 1985 to 2015 averaged over the seven RAs. We log(x+1)-transformed and then

standardized the data (zero mean and sd of 1) to reduce the skewness and to scale rare and

abundant species equally. Finally, we organized the data for the statistical analysis in an array

of three dimensions, i.e. species, space and time, which we refer to as a tensor in the following

text (Fig 1A).
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Information about the biological characteristics of the species (maximum length, trophic

level and biogeography) were extracted from Engelhard et al. [36]. Boreal fishes are species

that extend north to the Norwegian Sea and Icelandic waters. Lusitanian fishes tend to be

abundant from the Iberian Peninsula to as far north as the British Isles and the central North

Sea. Atlantic species are species widespread in the North Atlantic.

All data analyses were performed with the statistical software environment R [39]. The PTA

method is implemented in the R package PTA-k [23] and a tutorial (containing script and

data) explaining TD on fish assemblages is openly available on GitHub (https://github.com/

rfrelat/Multivariate2D3D, 10.5281/zenodo.831739).

Environmental conditions and fishing pressure influences on spatio-

temporal community patterns

We explored the effects of natural and anthropogenic drivers known to affect fish distribution

patterns in the North Sea [29], specifically depth, local hydrographic conditions, primary pro-

ductivity, large-scale climate indices and fishing pressure. Depth was retrieved from the Gen-

eral Bathymetric Chart of the Oceans, (GEBCO 2014 grid, www.gebco.net) and averaged per

subdivision. Local hydrographic conditions were represented by bottom and surface tempera-

tures and salinities derived from optimally interpolated observations of the North Sea [40].

Chlorophyll a (Chl) concentration (as proxy for primary production) was estimated from

GlobColour (http://globcolour.info), a product developed, validated, and distributed by ACR-

I-ST, France [41]. The oceanographic data set and GlobColour are provided with a monthly

time step and at high spatial resolution (respectively 0.2˚ and 1km). We spatially averaged

these values over the RAs and derived three temporal indices from the 12 monthly values: an

annual index (averages over 12 months, labelled with the subscript AN), a first quarter index

(average values over January-February-March, labelled with the subscript Q1) and a seasonality

index (difference between the maximum and minimum monthly value, labelled with the sub-

script var). The annual and the seasonality indices were compared to the fish abundance esti-

mated in the first quarter of the following year. We restricted the number of temporal indices

by considering a maximum lag of 1 year between the possible drivers and responses in fish

abundance, which represents recruitment success of most species in the North Sea.

Large-scale climate conditions were represented by the Atlantic Multidecadal Oscillation

(AMO, [42]), as well as the North Atlantic Oscillation (NAO, [43]) index. The two indices are

known to affect the ecosystems of the North Atlantic and adjacent seas [44,45]. The NAO indi-

cates high frequency (7–25 years) atmospheric variation, whereas AMO is a low frequency

multidecadal (60 years) variation of the sea surface temperature. Time-series on both indices

were derived from the climate indices platform of the Earth System Research Laboratory:

http://www.esrl.noaa.gov/psd/data/climateindices/list/. Fishing effort as an index of exploita-

tion pressure was estimated from a data set provided by the Scientific, Technical and Eco-

nomic Committee for Fisheries of the European Commission (https://datacollection.jrc.ec.

europa.eu/data-dissemination). Annual fishing efforts (in hours per ICES rectangle per year

and per gear type) are available from 2003 onwards. We followed the recommendation by

Engelhard et al. [27] to consider beam and otter trawl effort separately.

Potential external drivers were identified through correlation analysis with the derived PTs,

as well as with the spatio-temporal dynamics of the sub-communities (represented by the spa-

tio-temporal distribution of species aggregated by cluster). For drivers that can be defined in

time and space (e.g. hydrography and fishing effort), the relationships between the spatio-tem-

poral matrices were tested using the RV coefficient, a generalization of the Pearson correlation

coefficient for matrices, and applying a Monte-Carlo permutation test with 5000 permutations
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[46]. For 1-dimensional drivers defined only in time (e.g. climatic indices) or space (i.e.

depth), Pearson correlation coefficients were computed. To account for the autocorrelation

inherent in the time-series affecting significance levels, p-values were calculated from 5000

random time series with similar first order autocorrelation (AR1). Eventually, the p-values

were adjusted for multiple testing to correct false discovery rates following a method suggested

by Benjamini and Yekutieli [47].

Results

Spatio-temporal dynamics of fish assemblages in the North Sea

PTA decomposed the initial tensor, i.e. the array of fish abundance in the three dimensions–

species, space and time—into the dominant modes of variability, summarized in PTs. Based

on a visual interpretation of the scree plot, we identified four significant PTs, which in total

explained 43.2% of the variability in the North Sea demersal fish data set (S1 Fig). We evalu-

ated the significance of our results by performing a PTA on the same tensor, but with its values

randomly shuffled. This analysis explained only 6% of the total variability, suggesting our

decomposition to reliably capture the main patterns in our data set. For simplicity and analogy

with the more common PCA, we renamed the significant PTs with a number according to the

decreasing order of variability explained, which differs from the labelling provided by the soft-

ware used. The full results of the PTA (i.e., the output of the PTAk package) are provided in S1

Fig.

Our results showed that the spatial structure of the fish assemblage explained a larger pro-

portion of the variability in the data set compared to temporal variability. Spatial structure is

represented by three PTs that together explained 38% of the total variability. The temporal pat-

tern on the other hand is represented by only one PT and explained 5.2% of the total variabil-

ity. We used heatmaps with time and space on the x- and y-axes respectively, to visualize the

four main patterns found (Fig 2). PT 1–3 (Fig 2A–2C) revealed strong differences between

RAs displayed by homogeneity in the abundance levels over time (i.e. homogeneity in row col-

ours). PT4 (Fig 2D) represented a component of temporal variation that is homogeneous in

space (i.e. homogeneity in column colours).

PT1 explained 23.7% of the variability in the data set and discriminated the northern (RA 1, 2

and 3) and southern parts (RA 5 and 6) of the North Sea (Fig 2A). Correlation analysis revealed

significant relationships of PT1 with Chl (ChlQ1, p-value = 0.03), the seasonality of sea bottom

temperature (SBTvar, p-value = 0.03) and of sea bottom salinity (SBSvar,, p-value = 0.03) (Table 1

and S2 Table). Moreover, PT1 was correlated with sea bottom salinity (SBSQ1, p-value = 0.07)

and depth (p-value = 0.07). Therefore, PT1 highlighted the differences of fish species living in

the southern part of the North Sea, a shallow area with high primary production and pro-

nounced seasonality in bottom temperature and salinity, compared to fish species living in the

northern part, a deeper area with lower primary production and lower seasonal variations in

temperature and salinity. In other words, the analysis revealed a strong north-south gradient in

the composition of the North Sea fish community corresponding to a strong gradient in geogra-

phy, hydrography and biological productivity.

PT2 and PT3 explained 8.7 and 5.6% of the variability in the data set, respectively. PT2

showed the connectivity of fish communities to other seas and opposes the Atlantic entrance

of the North Sea (toward the Norwegian Sea, RA 1, and the English Channel, RA 5) to the Bal-

tic Sea entrance (RA 7) (Fig 2B). PT3 discriminated the western (RA 3 and 4) and eastern NS

(RA 1 and 7) (Fig 2C). PTs 2 and 3 were tensors with a temporal mode associated to PT1, i.e.

they shared the same temporal components. PTs 2 and 3 were uncorrelated with environmen-

tal conditions and fishing pressure (Table 1). PT4 displayed the main temporal trend in the
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fish community and discriminated parts of the community continuously decreasing in abun-

dance compared to those continuously increasing over the last 30 years (Fig 2D). The trend

shown by PT4 was correlated with the AMO (p-value = 0.07, Table 1).

Characteristic sub-communities of North Sea fish species

The projection of the fish species on the four PTs was used to cluster species according to their

spatio-temporal dynamics (Fig 3A). The dendogram indicated six clusters of species confirmed

by the scree test (S3 Fig). The six clusters were projected separately on the four PTs (Fig 3B–

Fig 2. Results of the principal tensor analysis with 4 principal tensors (PT) explaining together 43% of

the total variability in the North Sea fish assemblage. (A) PT1 showed a spatial gradient in species

abundance from North to South. (B) PT2 showed the difference in abundance between strongly localized

species (either in the North or the South) and species living in the central part of the North Sea. (C) PT3

showed the abundance difference between species in the West and East of the North Sea. (D) PT4 showed a

temporal trend in species abundance.

https://doi.org/10.1371/journal.pone.0188205.g002
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3D). Two clusters (Southern and Northern) had strong spatial patterns and no temporal trend,

while two clusters (North-West Increasing and South-East Increasing) had a strong spatial pat-

tern and a weak temporal trend. The two remaining clusters (Increasing and Decreasing) were

characterized by a temporal pattern (Fig 4). In the following, clusters of species are referred to

as sub-communities and we labelled them according to their spatio-temporal characteristics

and characterized them through key species (identified by having the highest average abun-

dance and represented by drawings in Fig 4). The full species list and their assignments to the

identified sub-communities is given in S1 Table.

The Southern sub-community consisted of 14 fish species, among them lesser weever

(Echiichthys vipera) and sole (Solea solea) with a distribution concentrated in the southern NS

(RAs 5 and 6) and very low abundance in the northern RAs 1 and 2 (Fig 4). The Southern com-

munity was positively and significantly correlated with the Chl concentration and its seasonal-

ity (ChlQ1 and Chlvar; p-value = 0.07 and 0.03 respectively, Table 1) and mean annual sea

bottom temperature of the previous year (SBTan; p-value = 0.04, S2 Table). The Northern com-

munity consisted of a cluster of 10 fish species, among them saithe (Pollachius virens), with

high abundance in the North (RA 1) and very low occurrence in the southern RAs 4 and 6.

The Northern community was negatively correlated with depth (p-value = 0.03) and had a

weak positive relationship with sea bottom salinity (SBSQ1, p-value = 0.07).

The North-West increasing sub-community was a very heterogeneous cluster composed of

15 fish species, including whiting (Merlangius merlangus), haddock (Melanogrammus aeglefi-
nus), dab (Limanda limanda) and norway pout (Trisopterus esmarkii). The high heterogeneity

Table 1. Correlation analysis to identify environmental influences on spatio-temporal community patterns.

Tensor Decomposition Clusters

PT1 PT2 PT3 PT4 Southern Northern NW Inc SE Inc Increasing Decreasing

SSTQ1 0.47 0.24 0.4 0.03 0.25 0.21 0.73 0.93 * 0.44 0.07

SSTvar 0.51 0.26 0.28 0.02 0.24 0.27 0.65 0.96 * 0.49 0.05

SBTQ1 0.64 0.39 0.05 0.05 0.32 0.56 0.39 0.89 * 0.59 0.13

SBTvar 0.94 * 0.01 0.03 0.03 0.81 ˚ 0.45 0.61 0.67 0.06 0.46

SSSQ1 0.68 0.20 0.14 0.10 0.40 0.49 0.49 0.84 ˚ 0.39 0.18

SSSvar 0.08 0.41 0.31 0.18 0.09 0.07 0.20 0.39 0.48 0.27

SBSQ1 0.84 ˚ 0.06 0.02 0.03 0.56 0.73 ˚ 0.29 0.61 0.18 0.32

SBSvar 0.90 * 0.13 0.05 0.04 0.67 0.55 0.54 0.79 ˚ 0.25 0.36

ChlQ1 0.92 * 0.08 0.02 0.00 0.97 ˚ 0.35 0.56 0.45 0.01 0.68

Chlvar 0.83 ˚ 0.15 0.04 0.02 0.97 * 0.26 0.55 0.34 0.04 0.74

Otter 0.52 0.31 0.12 0.23 0.19 0.88 0.05 0.46 0.47 0.05

Beam 0.64 0.01 0.06 0.05 0.52 0.28 0.52 0.55 0.08 0.20

AMO 0.40 - - 0.74 ˚ 0.70 -0.72 ˚ 0.74 ˚ 0.74 ˚ 0.74 ˚ -0.74 ˚

NAO 0.17 - - -0.06 -0.01 0.03 -0.06 -0.06 -0.06 0.06

Depth 0.88 ˚ 0.36 -0.27 0.30 0.66 -0.96 * -0.38 0.75 -0.52 -0.5

Correlation coefficients between drivers (in rows) and spatio-temporal dynamics of the North Sea fish assemblages (in columns). Pearson correlation

coefficients and RV coefficients were calculated for 1- dimensional (e.g. climatic indices, depth) and 2 dimensional (e.g. hydrography and fishing effort)

drivers, respectively. The subscript ‘Q1’ represents the first quarter of the year, ‘var’ indicates the seasonality of the previous year, i.e. the difference

between the minimum and the maximum monthly values. PTs are the principal tensors found by the Principal Tensor Analysis; the spatio-temporal

dynamics of the clusters were represented by the projection of their barycentre on the PTs.

Adjusted p-values to correct for false discovery rates in multiple testing were computed and correlation significance is indicated by

‘˚’ p<0.1.

‘*’p <0.05.

https://doi.org/10.1371/journal.pone.0188205.t001
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of the sub-community resulted in weak temporal and spatial pattern, which appeared to be

uncorrelated with environmental conditions and fishing pressure (Table 1). A positive tempo-

ral trend was observed for the South-East increasing sub-community, which consisted of 12

fish species, among them plaice (Pleuronectes platessa), concentrated in RAs 6 and 7. The

South-East increasing sub-community was significantly correlated with sea bottom tempera-

ture (SBTQ1, p-value = 0.03) and with sea surface temperature and its seasonality (SSTQ1 and

SSTvar, p-value = 0.04 and 0.03 respectively).

The Increasing sub-community was a cluster composed of 11 species, among them poor

cod (Trisopterus minutus) and hake (Merluccius merluccius) with a positive temporal trend and

a weak spatial preference (Fig 4) for the entrance of the Atlantic Ocean (RA 1 and 3) or the

English Channel (RA 5). The Decreasing community was composed of a cluster of only 4 fish

species, among them cod (Gadus morhua) and starry ray (Amblyraja radiata) characterized by

a strong decreasing trend during the past 30 years. The two sub-communities Increasing and

Decreasing were uncorrelated with environmental conditions and fishing pressure (Table 1).

Fig 3. Classification of fish species based on their spatio-temporal dynamics. (A) Dendrogram of the Hierarchical Agglomerative Clustering and the

separation of 6 clusters. (B-D) Clusters represented on the different principal tensors (PTs), with x-axis showing PT1 projections, and y-axis showing (B) PT2,

(C) PT3 and (D) PT4 projections.

https://doi.org/10.1371/journal.pone.0188205.g003
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Finally, we investigated the biological characteristics of the six sub-communities described

above by comparing the traits of species classified into each sub-community. The distribution

of biological traits significantly reflected the north-south division of the fish sub-communities

(Fig 5). Fish species were on average larger (significant difference, p-value = 0.001) in the

Northern sub-community (median of 110 cm) and the Decreasing sub-community (107.5 cm),

compared to fish in the Southern sub-community (41 cm) and South-East increasing sub-com-

munity (32.5 cm). The same separation was evident in the trophic level of the fish species (Fig

5B, p-value = 0.04). The Northern and the Decreasing sub-community had a higher trophic

level (on average 4.1 and 3.9, respectively) while the Southern sub-community and South-East
increasing sub-community displayed lower average trophic levels (3.6 and 3.6, respectively).

Furthermore, biogeography was a good indicator of the main temporal trends in the North Sea

fish community (Fig 5C, p-value = 0.002). The Increasing and South-East increasing sub-com-

munity were mainly composed of Lusitanian species, while the Decreasing cluster contained

only boreal species. The latter division indicated the climatic influence on the temporal devel-

opment of the North Sea fish community.

Discussion

We demonstrated the use of TD, an integrative statistical analysis for studying multi-dimen-

sional data sets, typically collected by large-scale ecological monitoring programs. Here we

Fig 4. Main characterization of the sub-communities. (A) Spatio-temporal abundance, represented in a heatmap with time on the x-axis and

space on the y-axis. (B) Spatially average abundance of the clusters in the roundfish areas. (C) Temporal average of the abundance per cluster. (D)

Illustrations of fish species with the highest abundance in the respective cluster (images from FAO and Wikimedia).

https://doi.org/10.1371/journal.pone.0188205.g004
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analysed a multi-decadal data set on the spatial distribution of 65 demersal North Sea fish

species to better understand the spatial structure and recent temporal changes in the species

assemblages. Our study shows that TD is able to identify strong and persistent spatial struc-

ture in the fish community while simultaneously identifying strong temporal changes in

abundance.

The first main outcome of our study was the identification of a strong and stable spatial

structure of the fish community into a Northern and a Southern sub-community. Correlation

analysis explained this structure by differences in depth, primary production levels (repre-

sented by Chl concentrations), as well as the seasonality of temperature and salinity conditions.

The demonstration of two very different sub-systems confirms earlier investigations in the

area [3,48]. To a lesser degree, our analysis revealed a west to east gradient in community

dynamics (PTs 2 and 3), which despite insignificant correlations with the explaining variables

used, is likely related to the transition zones to the open Atlantic Ocean (PT2) and to the Baltic

Sea (PT3). The spatial structuring revealed by our TD approach is robust to using biomass

instead of abundance and especially to the spatial scale applied (S2 Fig). A higher resolution,

Fig 5. Biological characteristics (A: maximum length, B: trophic level and C: biogeography) of the

spatio-temporal clusters. Widths of the boxplot (A-B) and the bars (C) are proportional to the number of

species per cluster.

https://doi.org/10.1371/journal.pone.0188205.g005
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i.e. on a statistical rectangle basis and therefore sacrificing sample sizes and adding noise in the

estimated abundance, revealed the same spatial community structure as shown with the rela-

tively coarse spatial scale of the RAs.

A second main outcome of our study was that despite the strong and predominant spatial

structure our method was able to identify strong temporal changes in the fish community.

Although explaining only a comparatively small fraction of the overall variability in the data

set, this temporal trend indicates changes in community dynamics with a strong turning point

around the late 1990s and the early 2000s. Correlation analysis indicated this change to be at

least partly climate driven since it was correlated to the low frequency temperature variability

of the AMO. The results confirm the importance of the recent positive anomaly phase of the

AMO for ecosystem dynamics in the North-East Atlantic shown in earlier studies targeting

single fish species or only small parts of the fish community alone [49,50], lower trophic level

dynamics [51] and multi-trophic ecosystem changes [45,52]. Our correlation analysis showed

no significant correlation with fishing effort, although there is undoubtedly a high impact of

fishing on many commercially important species [27]. We attribute this result to the length of

the time-series of fishing effort beginning only in 2003. However, if the low and non-signifi-

cant correlations with fishing effort are a result of data shortage or are a result of the TD meth-

odology remains to be seen in future studies.

We used hierarchical cluster analysis on the PT projection to identify sub-communities that

group species sharing similar spatio-temporal dynamics. We verified the internal consistency

of these six sub-communities by investigating the distribution of biological traits within the

identified clusters. This approach revealed meaningful results, showing that the Northern sub-

community is composed of mainly boreal species with larger sizes and higher trophic levels

compared to the smaller Lusitanian species residing primarily in the southern North Sea.

Interestingly, the homogeneity in biological traits that we found for the clusters based on spa-

tio-temporal dynamics supports the theory that organisms sharing similar traits exhibit similar

dynamics [5,36]. However, future analyses would benefit from using additional biological

characteristics.

As with any statistical approach, the ability of the method applied here is limited by the

quality and amount of data available. For example, the data set used covers the period 1985–

2015, not including the stable period before the regime shift occurring in the North Sea during

the late 1980s [53,54]. Including this period of change would likely increase the importance of

the temporal component (represented by PT4) compared to the spatial components (PTs 1–3)

by increasing the range of variability in species abundance fluctuations. Spatial limitations,

however, mean that we cannot track fish species that move out of the study area. Moreover,

limited sample sizes forced us to conduct the analysis on the scale of the seven RAs which may

mask fine-scale spatial variability. However, as mentioned previously, we performed an addi-

tional analysis at the spatial scale of 168 statistical rectangles and found similar results (S2 Fig).

Overall, the results of our study have implications for the design of future modelling studies

with respect to spatial structure and trophic group composition of fish assemblages, for exam-

ple in food web models [55]. Similarly, our results can readily inform future ecosystem-based

management approaches that are multi-species or community-based compared to the prevail-

ing single-species approaches [56,57]. For example, PTA could be used to define species

assemblages based on in-situ data or, with a finer spatial scale, to define areas for management

based on ecology rather than current political boundaries. Furthermore, we argue and con-

clude that multiway statistical approaches accounting for multiple dimensions of community

data are fruitful and ready for uptake in community ecology and macroecology. Ecosystems

and the species they contain vary both in time and in space. Classical two-way analyses sim-

plify this information, which is inherently three dimensional, and therefore cannot investigate
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the multiple interactions between these dimensions [15]. Methods such as the one applied

here reveal these multidimensional patterns and provide a promising tool for knowledge dis-

covery in large-scale data sets derived from modern ecological monitoring programs.
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S1 Table. Biological characteristics of species, ordered by cluster. Information about the

biogeography, the trophic level (TL), the maximum length (Lmax) are from Engelhard et al.,
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(c) with p-value (p) and adjusted p-value (ap).
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S1 Fig. Results of the Principal Tensor Analysis. Output of the PTA-k R-package (top) and

selection of the four principal tensors (PTs) based on the scree-plot (bottom).
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S2 Fig. Robustness analysis to data transformation and spatial scale. TD computed with

(A) the method presented in the manuscript (abundance expressed in number/hour, at the

scale of roundfish areas), (B) abundance expressed in biomass (catch per unit effort, expressed

in kg/hour) and (C) a finer spatial resolution, at the scale of ICES rectangle (and abundance in
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