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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in the United

States with a five-year survival rate of 7.2% for all stages. Although surgical resection is the

only curative treatment, currently we are unable to differentiate between resectable patients

with occult metastatic disease from those with potentially curable disease. Identification of

patients with poor prognosis via early classification would help in initial management includ-

ing the use of neoadjuvant chemotherapy or radiation, or in the choice of postoperative adju-

vant therapy. PDAC ranges in appearance from homogeneously isoattenuating masses

to heterogeneously hypovascular tumors on CT images; hence, we hypothesize that hetero-

geneity reflects underlying differences at the histologic or genetic level and will therefore cor-

relate with patient outcome. We quantify heterogeneity of PDAC with texture analysis to

predict 2-year survival. Using fuzzy minimum-redundancy maximum-relevance feature

selection and a naive Bayes classifier, the proposed features achieve an area under

receiver operating characteristic curve (AUC) of 0.90 and accuracy (Ac) of 82.86% with the

leave-one-image-out technique and an AUC of 0.80 and Ac of 75.0% with three-fold cross-

validation. We conclude that texture analysis can be used to quantify heterogeneity in CT

images to accurately predict 2-year survival in patients with pancreatic cancer. From these

data, we infer differences in the biological evolution of pancreatic cancer subtypes measur-

able in imaging and identify opportunities for optimized patient selection for therapy.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death

in the United States with more than 53,000 new diagnoses and 41,000 deaths expected in 2016
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[1]. The 5-year survival rate for PDAC is low (7.2% for all stages) and the mortality rate is

increasing. Surgery is the only curative treatment; however, only 10 − 20% of patients present

with resectable disease and only 5 − 15% of these patients remain disease-free at 5 years [2].

Despite improvements in the understanding of pancreatic cancer, the impact of molecularly

targeted therapies on outcome for PDAC patients has been limited [3]. Thus, novel prognostic

markers are needed to improve management of PDAC.

The application and benefit of adjuvant and neoadjuvant chemotherapies are not well eluci-

dated in this patient population [4–8] and also complicated by the fact that we are unable to

distinguish between resectable PDAC patients with occult metastatic disease from those with

potentially curable disease [9]. Identifying patients most likely to benefit from neoadjuvant

therapy prior to treatment would improve selection of patients for curative surgery, e.g., those

who should delay surgical resection for aggressive systemic treatment. Therefore, early classifi-

cation of tumor aggressiveness may lead to changes in initial management including the use of

neoadjuvant chemotherapy or radiation, or in the choice of postoperative adjuvant treatments

[10]. Several surgical, pathological, clinical, and molecular factors have been investigated for

prognostic significance [11–13] with radiographic and pathological factors showing potential

in prognosis stratification. However, pathological variables are only available after resection

and are therefore of little clinical benefit, and radiographic criteria (i.e., tumor volume) alone

are not prognostic.

Recently, a consensus statement by the Society of Abdominal Radiology and the Ameri-

can Pancreatic Association highlighted the imaging heterogeneity of PDAC, outlining imag-

ing reporting guidelines for this tumor [14]. These guidelines include morphologic

descriptions of tumor appearance on computed tomography (CT) as hypoattenuating (areas

of darker attenuation) or isoattenuating (areas of brighter attenuation), imaging properties

that may predict the degree of PDAC differentiation [15] or the interaction of tumor cells

and pancreatic stroma [16]. Limiting the description of PDAC to hypoattenuating or isoatte-

nuating does not fully capture the range of heterogeneity in these tumors. Texture analysis is

a well-established image processing technique that is an emerging methodology in oncologic

imaging for quantifying tumor heterogeneity [17]. Studies have shown the potential of tex-

ture analysis for prognostication in a number of malignancies, including lung, breast, and

prostate cancer [18]. Fundamentally, analysis of heterogeneity is based on perfusion changes,

which reflect variations in the tumor microenvironment. In addition to enhancement pat-

terns, texture analysis can reveal differences in cellular density in tumors matched to histo-

logic findings [19] or distinguish benign and malignant tissues [20]. In pancreatic cancer,

texture analysis was recently used to predict malignancy in pancreatic cysts (pre-cursor

lesions to pancreatic cancer) [21] but to our knowledge, ours is the first work correlating tex-

ture analysis with survival in pancreas cancer. Others have related changes in Hounsfield

units from the precontrast, arterial, and portal-venous phases in pancreas protocol scans can

predict outcome [22].

We hypothesize that the imaging phenotypes of PDAC on CT reflect underlying differ-

ences at the histologic or genetic level, which correlate with patient outcome. We investigate

texture to quantify differences among PDAC on pre-treatment portal venous phase CT

to predict 2-year overall survival. The rationale for selecting 2-year survival is that patients

surviving less than 2 years likely have occult metastatic disease and should undergo aggres-

sive systemic therapy prior to surgery. Preliminary analysis of these data for predicting sur-

vival at 5 years was presented at SPIE Medical Imaging [23]. This paper extends the imaging

feature set to include new features and incorporates clinical variables into the prediction

model.
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Materials and methods

We investigate tumor texture as a prognostic factor prior to treatment based on the observa-

tion that PDAC has variable appearance, which may be associated with survival. We chose

2-year survival as the endpoint based on our own published data on the median survival of

patients with pancreatic cancer who undergo resection [24]. Detailed description of the pro-

posed methods is provided in the following section. A schematic of our methods is shown in

Fig 1. Briefly, texture is quantified using many intensity and directional edge-based features

extracted from the tumor region. Fuzzy minimum-redundancy maximum-relevance

(fMRMR) feature selection identified features for incorporation into the naive Bayes classifier.

Classification performance was evaluated using leave-one-image-out cross-validation. All

methods were implemented using MATLAB version R2015a (Natick, MA, USA).

Study design and patients

Patients signed an informed consent that covered review of medical records and studies for

correlated research. The study was approved by the Institutional Review Board (IRB) of

Memorial Sloan Kettering Cancer Center (MSKCC). Patients enrolled in a phase II clinical

trial at our institution on the role of neoadjuvant chemotherapy in resectable PDAC

(NCT00536874) were included in our retrospective analysis [25]; all patients signed IRB-

approved consent forms for participation in this trial. As part of the clinical trial, all patients

were untreated at the time of baseline CT imaging, the most common profile for patients

newly diagnosed with pancreas cancer and thus generalizable to all PDAC patients. This is an

ideal study population for texture analysis because patients were imaged with the same CT

imaging protocol and prior to chemotherapy treatment, thus we control for factors that poten-

tially influence texture features.

A waiver of Health Insurance Portability and Accountability Act authorization and

informed consent was granted through Institutional Review Board approval to retrospectively

analyze these data. Of the original thirty-eight patients, three were excluded from our study

due to insufficient imaging. The remaining thirty-five patients were included in our analysis.

Detailed description of patient selection and treatment characteristics of this cohort is reported

by O’Reilly et al. [25]. Briefly, the selected patients were enrolled in the clinical trial between

July 2007 and December 2011. The trial included resectable patients with age> 18 years and

excluded all patients with borderline resectable or locally advanced pancreas adenocarcinoma.

Neoadjuvant chemotherapy comprised four cycles of gemcitabine dosed at 1000 mg/m2 IV

over 100 minutes and oxaliplatin 80 m/m2 IV over 2 hours, at every 2 weeks. After the comple-

tion of neoadjuvant therapy, eligible patients were resected within 2-6 weeks. All resected

patients subsequently received 5 cycles of adjuvant gemcitabine (1000 mg/m2 IV over 30 min-

utes) for 15 doses.

Fig 1. Schematic of the methods.

https://doi.org/10.1371/journal.pone.0188022.g001
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Imaging protocol

Patients underwent contrast-enhanced CT imaging as part of the clinical trial. The post-con-

trast CT images were acquired following the administration of 150 mL iodinated contrast

(Omnipaque 300, GE Healthcare, New Jersey) at 4.0 mL/sec, on multidetector CT (Lightspeed

16 and VCT, GE Healthcare, Wisconsin). The scan parameters were as follows: pitch/table

speed = 0.984-1.375/39.37-27.50 mm; autoMA 220-380; noise index 12.5-14; rotation time 0.7-

0.8 ms; scan delay 80-85 s. The voxel size was [0.7324, 0.7324, 2.5] mm. For image analysis,

axial slices reconstructed at each 2.5 mm interval were used.

Image segmentation

The tumor region was manually delineated by an experienced radiologist, blinded to clinical

outcome, using Scout Liver (Pathfinder Technologies Inc., Nashville, TN) (Fig 2).

Texture feature extraction

To quantify the tumor texture, 255 well-established first- and second-order intensity and

edge-based features were extracted using gray-level co-occurrence matrices (GLCM) [26],

run-length matrices (RLM) [27], local binary patterns (LBP) [28, 29], fractal dimension (FD)

[30], intensity histogram (IH), and angle co-occurrence matrices (ACM) [31, 32]. A 2-D fea-

ture extraction technique was employed, where features are computed from each slice and

averaged over the slices to provide a single value for the entire tumor.

GLCM encode the spatial distribution of pixels in a neighborhood of an image by comput-

ing the probability of occurrences of each pixel pair located at a specified distance and angle.

To derive rotation invariant features, four matrices were calculated with angles 0˚, 45˚, 90˚,

and 135˚ with empirically selected distance d = 2 pixels and quantized intensity levels N = 16,

averaged to form a single resultant matrix. Statistical features were extracted from the matrix

as follows: 14 Haralick texture features, inertia, cluster shade, cluster prominence, Renyi

entropy, and Tsallis entropy (G1 − G19) [26, 33, 34]. Renyi entropy and Tsallis entropy are

defined as

G18 ¼
1

1 � q
log

2

XN

i¼1

XN

j¼1

½GLCMði; jÞ�q; G19 ¼
1

1 � r

XN

i¼1

XN

j¼1

½GLCMði; jÞ�r;

where q and r are the order of Renyi and Tsallis entropies, empirically selected as 8 and 2,

respectively.

Fig 2. (a) Extracted CT slice after acquisition, (b) magnified view of tumor region with (top) and without

(bottom) the manually drawn boundary, (c) 3-D view of manually segmented pancreas with tumor, (d) 2-D

slices of tumor.

https://doi.org/10.1371/journal.pone.0188022.g002
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Observing the persistent occurrence of long gray-level runs in coarser textures and short

gray-level runs in finer textures, RLM were introduced, which quantify the coarseness of tex-

ture by counting number of consecutive pixels in a specific direction [27]. Similar to GLCM,

RLM were calculated in four directions (0˚, 45˚, 90˚, and 135˚). Eleven features were derived

from each matrix and averaged to obtain rotation invariant coarseness measures (R1 − R11)

[27].

Based on the hypothesis that texture of an image has two components, pattern and strength,

Ojala et al. [28, 29] introduced LBP to characterize the local textural patterns, which assign a

value for each pixel by thresholding its 3 × 3 neighbors with the center pixel and computing

the decimal value corresponding to the generated eight-bit stream. For the LBP-based features,

we used the histograms of uniform LBP (ULBP) and rotation invariant ULBP (RI-ULBP) [29,

35, 36], two modified operators, which omit less often occurring non-uniform patterns and

provide rotation invariant patterns, respectively. The statistical properties of these histograms

as well as histograms of LBP, RI-LBP, and rotated LBP [37], such as standard deviation, skew-

ness, kurtosis, and entropy, were also considered as features. Moreover, the rotation invariant

LBP histogram Fourier features were extracted by applying discrete Fourier transform on

LBP-histogram [38]. A set of 128 LBP features are thus constructed, which contains 59 ULBP

(L1 − L59), 10 RI-ULBP (L60 − L69), 21 statistical (L70 − L90), and 38 frequency (L91 − L128)

descriptors.

Several techniques have been proposed to derive the FD of an image [39, 40], which mea-

sures image self-similarity. In the present study, the segmentation-based fractal texture analysis

(SFTA) was employed to explore the segmented textural patterns [41]. SFTA decomposes the

image into a set of 16 binary images and computes the FD (FD1) from borders of each of the

segmented regions using a box-counting method, which generates 48 features (F11 − F148).

The popular differential box-counting (DBC) algorithm [39], with 7 × 7 neighbors, was also

applied over each pixel of the image to obtain an FD image (FD2). The DBC method was cho-

sen due to its superior performance over the Brownian motion algorithm [39]. The maximum

and average value of mean, standard deviation, and lacunarity extracted from FD images over

all the slices were considered as another set of features (F21 − F26).

Five elemental first-order statistical features, mean, standard deviation, skewness, kurtosis,

and entropy, were computed using the intensity-histogram (I1 − I5).

To characterize the directional edge patterns of the tumor, two ACMs [31, 32, 42] were

computed based on joint occurrences of the texture orientation angles using gradient informa-

tion of the tumor, extracted with a Sobel operator of size 3 × 3. While applying the Sobel opera-

tor to compute the gradient information within the tumor region, we ignored the processing

of boundary pixels to avoid any ambiguity caused by pixels outside the tumor region. The (i,
j)th element of ACM(l,θ) represents the probability of occurrence of the pair of angles (i, j) with

separation of distance l and angle θ. The first ACM (ACM1) is computed using gradient orien-

tation, whereas the second ACM (ACM2) is formed using gradient orientation as well as mag-

nitude. These can be written as

ACM1ðl;yÞði; jÞ ¼
Saði; jÞ

PNy

i¼1

PNy

j¼1

Saði; jÞ
; ACM2ðl;yÞði; jÞ ¼

Smði; jÞ
PNy

i¼1

PNy

j¼1

Smði; jÞ
; ð1Þ

where Sa(i, j) and Sm(i, j) are the number of occurrences and the sum of gradient magnitude

responses, respectively, of all pixel-pairs with gradient angle i and j, separated by (l, θ); Nθ is

the number of quantized angle levels. In this study, l and Nθ were empirically selected as 1 and

Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0188022 December 7, 2017 5 / 15

https://doi.org/10.1371/journal.pone.0188022


8, respectively. The same features as computed for GLCM were extracted from the ACMs. The

features are rotation invariant after averaging over four directions 0˚, 45˚, 90˚, and 135˚.

Derived features are listed in S1 Table. Examples of tumors with rendered texture represen-

tation for two patients with overall survival greater than and less than 2 years are shown in

Fig 3.

Feature selection

Feature selection was used to identify features with sufficient discriminatory power and to

avoid overfitting of the prediction model with 255 imaging features and only 35 patients for

model construction. We used fMRMR feature selection technique due to its simplicity and

Fig 3. Exemplar tumors with rendered texture features displayed by converting data into gray levels

with range [0, 255]. Resultant matrices rendered from GLCM, RLM, ACM1, and ACM2. Histogram used in

the derivation of IH features. LBP and FD values at each pixel. Gradient angle computed with Sobel operator

on each pixel used in ACM1 and ACM2 features. Gradient magnitude computed with Sobel operator on each

pixel used in ACM2 features.

https://doi.org/10.1371/journal.pone.0188022.g003
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comparable performance with other methods including stepwise logistic regression, Fisher

score, and wrapper [43–46]. Important features were selected from only the training set to

avoid the effect of bias. The fMRMR technique is described in Algorithm 1. An incremental

search technique is incorporated with fMRMR where features are selected incrementally,

based on their relevancy as measured by fuzzy mutual information of a feature within the clas-

ses and redundancy as measured by averaging fuzzy mutual information of the feature with

the already selected features using Eq 2. This iterative process creates a total of D sequential

feature sets (S1, S2,. . .,SD) such that (S1� S2� . . .� SD−1� SD), where D is the dimension of

features in descending order of importance. We used forward selection to select the optimal

number of features using classification error from the naive Bayes classifier consistent with

related work [45].

Algorithm 1 fMRMR feature selection
Input: Set of training data with D-dimensional feature vectors F = {f1,
f2,. . .,fD}.
Output: Optimum features set F� ¼ ff r

1
; f r

2
; :::; f r

Og 2 F
begin
1. For m = 1 to D
i. With the incremental fMRMR algorithm select feature using the fol-

lowing condition:

JðfjÞ ¼ max
fj2F� Fr

m� 1

MIðfj; cÞ �
1

m � 1

X

fi2Fr
m� 1

MIðfj; fiÞ

2

4

3

5; ð2Þ

where MI represents fuzzy mutual information between two variables,
c = [0, 1] represents the class vector, and Fr

m� 1
is the set of already

selected features.
ii. This creates a set of features, Fr

m ¼ ff
r

1
; f r

2
; :::; f r

mg � F and � Fr
m� 1

,
ranked according to their importance.
2. Determine optimal size (O) of candidate feature set ðFr

OÞ with leave-
one-image-out technique that provides minimum classification error:

F� ¼ Fr
O ¼ ff

r
1
; f r

2
; :::; f r

Og; where O ¼ arg min
k2½1; D�

fekg;

where ek = classification error with feature set Sk.
end

Classification and evaluation

To evaluate the predictive value of the selected features for 2-year survival, two classifiers were

implemented: a naive Bayes classifier [47] where the conditional probability of features for a

given class is assumed to follow a Gaussian distribution and a support vector machine (SVM)

classifier.

Due to the small size of the dataset, splitting of data strictly into training and testing sets

was not feasible. To minimize data overfitting, cross-validation is an effective strategy of ana-

lyzing the performance [48]. We used leave-one-image-out and three-fold cross-validation,

consistent with the literature [49]. The leave-one-image-out method is the extreme form of

cross-validation, where one sample is used for testing and the remaining observations are used

to train the model. This is repeated until all images are explored as test data. In three-fold

cross-validation, observations are randomly divided into three groups. Each of the groups is

used exactly once as the test set while the others are used for training. To reduce the
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performance variability, three-fold cross-validation was repeated twenty times, each with a dif-

ferent partition, and the results were averaged over all iterations.

Evaluation of the predictive performance of texture features for 2-year survival is described

using receiver operating characteristic (ROC) curve, area under ROC curve (AUC), and classi-

fication accuracy (Ac) with corresponding sensitivity (Sn) and specificity (Sp) obtained by

applying a threshold of 0.5 on classifier outcome, applying equal prior probabilities to both

classes.

Survival analysis

Analysis of clinical variables with respect to overall survival was performed using Statistical

Software for the Social Sciences (SPSS version 22.0, IBM, Armonk, New York, USA). A p-

value of 0.05 or less was considered significant. Univariable overall survival analysis was car-

ried out with Kaplan-Meier statistics (log-rank test) for all binary clinical variables and Cox

proportional hazards model for continuous variables. Univariable analysis of associations in

continuous and binary clinical variables between patient surviving less than 2 years and

patients surviving greater than 2 years were undertaken with Mann Whitney and Pearson’s

chi-squared tests, respectively.

Results

Thirty-five patients were included in the analysis. Patient demographics are summarized in

Table 1. The median overall survival for this cohort was 29 months. ECOG performance status

(p<0.01) and tumor location (p<0.05) were correlated with overall survival but gender, age,

CA 19-9 level, and tumor size were not. No clinical variables were significantly different in

patients surviving less than and greater than 2 years (Table 1), likely due to the small sample

size.

Our analysis indicates that texture features predict 2-year survival in patients with PDAC.

Further, combinations of texture features provide better discriminatory power. We investi-

gated the performance of each type of feature (GLCM, RLM, IH, LBP, FD, ACM1, ACM2) as

well as the combination of all features. Table 2 compares feature selection by univariate anal-

ysis combined with fMRMR against fMRMR alone. Table 3 summarizes the results acquired

with fMRMR feature selection and naive Bayes classification with leave-one-image-out and

Table 1. Correlation of pre-treatment patient factors with survival.

Characteristic All

(n = 35)

Survival < 2 years

(n = 20)

Survival� 2 years

(n = 15)

p-value

Sex, n (%)

Male 20 (57) 9 (26) 11 (31) p = 0.158

Female 15 (43) 11 (31) 4 (11)

Age, median (range), yr 69 (40-87) 67 (40-79) 71 (43-87) p = 0.107

ECOG performance status, n (%)

ECOG 0 13 (37) 10 (29) 3 (9) p = 0.139

ECOG 1 22 (63) 10 (29) 12 (34)

Primary pancreas tumor location, n (%)

Head/neck 29 (83) 15 (43) 14 (40) p = 0.184

Body 2 (6) 1 (3) 1 (3)

Tail 4 (11) 4 (11) 0 (0)

CA 19-9 level, median (range), U/mL 110 (3-3816) 89 (23-1687) 242 (3-3816) p = 0.191

Tumor volume, median (range), mm3 6 (1-18) 4 (1-12) 7 (1-17) p = 0.107

https://doi.org/10.1371/journal.pone.0188022.t001
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three-fold cross-validation. Table 4 summarizes the results acquired with fMRMR feature

selection and SVM classification with leave-one-image-out and three-fold cross-validation.

Among all predictors, ACM2 provides the best performance with fMRMR feature selection

and naive Bayes classification (AUC = 0.90 and Ac = 82.86% for leave-one-image-out step).

ROC curves, obtained for different feature sets with fMRMR feature selection and naive

Bayes classification, are shown in Fig 4. For all models, obtained specificities were higher

than the corresponding sensitivities, suggesting that we can identify patients with poor

prognosis (the patients who should delay surgical resection in favor of aggressive systemic

treatment).

We investigated whether inclusion of clinical variables in our model improves classification

accuracy. Incorporating tumor volume and CA 19-9 level (two variables known prior to treat-

ment, used in prognostic models [11]) resulted in no improvement in survival prediction. We

did not investigate the use of pathologic variables as these are unavailable prior to surgery.

Table 5 summarizes features selected with>0.5 probability, indicating features selected

most often by the model. In general, similar features were selected by leave-one-image-out and

three-fold cross-validation steps.

Table 2. The area under ROC, classification accuracy (as a percentage), sensitivity, and specificity obtained with the proposed method using

leave-one-image-out technique. The maximum AUC and Ac were highlighted with bold face. ‘***’ corresponds no outcome due to no features selected.

Feature Set Univariate+fMRMR

Feature Selection

fMRMR Feature Selection

AUC Ac Sn Sp AUC Ac Sn Sp

GLCM 0.58 62.86 0.47 0.75 0.66 62.86 0.47 0.75

RLM 0.58 65.71 0.40 0.85 0.68 68.57 0.47 0.85

LBP 0.52 45.71 0.40 0.50 0.50 54.29 0.33 0.70

FD1 0.71 71.43 0.60 0.80 0.72 74.29 0.67 0.80

FD2 *** *** *** *** 0.54 54.29 0.33 0.70

IH 0.65 65.71 0.47 0.80 0.69 68.57 0.47 0.85

ACM1 0.77 71.43 0.60 0.80 0.77 68.57 0.60 0.75

ACM2 0.88 80.0 0.67 0.90 0.90 82.86 0.67 0.95

All 0.84 68.57 0.53 0.80 0.83 74.29 0.60 0.85

https://doi.org/10.1371/journal.pone.0188022.t002

Table 3. The area under ROC, classification accuracy (as a percentage), sensitivity, and specificity obtained with fMRMR feature selection and

naive Bayes classification using leave-one-image-out and three-fold cross-validation techniques. The maximum AUC and Ac are highlighted with

bold face.

Feature Set Leave One Image Out Three-fold Cross Validation

AUC Ac Sn Sp AUC Ac Sn Sp

GLCM 0.66 62.86 0.47 0.75 0.58 58.14 0.44 0.69

RLM 0.68 68.57 0.47 0.85 0.60 64.14 0.44 0.80

LBP 0.50 54.29 0.33 0.70 0.53 52.43 0.42 0.60

FD1 0.72 74.29 0.67 0.80 0.69 70.0 0.58 0.79

FD2 0.54 54.29 0.33 0.70 0.57 56.0 0.59 0.54

IH 0.69 68.57 0.47 0.85 0.61 60.71 0.44 0.73

ACM1 0.77 68.57 0.60 0.75 0.69 65.86 0.58 0.72

ACM2 0.90 82.86 0.67 0.95 0.80 75.0 0.68 0.80

All 0.83 74.29 0.60 0.85 0.68 65.43 0.55 0.73

https://doi.org/10.1371/journal.pone.0188022.t003
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Table 4. The area under ROC, classification accuracy (as a percentage), sensitivity, and specificity obtained with fMRMR feature selection and

SVM classification using leave-one-image-out and three-fold cross-validation techniques. The maximum AUC and Ac are highlighted with bold face.

Feature Set Leave One Image Out Three-fold Cross Validation

AUC Ac Sn Sp AUC Ac Sn Sp

GLCM 0.54 62.86 0.27 0.90 0.57 57.57 0.36 0.74

RLM 0.66 60.00 0.20 0.85 0.62 61.71 0.33 0.84

LBP 0.55 57.14 0.40 0.70 0.51 52.0 0.38 0.62

FD1 0.64 65.71 0.47 0.80 0.65 63.14 0.42 0.79

FD2 0.58 57.14 0.40 0.70 0.61 62.14 0.39 0.80

IH 0.51 60.00 0.27 0.85 0.58 60.86 0.36 0.79

ACM1 0.75 68.57 0.60 0.75 0.79 70.57 0.55 0.83

ACM2 0.78 65.71 0.47 0.80 0.81 72.29 0.59 0.82

All 0.77 77.14 0.73 0.80 0.67 62.29 0.46 0.75

https://doi.org/10.1371/journal.pone.0188022.t004

Fig 4. ROC curves obtained with different feature sets extracted from the tumor region using (a)

leave-one-image-out and (b) three-fold cross-validation techniques.

https://doi.org/10.1371/journal.pone.0188022.g004

Table 5. List of features selected with >0.5 probability by the model.

Feature

Set

Selected Features

Leave-one-image-out Three-fold cross-validation

GLCM G6, G8, G16, G17 G6, G16,G17

RLM R4, R8, R10 R2, R4, R10

LBP L26, L28, L29, L33, L44, L52,L119 L21, L26, L33, L36, L52,L119

FD1 F13, F14, F16, F17, F117, F123,F127, F135 F11, F13,F14,F16,F123, F127

FD2 F22, F24, F26 F21, F22, F24,F25

IH I1, I2, I3 I1, I2, I3

ACM1 A6, A10 A6, A10

ACM2 M2, M4, M6, M10, M11, M15 M2, M4, M6,M7,M8 M10, M11,

M15

All R10, L44, L119, F13, F16,F127, F135, F22, M2, M4,M6, M10,M11,

M15

F22, M2, M4,M6, M10,M11, M15

https://doi.org/10.1371/journal.pone.0188022.t005
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Discussion

We demonstrate 2-year prediction of survival of pancreas cancer patients using texture image

features extracted from pre-treatment CT scans. Our results indicate that there is important

prognostic information to be leveraged in the images of pancreatic tumors. This is a clinically

important problem because we are currently unable to distinguish patients with occult meta-

static disease who would benefit from aggressive chemotherapy from those who could be

immediately resected.

ACM1 and ACM2 achieved the best performance among all features and were selected

most often. These features represent directional change in intensity (i.e., directional edge pat-

terns) of an image. Fig 3 demonstrates differences in tumor and texture appearance for

patients surviving >2 years and<2 years. ACM1 and ACM2 differ in appearance in the two

study groups. Radiographically, differences in ACM may reflect areas of necrosis within the

tumor with decreased enhancement on CT. These would have developed before the adminis-

tration of neoadjuvant therapy, due to underlying histologic or genetic alterations. Within all

ACM2 features that were extracted from the orientation image, six features, contrast (M2), var-

iance (M4), sum average (M6), difference variance (M10), difference entropy (M11), and inertia

(M15) of orientation patterns, were selected most frequently, whereas energy, correlation coef-

ficient, inverse difference, Shannon entropy, information-theoretic measures of correlation,

maximal correlation coefficient, Renyi entropy, and Tsallis entropy were never selected. Inten-

sity-based (GLCM, RLM, LBP, FD1, FD2, and IH) features were not as effective as the edge-

based features (ACM1 and ACM2): FD1 achieved best AUC of 0.72 and Ac of 74.29% with

leave-one-image-out technique and AUC of 0.69 and Ac of 70.0% with three-fold cross-valida-

tion, among all the intensity descriptors. The combination of all features deteriorated perfor-

mance (Table 3), likely due to overfitting (fitting 255 features to 35 patients).

The higher specificity obtained by our methods indicates more reliable prediction for

patients alive more than 2 years, suggesting that texture analysis of PDAC may represent

underlying biological differences apparent clinically. The actual biological differences between

resectable PDAC that explain the variable patient outcomes is not well elucidated; however,

newly identified genetic drivers and tumor-stromal interactions may provide a rationale for

the observed tumoral texture differences [50, 51]. A current limitation of our present study is

the necessity of manually delineating tumors from CT images. A radiologist was necessary for

the tumor segmentation. The radiologist was blinded to clinical outcome, eliminating the

potential for introducing bias into the segmentation of tumor volumes. Patients received the

same imaging protocol as part of the clinical trial: the impact of imaging protocol variation on

texture features is an open problem under investigation by many groups. Moreover, the study

suffers from the small dataset and lack of external data for validation. We plan to address these

limitations in future work by relating our texture features with genomics, expanding our

patient cohort, and studying with multiple readers to address the impact of tumor volume vari-

ability on extracted features and classification results.

Importantly, we demonstrate that texture information extracted from pre-treatment CT

images obtained under controlled clinical trial conditions has the potential to predict survival

of PDAC patients. The comparative study of texture features with clinical variables shows the

superiority of texture information over previously available measures. This result has signifi-

cant clinical implications because there are no known pre-treatment prediction tools for

PDAC. Prediction prior to treatment would enable optimal selection of patients for surgery or

neoadjuvant chemotherapy and provides further insight into this disease. CT is the standard

imaging modality used in the clinical staging of PDAC [52] so our proposed techniques may

provide non-invasive disease surveillance in any medical center.
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Conclusion

The present study demonstrates that texture features extracted from pre-treatment CT can

predict 2-year survival, a critical treatment time point in the clinical course of patients with

PDAC. Across all features, directional edge-based ACM2 provides best performance with an

AUC of 0.90 and 0.80 and Ac of 82.86% and 75.0% with the leave-one-image out and three-

fold cross-validation techniques, respectively. The observed efficacy of edge-based features

establishes an association between directional-edge patterns and patient survival. Prior to the

use of these features in a prospective clinical trial, validation in a larger independent cohort is

required. Work is in progress to explore associations of texture with genetic sequencing, histol-

ogy, and stromal content in an independent data set.
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