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Abstract

In this study, the association estimators, which have significant influences on the gene

network inference methods and used for determining the molecular interactions, were

examined within the co-expression network inference concept. By using the proteomic

data from five different cancer types, the hub genes/proteins within the disease-associated

gene-gene/protein-protein interaction sub networks were identified. Proteomic data from

various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and

mutual information (MI) based nine association estimators that are commonly used in the lit-

erature, were compared in this study. As the gold standard to measure the association esti-

mators’ performance, a multi-layer data integration platform on gene-disease associations

(DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher’s exact

test was used to evaluate the performance of the association estimators by comparing the

created co-expression networks with the disease-associated pathways. It was observed

that the MI based estimators provided more successful results than the Pearson and Spear-

man correlation approaches, which are used in the estimation of biological networks in the

weighted correlation network analysis (WGCNA) package. In correlation-based methods,

the best average success rate for five cancer types was 60%, while in MI-based methods

the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schur-

mann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes

and the inferred sub networks are presented for the consideration of researchers and

experimentalists.

Introduction

In bioinformatics, various approaches are leveraged to understand the molecular perturbations

observed on cells or tissues caused by a disease, such as cancer, autism, diabetes, Alzheimer’s.

One of these approaches is inferring the gene networks, which can illustrate the gene-gene and

protein-protein interactions from an expression dataset to understand the cell physiology and
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disease pathogenesis and to estimate the genome-wide working mechanism of proteins and

genes [1,2]. In this study, effects of the association estimators on the network inference meth-

ods, which are frequently utilized in bioinformatics studies to detect molecular structures

related to a given disease, were evaluated via the proteomic data of five different cancer types

generated by TCPA [3]. The five cancer types used in this study are among the most common

types according to the recently published results by the American Cancer Society [4].

In previous studies, both the synthetic and real gene expression data sets obtained from the

microarray assays are mainly used to analyze the association estimators’ effect on the gene net-

work inference techniques. Olsen et al. [5] evaluated the performance of Pearson, Spearman,

Empirical, Miller-Madow (MM), and Shrink association estimators on three network infer-

ence algorithms (Algorithm for the Reconstruction of Accurate Cellular Networks–ARACNE

[6], Context-Likelihood of Relatedness–CLR [7], Network inference with maximum rele-

vance/minimum redundancy feature selection–MRNET [8]) by using synthetic and real

microarray data sets. In addition, the Empirical, MM and Shrink estimators were used to

examine the equal width (EW) and equal frequency (EF) discretization methods’ effects on

the performance of the association estimators [5]. As a result, MRNET with the Spearman

and CLR with the Pearson yielded more successful results on the synthetic dataset, and also

significant results were obtained on the real dataset, as well [5]. Simoes and Streib [9] used the

MM, ML, Shrink and SG association estimators with three different discretization methods

(EW, EF, global equal width—GEW) together with The Conservative Causal Core NETwork

(C3NET) [10] network inference algorithm by using the synthetic gene microarray data sets to

examine the effects of both the estimators and the discretization methods on the network

inference algorithms. They found that the MM estimator outperformed the other estimators

when used with the EW discretization method. Daub et al. [11], investigated the performances

of the B-spline (BS) and Kernel Density Estimator (KDE) methods on large-scale gene expres-

sion data sets. As a result, they found that the performance of the BS estimator varied for dif-

ferent spline values. The order of success is as follows BS (spline order = 3) > KDE > BS

(spline order = 1). Kurt et al. [12], used two synthetic and two biological data sets to evaluate

14 association estimators with 3 different network inference algorithms. Also they observed

that the influences of the Copula Transform (CT) pre-processing operation on the perfor-

mance of the association estimators. B-spline, Pearson-based Gaussian and Spearman-based

Gaussian estimators are observed as the best performing ones among all. Also CT operation

increased inference performances of the estimators for synthetic datasets.

Network inference methods have been used in multiple studies on different cancer types.

Şenbabaoğlu et al. [13] analyzed the protein expression data, which was obtained from TCPA,

from 3467 patients with 11 different types of cancer by using 13 different network inference

methods. The most successful network inference method was varying based on the cancer

type. Madhamshettiwar et al. [14] searched the biological mechanisms related to the ovarian

cancer using 7 different network inference methods.

WGCNA [15] is one of the most commonly used gene network inference and clustering

approaches and is used to find highly correlated gene/protein modules (cluster, sub-network)

related to a given disease and hub genes/proteins with high connectivity in these modules.

WGCNA has been used to analyze gene/protein expression data from brain cancer [16], yeast

cell cycle [17], mouse genetics [18,19], diabetes [20] and many other diseases and complex

traits.

It has been reported that the correlation-based methods are not sufficient to estimate the

non-linear relationships between the cell molecules such as the complex molecular interactions

related to a cancer type [21]. Many algorithms have been developed to solve this problem by

using mutual information based methods [6–8,10].

Influences of the association estimators on the coexpression network inference
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We proposed a system integrating the MI-based association estimators with the co-expres-

sion network clustering technique to identify the sub networks associated with the diseases.

Leveraging the MI-based estimators in WGCNA instead of the correlation-based ones, which

are the default and only options presented in the WGCNA, can capture both linear and non-

linear interactions between the protein-protein pairs and improves the estimation of disease-

associated molecular mechanisms and interactions, while the correlation-based ones can only

capture the disease mechanisms based on the linear interactions. To estimate the disease asso-

ciated sub networks and mechanisms, we leveraged the MI-based estimators within the co-
expression network methodology different than the previous studies [13,14] that were interested

in global networks and not focusing on the individual sub networks or co-expression modules.

Also different discretization methods were used to estimate the association estimators that are

widely used in gene network inference, and an evaluation framework was developed to analyze

the as-obtained results unlike [13,14]. Besides, we identified the hub genes of the sub networks

to reveal the potential key regulators of these sub networks, which were not searched in [6–8].

We observed that according to whole cancer datasets used in our study Shrink, SG, BS, MM

and Shrink methods identified the most disease-relevant sub networks and genes with average

precision scores of 0.85, 0.84, 0.59, 0.76 and 0.76 (for BRCA, GBM, LUSC, KIRC, and SKCM

datasets), respectively. Moreover, unlike previous studies [5], [9], [11,12], in our study, five

real cancer proteomic data sets that are obtained from TCPA were examined by biological net-

work inference method along with nine different association estimators to compare the associ-

ation estimators’ performance.

Materials and methods

Materials

Studies in bioinformatics field have gained a great momentum along with the developments in

high-throughput techniques. One of these techniques is the reverse phase protein array

(RPPA) [22] technology, which is a high-throughput antibody-based technique and it supplies

protein expression data for proteomics research. Sheehan et al. [23] performed an analysis on

ovarian cancer data obtained by RPPA. TCPA has obtained protein expression data from

numerous cell line and tumor samples using RPPA technique. The detailed information about

the process of preparing the data set before the analysis is given in [3].

The RPPA data used in this study was downloaded from Download section (level 4) in

TCPA’s web site [24]. It is comprised of proteomic expression data of 2230 cancer patients in 5

cancer types. There are more than 218 antibodies for each patient. To obtain the individual

gene-protein matching (S1 Table) of the data, a process was performed after taking the relevant

information from My Protein section of TCPA’s [24] web site. The file containing the expres-

sion data of the selected antibodies (proteins) for each cancer type is given (S2–S6 Tables). The

type of the cancers, their sample sizes, number of proteins (antibodies), number of selected

antibodies and their abbreviations are listed in Table 1.

Table 1. The type of cancers and their sample sizes (Level 4).

The cancer tumor type Cancer abbreviation Number of samples Number of proteins Number of selected proteins

1 Breast invasive carcinoma BRCA 901 224 173

2 Glioblastoma multiforme GBM 205 223 173

3 Lung squamous cell carcinoma LUSC 325 237 170

4 Clear cell kidney carcinoma KIRC 445 233 169

5 Skin Cutaneous Melanoma SKCM 354 223 173

https://doi.org/10.1371/journal.pone.0188016.t001
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Furthermore, to evaluate the performances of the association estimators, DisGeNET and

MSigDB were used as gold standards. DisGeNET curates the gene-disease and genetic variant-

disease associations that were reported in previous studies and stored in multiple publically

available data sources such as UNIPROT database, the Comparative Toxicogenomics Data-

base, GWAS catalog, and also it contains 429,036 associations between 17,381 genes and

15,093 diseases [25,26]. In MSigDB, there are 17,779 gene sets in total, from 8 different collec-

tions, namely hallmark gene sets, positional gene sets, curated gene sets, motif gene sets,

computational gene sets, Gene Ontology (GO) gene sets, oncogenic gene sets, and immuno-

logic gene sets [27].

Based on each cancer type, the search terms used to obtain the data, the Unified Medical

Language System—Concept Unique Identifiers (UMLS-CUIs), number of the genes obtained

from DisGeNET with a number of supporting publications (PMIDs)� 2 and the overlapped

number of the genes between the selected cancer dataset and DisGeNET are given in Table 2.

The gene level analysis was performed by using the relevant cancer-related DisGeNET data.

By using the selected disease genes from DisGeNET for each cancer type, the top associated

100 biological pathways were identified from the BioCarta, KEGG, and Reactome databases

with a false discovery rate (FDR)<0.05 by using MSigDB online tool. FDR score is the adjusted

version of the raw p-value for the multiple hypothesis testing. Here, Bonferroni correction was

used to correct the raw p-values [28], in which the p-values are multiplied by the number of

hypotheses that were tested. The pathway level analysis was performed by using the top rele-

vant biological pathways of the disease genes obtained from the DisGeNET.

Methods

In this study, the association scores between the proteins were calculated by using Spearman

[5], Pearson [5], Kendall Tau (Kendall) [29] correlation methods. BS [11], Empirical [30],

KDE [31], MM [32], Shrink [33], and SG [34] MI-based association estimators were also used

in our analyses. Moreover, the influence of the discretization methods (EW, EF, GEW) on the

Empirical, MM, Shrink, and SG estimators’ inference performances was also examined. Details

of the association estimator and the discretization methods used in this study can be found in

[5,12,33,35]. All these methods were used as an alternative to the correlation-based adjacency
function of WGCNA package that is used to calculate the Pearson and Spearman correlation

scores between the protein pairs. We compared the MI-based and correlation-based methods

within the co-expression network concept and evaluated their disease relevance in both path-

way and gene-level.

The WGCNA steps were performed as follows;

• Firstly, the association matrix (adjacency) of the proteins in the data set is calculated using

the protein expression data.

Table 2. Information of data from DisGeNET.

Cancer

Type

Search terms on DisGeNET UMLS-CUIs DisGeNET gene

number

(PMIDs> = 2)

Overlapped Gene number between TCPA Dataset and

DisGeNET

1 BRCA Breast Cancer C0346153 52 15

2 GBM Glioblastoma Multiforme C1621958 147 28

3 LUSC Squamous cell carcinoma of

lung

C0149782 41 7

4 KIRC Kidney Diseases C0022658 264 14

5 SKCM Cutaneous Melanoma C0151779 104 25

UMLS-CUIs is abbreviation of Unified Medical Language System—Concept Unique Identifiers and PMIDs is the number of supporting publications.

https://doi.org/10.1371/journal.pone.0188016.t002
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• A network-related similarity matrix is obtained by using a topological overlap measure

(TOM) [36], which has been successfully applied in different studies [37] in the literature, to

identify the heavily interrelated protein clusters (TOMsimilarity measure).

• The obtained similarity matrix is subtracted from one (1-TOM) to identify a dissimilarity

measure. From the dissimilarity matrix, a clustering tree is formed to identify the cluster of

related proteins via hierarchical clustering (hclust).

• To find highly correlated gene/protein co-expression modules in the generated clustering

tree of the gene networks, we used the dynamic branch cut methods [38] (cutreeDynamic)
with different parameters (see S7 Table). Finally, gene/protein with the highest connectivity

in each module (hub gene) is determined. (chooseOneHubInEachModule ).

In this study, we used one-tailed version of the Fisher’s exact test (FET) [39], which is iden-

tical to the hypergeometric test to calculate the P-values representing the association of the co-

expression modules with the given cancer type. A hypergeometric test is adopted from [40],

whose distribution (used to calculate P-value) is given in (1) where n and k as integer, ð
n
kÞ is the

binomial coefficient, I is the number of inferred genes/proteins of network inference method,

V is the number of genes/proteins in the DisGeNET database to use for verification, O is the

number of overlap between I and V. AGP (all genes/proteins) is the number of all known

genes/proteins for human genome.

P Oð Þ ¼
I
O

� �
AGP� I
V� O

� �

AGP
V

� � ¼
I! ðAGP � IÞ!V! ðAGP � VÞ!

O! ðI � OÞ! ðV � OÞ! ðAGP � I � V þ OÞ!AGP!
ð1Þ

If the calculated P-value is less than 0.05, the overlapped proteins between the inferred

modules and disease-related DisGeNET genes and their relevant pathways, are considered less

likely to be random and these modules are more likely to be disease-associated and biologically

interesting. Fig 1 and Table 3 are illustrated to provide a better understanding for the use of

FET for the overall assessment of the association estimators’ performances. As given in Fig 1,

based on the given two clusters (e.g., inferred and validated genes/proteins), it was determined

whether the overlap is statistically significant according to all genes/proteins (AGP) in the liter-

ature. Recent studies have revealed that the number of genes in the human genome is around

19,000 [41] and we used this value as AGP in our study. Table 3 summarizes the regions

shown in Fig 1 and is used as an input in the FET.

Fig 1. Overlap analysis with FET. Here, I is the count of inferred genes/proteins of network inference

method (e.g., WGCNA). V is the count of genes/proteins in the literature database (e.g., DisGeNET, MSigDB)

to search for verification. O is the number of overlap between I and V. AGP is the count of all genes/proteins in

the literature.

https://doi.org/10.1371/journal.pone.0188016.g001
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Ultimate assessment metric used in the evaluation process is the precision score:

p ¼
TP

TP þ FP
ð2Þ

where p is precision, TP is number of the true positives, FP is number of the false positives.

TPs denote the modules which satisfying the required conditions in the pathway-level or gene-

level analysis (P-value<0.05). FPs denote the number of modules which are not satisfying the

required conditions in the pathway-level or gene-level analyses. The required conditions are

described in Proposed Framework section.

Association estimators used in the reconstruction process of the co-expression net-

works. For the analyses, the build.mim function from the minet [35], the obtain.mim func-

tion from the DepEst [42] and the chooseOneHubInEachModule, adjacency, TOMsimilarity,
cutreeDynamic and hclust functions from the WGCNA packages were used. The selected asso-

ciation estimators are indicated by the specific parameter values provided to the build.mim
and obtain.mim functions.

Proposed framework. In this section, the proposed framework to analyze the perfor-

mances of the association estimators is illustrated in Fig 2.

1. In the first step the proteomic data is downloaded from TCPA and prepared for the analysis

(seeMaterials section).

2. In the second step, co-expression networks and modules were created using WGCNA as

described inMethods section. The interaction score matrix to be used in the subsequent

steps was calculated by using the adjacency function and other association estimators pro-

vided by DepEst [42] and minet [35] packages. In addition, parameters that generate at

least 7 modules (sub-networks) for each association estimator were found by using certain

parameters (see S7 Table). 7, 8, and 9 modules are generated from the co-expression net-

works for each association estimator from each dataset. The reason why the module num-

bers are selected as 7-8-9 is shown in (S1 and S2 Figs) and details are explained in S1 Text.

The modules created with the parameters listed in S8 Table were used in the comparison of

the association estimators.

3. In the 3rd step, the genes that were confirmed to be related with the given cancer type in at

least two different studies (PMIDs� 2) were obtained for each cancer type by using DisGe-

NET web page [43].

4. In this step, by using the MSigDB web page [44], we identified the top 100 biological path-

ways from the BioCarta, KEGG and Reactome databases, that are significantly associated

with the disease-related gene list with a FDR q-value <0.05.

Table 3. FET parameters in gene level.

Inferred Genes/Proteins

(in the literature)

Inferred Genes/Proteins

(not in the literature)

Genes/Proteins (Inferred) O I–O

Genes/Proteins (Not inferred) V—O AGP–I–V + O

I is the count of inferred genes/proteins of network inference method. V is the count of genes/proteins in the

literature database to search for verification. O is the number of overlap between I and V. AGP is the count of

all genes/proteins in the literature.

https://doi.org/10.1371/journal.pone.0188016.t003

Influences of the association estimators on the coexpression network inference
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5. Pathway-level analysis by FET: In this step, overlapping ratios and corresponding P-values

of the association between the pathways obtained at the 4th step and the modules identified

in step 2 were found by using FET. To correct the raw P-values for the multiple hypothesis

testing, the FDR q-value was calculated by multiplying the P-value by 100 since we selected

the top 100 pathways associated with the DisGeNET genes in the previous step. To evaluate

our findings in the pathway level, WGCNA modules containing at least 5 shared genes with

at least two of the disease-associated pathways found in Step 4 with an FDR q-value <0.05

were considered as a successful hit (TP) in terms of disease relevance. The reason why at

least 2 pathways and 5 genes are selected as cut-off is shown in S3 Fig and details are

explained in S2 Text. Number of the modules satisfying these conditions are divided by the

total number of the modules (TP+FP) to obtain the pathway level performance scores (preci-
sion) of the association estimators. The precision ratios at the pathway level are given in

Table 4 and Fig 3 by module numbers for each association estimator.

6. Gene-level analysis by FET: To evaluate our findings in gene level, the overlapping

ratios between the genes in modules passing the overlap analysis test at the pathway level

overlap analysis and the genes obtained from DisGeNET were calculated via FET, and the

resulting modules which have p-values lower than 0.05 were considered as significantly

associated (TP) with the corresponding cancer type. By dividing the number of modules

that satisfy these conditions by the total number of modules (TP+FP), we obtained the gene
level performance scores (precision) of the association estimators estimator (see S9 Table for

details of the gene-level analysis scores by FET). The precision scores at the gene level are

given in Table 5 by module numbers for each association estimator, and the graphical

Fig 2. Proposed framework.

https://doi.org/10.1371/journal.pone.0188016.g002
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representation of the hub genes of the significantly disease-relevant modules is given in Fig

4. In this step, the hub genes within the disease-associated sub-networks, which are identi-

fied by the most successful estimator of step 5, and the neighboring genes that are located at

the center of these hub genes are illustrated in Figs 5–9 for BRCA, GBM, KIRC, LUSC,

SKCM cancer type, respectively. The hub genes and the genes that have been experimen-

tally confirmed to be associated with the disease and reported in DisGeNET within the hub

gene neighborhood are illustrated with colored and larger nodes in Figs 5–9. The genes that

are not colored but have a red frame in Figs 5–9 have a PMID value of one. There is no

entry in DisGeNET for the grey colored nodes. Also, the top three pathways, to which each

module is related, are given above or below the relevant module to annotate each module.

Table 4. Pathway level precision ratios by module numbers for each cancer type.

BRCA GBM KIRC LUSC SKCM

7 8 9 Avg 7 8 9 Avg 7 8 9 Avg 7 8 9 Avg 7 8 9 Avg

Adjacency 0.86 0.63 0.33 0.61 0.57 0.63 0.56 0.58 0.43 0.63 0.33 0.46 0.71 0.75 0.56 0.67 0.86 0.63 0.56 0.68

Kendall 0.57 0.50 0.44 0.51 0.71 0.63 0.67 0.67 0.57 0.38 0.33 0.43 0.57 0.50 0.44 0.51 0.71 1.00 0.56 0.757

Pearson 0.71 0.50 0.56 0.59 0.43 0.75 0.44 0.54 0.57 0.38 0.33 0.43 0.57 0.75 0.44 0.59 0.71 0.75 0.67 0.71

Spearman 0.57 0.50 0.67 0.58 0.57 0.38 0.44 0.46 0.71 0.25 0.33 0.43 0.57 0.38 0.44 0.46 0.71 0.75 0.67 0.71

BS 0.71 0.63 0.44 0.59 0.57 0.63 0.67 0.62 0.43 0.63 0.33 0.46 0.86 0.75 0.67 0.76 0.86 0.63 0.56 0.68

Empirical 0.71 0.75 0.56 0.67 0.71 0.50 0.56 0.59 0.57 0.38 0.22 0.39 0.86 0.75 0.44 0.68 0.86 0.63 0.56 0.68

KDE 0.43 0.50 0.33 0.42 0.86 0.63 0.44 0.64 0.43 0.25 0.33 0.34 0.71 0.63 0.56 0.63 0.86 0.63 0.56 0.68

MM 0.86 0.38 0.33 0.52 0.86 0.75 0.56 0.72 0.71 0.38 0.33 0.47 0.71 0.75 0.56 0.67 0.86 0.75 0.67 0.758

SG 0.71 0.63 0.56 0.63 0.86 0.88 0.78 0.84 0.57 0.50 0.22 0.43 0.86 0.63 0.44 0.64 0.71 0.63 0.67 0.67

Shrink 1.00 0.88 0.67 0.85 0.71 0.63 0.56 0.63 0.71 0.63 0.44 0.59 0.71 0.88 0.67 0.75 1.00 0.63 0.56 0.73

https://doi.org/10.1371/journal.pone.0188016.t004

Fig 3. Pathway level analysis results by module number for each cancer type. Precision scores of A)

BRCA, B) GBM, C) KIRC, D) LUSC, and E) SKCM datasets. The abbreviations: BS, B-spline; KDE, Kernel

Density Estimator; MM, Miller-Madow; SG, Schurmann-Grassberger; Shrink, James-Stein Shrinkage. Avg is

the average performance score of the association estimators according to the constructed module sizes.

https://doi.org/10.1371/journal.pone.0188016.g003
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Results

As shown in Table 4 and Fig 3, the rankings of the association estimators identified by the

average performance score (Avg) are varying according to the constructed module sizes and

the cancer type. In the pathway-level analysis, best performing methods based on the cancer

type are as follows: Shrink for BRCA, SG for GBM, Shrink for KIRC, BS for LUSC, and MM

for SKCM. In addition, although the most successful predictor varies for each data set, the MI

based predictors outperformed other methods in BRCA, GBM, KIRC, LUSC datasets, however

only in SKCM data set, MM estimator and Kendall correlation method were found to be suc-

cessful with very close average precision scores according to the pathway level analysis.

According to the average precision scores for BRCA dataset that are given in Table 4, the

ranking of the estimators is as follows: Shrink, Empirical, SG, Adjacency, BS, Pearson,

Table 5. Gene level precision ratios by module numbers for each cancer type (P-value <0.05).

BRCA GBM KIRC LUSC SKCM

7 8 9 Avg 7 8 9 Avg 7 8 9 Avg 7 8 9 Avg 7 8 9 Avg

Adjacency 0.86 0.63 0.33 0.61 0.57 0.63 0.56 0.58 0.29 0.50 0.33 0.37 0.57 0.75 0.56 0.63 0.86 0.63 0.56 0.68

Kendall 0.57 0.50 0.44 0.51 0.71 0.63 0.67 0.67 0.43 0.25 0.33 0.34 0.57 0.38 0.33 0.43 0.71 1.00 0.56 0.757

Pearson 0.71 0.50 0.56 0.59 0.43 0.75 0.44 0.54 0.43 0.38 0.33 0.38 0.57 0.63 0.44 0.55 0.71 0.75 0.67 0.71

Spearman 0.43 0.38 0.56 0.45 0.57 0.38 0.44 0.46 0.57 0.25 0.11 0.31 0.57 0.25 0.33 0.38 0.57 0.63 0.67 0.62

BS 0.57 0.50 0.44 0.51 0.57 0.63 0.67 0.62 0.43 0.63 0.33 0.46 0.57 0.75 0.67 0.66 0.86 0.63 0.56 0.68

Empirical 0.71 0.75 0.56 0.67 0.71 0.50 0.56 0.59 0.57 0.38 0.11 0.35 0.71 0.63 0.44 0.59 0.86 0.63 0.56 0.68

KDE 0.43 0.50 0.33 0.42 0.86 0.50 0.44 0.60 0.43 0.25 0.33 0.34 0.57 0.38 0.44 0.46 0.86 0.63 0.56 0.68

MM 0.86 0.38 0.33 0.52 0.86 0.75 0.56 0.72 0.71 0.25 0.33 0.43 0.43 0.75 0.44 0.54 0.86 0.75 0.67 0.758

SG 0.71 0.63 0.56 0.63 0.86 0.88 0.67 0.80 0.43 0.25 0.22 0.30 0.71 0.63 0.44 0.59 0.71 0.63 0.67 0.67

Shrink 1.00 0.88 0.67 0.85 0.71 0.63 0.56 0.63 0.57 0.50 0.44 0.51 0.57 0.63 0.67 0.62 1.00 0.63 0.56 0.73

https://doi.org/10.1371/journal.pone.0188016.t005

Fig 4. Gene level analysis results by module number for each cancer type (P-value� 0.05). Precision

scores of A) BRCA, B) GBM, C) KIRC, D) LUSC, and E) SKCM datasets. The abbreviations: BS, B-spline;

KDE, Kernel Density Estimator; MM, Miller-Madow; SG, Schurmann-Grassberger; Shrink, James-Stein

Shrinkage. Avg is the average performance score of the association estimators according to the constructed

module sizes.

https://doi.org/10.1371/journal.pone.0188016.g004
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Spearman, MM, Kendall and KDE. Here, Shrink method is the most accurate method in terms

of identifying the disease-associated sub networks with a precision score of 0.85. Empirical,

SG, Adjacency, BS, Pearson, Spearman methods follow this one with lower scores of 0.67, 0.63,

0.61, 0.59, 0.59, 0.58, respectively. Additionally, MM and Kendall methods gave comparatively

lower scores of 0.52, 0.51, while KDE method gets the lowest score of 0.42.

Based on the average precision scores for GBM dataset (Table 4), the ranking of the success

rate of the estimators is as follows: SG, MM, Kendall, KDE, Shrink, BS, Empirical, Adjacency,

Pearson and Spearman. Here, SG method is the most accurate one in terms of identifying dis-

ease-relevant sub networks with a precision score of 0.84. MM, Kendall, KDE, Shrink, BS meth-

ods follow this one with lower scores of 0.72, 0.67, 0.64, 0.63, 0.62, respectively. Additionally,

Fig 5. The hub genes and neighbors in the disease-related sub-networks obtained by the most

successful Shrink method (in terms of precision score) on BRCA dataset. MSH6 and GATA3 are

validated in one study according to DisGeNET. PDK1 and SMAD4 genes (proteins) were also shown to be

associated with the BRCA in multiple studies though they were not reported in the DisGeNET. The genes

registered in DisGeNET and experimentally confirmed for the diseases, are shown with colored and larger

nodes. Among those, genes that are not colored but have a red frame have a PMID value of one. There is no

entry in DisGeNET for the grey colored nodes.

https://doi.org/10.1371/journal.pone.0188016.g005

Fig 6. The hub genes and neighbors in the disease-related sub-networks obtained by the most

successful SG method (in terms of precision score) on GBM dataset. IGF1R is validated in one study

according to DisGeNET. In recent study, RAD50 gene (protein) was also shown to be associated with the

GBM, though it was not reported in the DisGeNET. The genes registered in DisGeNET and experimentally

confirmed for the diseases, are shown with colored and larger nodes. Among those, genes that are not

colored but have a red frame have a PMID value of one. There is no entry in DisGeNET for the grey colored

nodes.

https://doi.org/10.1371/journal.pone.0188016.g006
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Empirical, Adjacency and Pearson methods concluded with comparatively lower scores of 0.59,

0.58, 0.54, while Spearman method gets the lowest score of 0.46.

According to the average precision scores for KIRC dataset that are given in Table 4, the

ranking of the estimators is as follows: Shrink, MM, Adjacency, BS, Spearman, SG, Kendall,

Pearson, Empirical and KDE. Here, Shrink method is identified as the most accurate one in

terms of identifying disease associated sub networks with a precision score of 0.59. MM,

Fig 7. The hub genes and neighbors in the disease-related sub-networks obtained by the most

successful Shrink method (in terms of precision score) on KIRC dataset. The genes registered in

DisGeNET and experimentally confirmed for the diseases, are shown with colored and larger nodes. Among

those, genes that are not colored but have a red frame have a PMID value of one. There is no entry in

DisGeNET for the grey colored nodes.

https://doi.org/10.1371/journal.pone.0188016.g007

Fig 8. The hub genes and neighbors in the disease-related sub-networks obtained by the most

successful BS method (in terms of precision score) on LUSC dataset. EIF4G1 is validated in multiple

studies according to DisGeNET. In recent studies, FOXM1 and CDKN1A (P21) genes (proteins) were also

shown to be associated with the LUSC, though they were not reported in the DisGeNET. The genes

registered in DisGeNET and experimentally confirmed for the diseases, are shown with colored and larger

nodes. Among those, genes that are not colored but have a red frame have a PMID value of one. There is no

entry in DisGeNET for the grey colored nodes.

https://doi.org/10.1371/journal.pone.0188016.g008
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Adjacency, BS, Spearman, SG, Kendall, Pearson methods follow this one with lower scores of

0.47, 0.46, 0.46, 0.43, 0.43, 0.43, 0.43, respectively. Additionally, Empirical method gets com-

paratively a lower score of 0.39, while KDE method has the lowest score of 0.34.

Based on the average precision scores for LUSC dataset that can be seen in Table 4, the

ranking of the estimators is as follows: BS, Shrink, Empirical, Adjacency, MM, SG, KDE, Pear-

son, Kendall and Spearman. BS and Shrink methods could identify the most disease-relevant

sub networks with slightly different precision values of 0.76 and 0.75, respectively. Empirical,

Adjacency, MM, SG, KDE methods followed them with lower precision scores of 0.68, 0.67,

0.67, 0.64, 0.63, respectively. Additionally, Pearson and Kendall methods obtained compara-

tively lower scores of 0.59, 0.51, while Spearman method gave the lowest score of 0.46.

According to the average precision scores for SKCM dataset as given in Table 4, the accu-

racy ranking of the estimators is as follows: MM, Kendall, Shrink, Pearson, Spearman, Adja-

cency, BS, Empirical, KDE and SG. MM and Kendall methods could identify the most disease-

relevant sub networks and genes with slightly different values of 0.758 and 0.757, respectively.

Shrink, Pearson, Spearman, Adjacency, BS, Empirical, KDE and SG methods follow them with

lower scores of 0.73, 0.71, 0.71, 0.68, 0.68, 0.68, 0.68 and 0.67, respectively.

We designed a 2-level evaluation process, i.e. pathway-level and gene-level, with stringent

cut-offs to have a complementary system as explained in the methods section. In pathway-

level evaluation we searched the disease-associated modules. Then, in gene-level evaluation we

focused on the disease-associated modules and looked for the overlapping ratios between the

member genes of these disease-associated modules and the previously reported disease, i.e.

given cancer type, genes.

As given in Table 5 and Fig 4, the best performing association estimators according to the aver-

age precision values in the gene-level analysis are as follows: Shrink for BRCA, SG for GBM,

Shrink for KIRC, BS for LUSC, and MM for SKCM. In addition, as in the pathway-level analysis,

although the most successful predictor changes for each data set, the MI-based predictors were

found to be more successful in BRCA, GBM, KIRC, LUSC dataset. Only in SKCM data set, MM

estimator and Kendall correlation method were found to be successful with very close precision

values according to both pathway-level and gene-level analyses for P-value< 0.05.

Fig 9. The hub genes and neighbors in the disease-related sub-networks obtained by the most

successful MM method (in terms of precision score) on SKCM dataset. In recent studies, ETS1 gene

(protein) was also shown to be associated with the SKCM, though it was not reported in the DisGeNET. The

genes registered in DisGeNET and experimentally confirmed for the diseases, are shown with colored and

larger nodes. Among those, genes that are not colored but have a red frame have a PMID value of one. There

is no entry in DisGeNET for the grey colored nodes.

https://doi.org/10.1371/journal.pone.0188016.g009

Influences of the association estimators on the coexpression network inference

PLOS ONE | https://doi.org/10.1371/journal.pone.0188016 November 16, 2017 12 / 19

https://doi.org/10.1371/journal.pone.0188016.g009
https://doi.org/10.1371/journal.pone.0188016


According to the average precision scores for BRCA dataset, which are given in Table 5, the

estimators are listed as follows: Shrink, Empirical, SG, Adjacency, Pearson, MM, Kendall, BS,

Spearman, and KDE. Shrink method is the most accurate one in terms of identifying disease-

associated genes with a precision score of 0.85. Empirical, SG, Adjacency, Pearson methods

follow this one with lower scores of 0.67, 0.63, 0.61, 0.59, respectively. Additionally, MM, Ken-

dall, BS methods obtain comparatively lower scores of 0.52, 0.51, 051, while Spearman and

KDE methods get the lowest scores of 0.45, 0.42, respectively.

Based on the average precision scores for GBM dataset that are given in Table 5, the estima-

tors are listed as follows: SG, MM, Kendall, Shrink, BS, KDE, Empirical, Adjacency, Pearson

and Spearman. SG is the most accurate method in terms of identifying disease-associated

genes with a precision score of 0.80. MM, Kendall, Shrink, BS, KDE methods follow this one

with lower scores of 0.72, 0.67, 0.63, 0.62, and 0.60, respectively. Additionally, Empirical, Adja-

cency and Pearson methods obtain comparatively lower scores of 0.59, 0.58, 0.54, while Spear-

man method gets the lowest score of 0.46.

According to the average precision scores for KIRC dataset (Table 5), the estimators are

listed as follows: Shrink, BS, MM, Pearson, Adjacency, Empirical, Kendall, KDE, Spearman

and SG. Shrink is the most accurate method in terms of identifying disease-associated genes

with a precision score of 0.51. BS and MM methods follow this one with lower scores of 0.46,

0.43, respectively. Additionally, Pearson, Adjacency, Empirical, Kendall, KDE methods obtain

comparatively lower scores of 0.38, 0.37, 0.35, 0.34, 0.34, while Spearman and SG methods

have the lowest scores of 0.31 and 0.30.

Based on the average precision scores for LUSC dataset (Table 5), the estimators are listed

as follows: BS, Adjacency, Shrink, Empirical, SG, Pearson, MM, KDE, Kendall and Spearman.

BS is the most accurate method in terms of identifying disease-associated genes with a preci-

sion score of 0.66. Adjacency, Shrink, Empirical, SG methods follow this one with lower scores

of 0.63, 0.62, 0.59, 0.59, respectively. Additionally, Pearson, MM, KDE, Kendall methods

obtain comparatively lower scores of 0.55, 0.54, 0.46, 0.43, while Spearman method gets the

lowest score of 0.38.

According to the average precision scores for SKCM dataset (Table 5), the estimators are

listed from high to low scores as follows: MM, Kendall, Shrink, Pearson, Adjacency, BS,

Empirical, KDE, SG, and Spearman. MM and Kendall are the most accurate methods in terms

of identifying disease-associated genes with precision scores of 0.758 and 0.757, respectively.

Shrink, Pearson, Adjacency, BS, Empirical, KDE, and SG methods follow them with lower

scores of 0.73, 0.71, 0.68, 0.68, 0.68, 0.68, and 0.67 respectively. Additionally, Spearman

method has the lowest score of 0.62.

Finally, the sub networks of the module hub genes identified by the association estimators,

which provide the highest precision scores based on a statistical test (with a P-value < 0.05),

are generated by Cytoscape [45] and shown in Figs 5–9 for all cancer types for the consider-

ation of the other researchers studying in this field. The genes registered in DisGeNET and

experimentally confirmed for the diseases, are shown in Figs 5–9 with colored and larger

nodes. Among those, genes that are not colored but have a red frame have a PMID value of

one. There is no entry in DisGeNET for the grey colored nodes. Also, the most associated top

three biological pathways, to which each module is related, are given above or below the rele-

vant module to annotate each module.

Conclusion and discussion

Performances of nine association estimators used in the network inference algorithms were

examined on the proteomic data of five different cancer types in both pathway and gene-levels.
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To make this assessment, selected association estimators were used instead of the adjacency

matrix construction procedure in the WGCNA, which is based on either Pearson or Spearman

correlation and has been used in many different studies in the literature. In conclusion, from

Tables 4 and 5 and Figs 3 and 4, it can be clearly observed that in terms of the precision scores,

the MI based methods provide better results than the correlation-based methods and the adja-

cency function which is provided as a default choice in WGCNA. In parallel with the studies

in the literature [46], our findings confirmed that the correlation-based methods are not suffi-

cient to estimate the non-linear relationships between the cell molecules such as cancer-related

complex molecular interactions.

It was observed that PDPK1 (PDK1),MSH6, BID, PECAM1 (CD31), SMAD4,GATA3 and

NF2 hub genes (proteins) may have important effects on the breast cancer as a result of the

WGCNA analysis with Shrink association estimator. DisGeNET has shown that, among these

genes,MSH6 and GATA3 were associated with BRCA in only one study, while RAD50,TSC1,

CHEK2,ATM, STK11, PTEN, RAD51,BRCA2, TPD3, CHEK1,CCND1, ERBB2, EGFR, and

ESR1were validated in multiple studies. Besides, PDK1 [47,48] and SMAD4 [49] genes (pro-

teins) were also shown to be associated with the BRCA in multiple studies, though they were

not reported in the DisGeNET.

It was found that DIRAS3, RAD50,MAPK1 (ERK2), RBM15, IGF1R (IGF1R_pY1135Y1136),
MS4A1 (CD20), and COG3 hub genes (proteins) may have important effects on GBM as a

result of the WGCNA analysis with SG association estimator. DisGeNET has shown that,

among these genes, IGF1Rwas associated with GBM in only one study, while CHEK2,KDR,

NOTCH1,MSH2, BCL2, ERBB2, PDCD4, FOXM1, PTEN, CASP3, EGFR, TP53BP1, IGFBP2,

RAF1, SMAD3, SETD2,MTOR, TP53, BRAF,MSH6, TSC1, STAT3, MET, and PIK3CAwere

validated in multiple studies. Besides, in recent studies, RAD50 [50] gene (protein) was also

shown to be associated with the GBM, though it was not reported in the DisGeNET.

It was observed that ADAR (ADAR1), CCNE2 (CYCLINE2), BID, CDKN1B (P27_Pt198),

and PRKCA (PKCALPHA) hub genes (proteins) may have significant effects on KIRC as a

result of the WGCNA analysis with Shrink association estimator. Thus far, from the DisGe-

NET, we could not find any evidences that these genes are associated with KIRC. DisGeNET

has shown that, ATM, MTOR, TP53, TSC2, ESR1, BCL2, KDR, STAT3, TSC1, and PRKCB

were validated in multiple studies.

It was found that EIF4G1 (EIF4G), FOXM1, COPS5 (JAB1),CDKN1A (P21),MRE11A
(MRE11), and PRKCB (PKCPANBETAII_pS660) hub genes (proteins) may have significant

effects on LUSC as a result of the WGCNA analysis with BS association estimator. DisGeNET

has shown that, among these genes, EIF4G1 (EIF4G) gene (protein) was associated with LUSC

in two studies, while CDH1, CDKN2A, PIK3CA, EGFR, TP53, and STAT3 were confirmed as

disease genes in multiple studies. Besides, in recent studies, FOXM1 [51,52] and CDKN1A
(P21) [53] genes (proteins) were also shown to be associated with the LUSC in multiple studies

though they were not reported in the DisGeNET.

It was observed thatMRE11A (MRE11), ETS1, BAX, COPS5 (JAB1), TSC2 (TUBERIN_
pT1462), and SYK hub genes (proteins) may have significant effects on SKCM as a result of the

WGCNA analysis with MM association estimator. DisGeNET has shown that, EGFR, RAF1,

PTEN, ERCC5,CCND1,BRCA2, PCNA, ERBB2, TSC1,CASP8, TP53, PIK3CA,NRAS, BCL2,

KIT, FASN, CTNNB1,CDKN2A, BRAF,YAP1, andMSH2were highlighted as disease genes in

multiple studies. Besides, in recent studies, ETS1 [54] gene (protein) was also shown to be asso-

ciated with the SKCM, though it was not reported in the DisGeNET.

As a conclusion, despite not being included in DisGeNET, the genes that are found to be

related with the disease via recent studies in the literature (PDK1, SMAD4, RAD50, FOXM1,

CDKN1A, ETS1 [47–54]) were detected with our proposed framework. Studies verify that
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these genes (proteins) are associated with cancer-related processes. Du et al. identified the

PDK1 as a potential therapeutic target for BRCA [47]. Dupuy et al. also determined the PDK1
as a key regulator of metabolism and metastatic potential in BRCA [48]. Liu at el. indicated

that the assessment of SMAD4 protein level may provide additional prognostic information

about BRCA [49]. Mishima et al. found out thatMRE11-RAD50-NBS1complex inhibitor can

effectively increase radiosensitivity in GBM [50]. Sun et al. showed the prognostic significance

of FOXM1 expression in LUSC [51]. Zhang et al. remarked the FOXM1 as a novel biomarker

of LUSC [52]. Fukazawa et al. found out that the tumorigenic effect of SOX2 on LUSC is medi-

ated in part by suppression of CDKN1A [53]. Keehn et al. stated that ETS1may be important

in the pathogenesis of invasive SKCM [54]. Thus, since our proposed method could capture

this long list of previously studied genes, it is suggested that it might capture a more compre-

hensive list of the disease associated gene-gene interactions that were missed in previous

studies.

The most significant contribution of our study is the use of different association estimators

in biological network inferring methodologies, which can make a significant improvement in

identifying the disease-associated co-expression modules when they are integrated with the

WGCNA method. In addition, similar performance scores of each estimator in pathway-level

and gene-level analysis also indicate the consistency of our study.
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