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1. Abstract

Fluctuations in environmental parameters are increasingly being recognized as essential
features of any habitat. The quantification of whether environmental fluctuations are preva-
lently predictable or unpredictable is remarkably relevant to understanding the evolutionary
responses of organisms. However, when characterizing the relevant features of natural hab-
itats, ecologists typically face two problems: (1) gathering long-term data and (2) handling
the hard-won data. This paper takes advantage of the free access to long-term recordings
of remote sensing data (27 years, Landsat TM/ETM+) to assess a set of environmental
models for estimating environmental predictability. The case study included 20 Mediterra-
nean saline ponds and lakes, and the focal variable was the water-surface area. This study
first aimed to produce a method for accurately estimating the water-surface area from satel-
lite images. Saline ponds can develop salt-crusted areas that make it difficult to distinguish
between soil and water. This challenge was addressed using a novel pipeline that combines
band ratio water indices and the short near-infrared band as a salt filter. The study then
extracted the predictable and unpredictable components of variation in the water-surface
area. Two different approaches, each showing variations in the parameters, were used to
obtain the stochastic variation around a regular pattern with the objective of dissecting the
effect of assumptions on predictability estimations. The first approach, which is based on
Colwell’s predictability metrics, transforms the focal variable into a nominal one. The result-
ing discrete categories define the relevant variations in the water-surface area. In the sec-
ond approach, we introduced General Additive Model (GAM) fitting as a new metric for
quantifying predictability. Both approaches produced a wide range of predictability for the
studied ponds. Some model assumptions—which are considered very different a priori-had
minor effects, whereas others produced predictability estimations that showed some degree
of divergence. We hypothesize that these diverging estimations of predictability reflect the
effect of fluctuations on different types of organisms. The fluctuation analysis described in
this manuscript is applicable to a wide variety of systems, including both aquatic and non-
aquatic systems, and will be valuable for quantifying and characterizing predictability, which
is essential within the expected global increase in the unpredictability of environmental
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fluctuations. We advocate that a prioriinformation for organisms of interest should be used
to select the most suitable metrics for estimating predictability, and we provide some guide-
lines for this approach.

2. Introduction

Fluctuations in environmental parameters and their potentially associated unpredictability are
increasingly being recognized as essential features of any habitat [1] because they are expected
to influence the performance of the inhabiting organisms and affect upper levels of ecological
organization [2]. Because human activity often increases environmental fluctuations, their
analysis provides an applied interest [3-5]. Indeed, ascertaining how organisms respond to
environmental fluctuations is fundamental in biology [6,7].

From the point of view of an organism, predictability is related to the organism’s ability to
anticipate and adjust to a future environmental condition and thus involves a time scale [8,9].
For instance, annual fluctuations in temperature might be experienced very differently by
short-living invertebrates compared with long-living vertebrates [10]. Any habitat shows some
constancy and some variations in its features, and the focal habitat feature can consistently be
decomposed into three components: constancy, predictable-periodic—fluctuations, and unpre-
dictable fluctuations. The relative importance of these components is expected to produce
diverging adaptive responses in organisms [11]. Thus, to quantify whether environmental fluc-
tuations are prevalently predictable or unpredictable is highly relevant for understanding evo-
lutionary responses [2] and for testing ecological and evolutionary hypotheses.

The characterization of fluctuations is a complex problem that requires a robust metho-
dology because it cannot be based on mean values but rather on variances. Moreover, this
characterization needs predefined assumptions regarding the relevant time-scales that can be
associated with predictability, which cannot always be defined in a straightforward manner.
Furthermore, one of the most important constraints is the need of long time-series data. Thus,
(1) a methodology for the acquisition of long-enough time series is required, and, (2) an
appropriate metric then has to be assumed and assessed to characterize the focal habitats.

Remote sensing technology has been highly developed in the last century [12], but its use in
several research areas has not reached yet its full potential, as is the case in ecology [13]. Several
studies have shown that this technology can offer solutions to a wide variety of problems in
nearly all fields of environmental research [14-16]. Long time series are costly to obtain and
are consequently scarce [17]. In this regard, the information gathered by several satellites in
recent years can provide long time-series data, such as the Landsat satellite series, which ranges
from 1972 to the present and has moderate spatial and intermediate temporal resolutions [18].
Since 2008, these scenes are freely available from the United States Geological Survey (USGS),
which allows the scientific community to gather a great deal of information free of cost [19].

Several indices have been developed to estimate the degree of predictability from time-
series data. Basically, these indices decompose the time series based on periodic and stochastic
variation [20] and associate these with predictable and unpredictable fluctuations, respectively.
For nominal data, such as the presence/absence of water, Colwell [21] proposed a predictabil-
ity index based on information theory [22] that has been mainly used in streams and rivers
[23]. In contrast, indices based on spectral analysis, such as the Fourier transform and asym-
metric eigenvector maps (AEM) [24, 25], have been used for continuous data [26]. However,
these continuous-metric methods are very sensitive to gaps in the time series; thus, Colwell’s
method might be preferable despite the drawback of discretizing a quantitative variable.
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In this study, a group of Mediterranean shallow ponds and lakes were considered the case
study, and the water-surface area (hereafter A; [27]) was considered as focal habitat feature. A
is considered an ecologically relevant factor in lentic water bodies [28] and is correlated with
the average lake depth, and both of these measurements determine the habitat size for aquatic
organisms. The habitat size affects the ‘colonization vs. extinction’ balance and the habitat het-
erogeneity [29]. Fluctuations in A have multiple effects on the organisms above and below the
waterline, including both aquatic flora (e.g., macrophytes [30]) and fauna (e.g., fish [31] and
zooplankton [32]). These fluctuations can strongly affect the habitat conditions through varia-
tions in the physicochemical parameters (e.g., temperature, light, nutrient or solute concentra-
tion [33,34]). The solute concentration is particularly relevant in saline ponds and lakes, which
are a significant, geographically widespread part of the world’s inland aquatic ecosystems [35,
36]. However, despite their importance, remote sensing studies in saline water bodies are
scarce and have mostly been based on large lakes [37-39]. Overall, band ratios are typically
used when detecting water bodies (e.g., [40, 41]), but are rarely used for saline ponds. In con-
trast, infrared bands have been previously used for the assessment of A in saline ponds, but
these are not accompanied by band ratio indices [42, 43].

Water bodies in the Mediterranean region are a good case study because they are expected
to cover wide ranges of predictabilty. Some of these water bodies are almost permanent,
whereas others are characterized by strong seasonality and temporal unpredictability at several
time scales [44]. Both confined and unconfined organisms in non-permanent ponds are
expected to undergo adaptation and to be strongly reliant on patterns of pond inundation (i.e.,
A variation). Waterfowls exhibit migratory patterns and many short-lived animals undergo
lifecycles at an annual or shorter time scale. Accordingly, ecological unpredictability in these
systems can be conceived as departures from an average seasonal variation, i.e., the main
source of environmental unpredictability is the inter-annual variation of the within-year
variation.

In this study, we used time-series remote sensing data to assess a set of models for the esti-
mation of environmental predictability. Our study is divided in two parts. The first part of this
manuscript proposes a procedure to estimate A and assesses this procedure using a set of Med-
iterranean saline water bodies that can develop salt crusts by evaporation. In the second part, a
set of metrics for estimating stochastic variations in A are elaborated and compared to evaluate
their effects on the assessment of environmental predictability. Specifically, in the first part, A
was quantified using 27 years of Landsat 5/7 scenes. A salt crust is formed in some of the evalu-
ated ponds when water is evaporated, and this salt crust can make it difficult to distinguish
between soil and water. This challenge was addressed through the development of a novel
approach that combines the sequential use of band ratio water indices and the short near-
infrared band as a salt filter. In this section of the manuscript, a hypothesis regarding the reli-
ability of estimating A from satellite scenes underlies our work. The accuracy of these estima-
tions was assessed through the inspection of aerial (non-satellite) images and qualitative field
data. In the second part, the predictable and unpredictable components of the variation in A
over the 27-year time series for each pond were extracted. Two different approaches, which
showed differences in their parameters, were used to obtain the stochastic variation around a
regular pattern with the objective of dissecting the effect of assumptions on predictability esti-
mations. The first approach, which is based on Colwell’s predictability metrics, transforms the
focal variable into a nominal one. The resulting discrete categories define which variations in
the water-surface area are considered relevant. For the second approach, we developed a novel
approach that parallels the method developed by Colwell but is based on regression models.
The similarity and divergence of the different predictability indices were analysed to determine
both their capability to embrace a wide predictability range and their sensitivity to the initial
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assumptions. When the indices produce diverging results, we propose that this divergence is
related to the fact that the unpredictability of a fluctuation pattern varies depending on the
organism of interest.

3. Materials and methods
3.1. Study area

The study region is located in the eastern region of the Iberian Peninsula (Fig 1), an endorheic
area of approximately 800 km” with more than 100 ponds, and 20 of these ponds were
included in this study (Table 1). The ponds included are shallow (depth of approximately 1 m)
and brackish (salinity: 6.5-40 g/L) and showed different mean areas (0.00013-1.19 km?). Pre-
cipitation is the main water inflow, but some ponds are also connected to groundwater [45].

The climate in the study area is semiarid, with a mean average annual rainfall of 343 mm
and a mean temperature of 14°C (local weather station). June to September is considered the
dry period, when temperatures might exceed 40°C and rainfall is scarce (typically <8 mm in
July). Most precipitation occurs as heavy rains in spring (April-May) and autumn (October-
December) [45].

Episodic, in situ observations over the last decade have shown that some ponds can fre-
quently dry out, develop a thick salt crust, and fill up again (Fig 2). In contrast, other ponds,
were observed to be flooded for years, including through several dry seasons.

3.2 Satellite scene data

In this study, we used a total of 432 images over the path 199 and row 33 scene acquired by the
Landsat Thematic Mapper (Landsat 5) and Enhanced Thematic Mapper Plus (Landsat 7) satel-
lites. Among these images, 314 were provided by the European Space Agency (ESA) as the LIT
product, which means that they are radiometrically and geometrically corrected [46]. The
remaining 118 scenes were downloaded from the United States Geological Survey (USGS) Cli-
mate Data Record (CDR) product. This product consists of surface reflectance images, which

Fig 1. Location of the study region (38°55.4’ to 38°41.803’N and 1°47.32’ to 1°24.26’W) and Landsat 5 scene showing the area where the
ponds (highlighted in blue) included in this study are located.

https://doi.org/10.1371/journal.pone.0187958.9001
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Table 1. Studied ponds sorted by decreasing mean water-surface area (A)°.

Pond name Pond acronym Pond location A £S.E (md) Hydroperiod *°
Pétrola PET 38°50'16.82"N, 1°33'49.22" W 1190000140000 1.00
Salobralejo SAL 38°54'52.11"N, 1°28'6.95"W 237000+18000 1.00
Ontalafia ONT 38°43'21.23"N, 1°46’3.91"W 209000+13000 0.99
Hoya Grande HYG 38°49'35.17"N, 1°28'31.17"W 141000+18000 0.69
El Saladar SLD 38°47°21.72"N, 1°25’8.00"W 111000+8000 1.00
Atalaya de los Ojicos ATA 38°46'20.97"N, 1°25’49.12" W 470003000 0.93
Horna HOR 38°50'0.77"N, 1°36°3.87"W 410007000 0.53
Hoya Rasa HYR 38°47'6.06"N, 1°25'37.56" W 400004000 0.87
Casa Villora Cvi 38°48'11.47'N, 1°36'18.10"W 360006000 0.48
Hoya Redonda HRE 38°49'5.88"N, 1°34'49.96"W 34000£6000 0.30
Hoya del Norte HYN 38°50’17.10"N, 1°27°23.08"W 320006000 0.43
Hoya Chica HYC 38°49'46.22"N, 1°27°49.74"W 32000+4000 0.51
La Campana CAM 38°51'29.06"N, 1°29'36.97" W 290004000 0.63
Mojon Blanco BLA 38°47°49.95'N, 1°25'55.47"W 19000+1700 0.89
Hoya del Monte HMT 38°50'44.87"N, 1°26'38.70"W 15800+1900 0.51
Casa Villora2 Cvi2 38°49'1.33"N, 1°36’37.03"W 5600+£1000 0.26
Hoya de las Anades HYA 38°51’44.84"N, 1°32'38.59"W 4900+900 0.22
Hoya Yerba HYB 38°46'46.02"N, 1°26’6.60"W 1060230 0.23
Hoya Elvira HYE 38°46'42.13"N, 1°26'43.36"W 23070 0.09
Hoya Turnera HTU 38°46'31.19"N, 1°24'37.41"'W 130£50 0.07

& Obtained from satellite data in this study
b Estimated as the average of each month'’s fraction of observations with A>0 and cloud cover = 0.

https://doi.org/10.1371/journal.pone.0187958.t001

were atmospherically corrected using the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) algorithm [47] and an accurate cloud mask developed in a previous study
[48]. The mentioned algorithm has been implemented, tested, validated and widely distributed
[49]. According to a previous study [50], the LEDAPS application to Landsat has demonstrated
a performance comparable to that of the MODIS algorithm for aerosol retrieval over land
[49,51] and for the surface reflectance product [52,53]. To maintain consistency between the
two datasets (ESA and USGS), the ESA images were processed with the LEDAPS algorithm
[54]. The resulting set of scenes cover the period 1984-2011, with a spatial resolution of 30 m
and a revisit time of 16 days for each satellite [18].

3.3 Estimation of the water-surface area (A)

Water presence in a pixel was inferred from a two-condition assessment (2cA). The first con-
dition of 2cA was addressed to differentiate areas potentially covered by water from soil. The
Modified Normalized Difference Water Index (MNDWTI [40]) was calculated using the reflec-
tance from Landsat’s band 2 (Green, 0.52-0.60 pm) and Landsat’s band 5 (middle infrared
band, MIR, 1.55-1.75 um) as follows:

Green—MIR
MNDWI = ————— . (1)
Green + MIR
As described previously [40], the pixels with positive MNDWI values were selected as

potential water-covered areas.
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Fig 2. Aerial images of the ponds PET (above) and CAM (below), illustrating the variations in the water-surface area (green-black) and
salt crust (white).

https://doi.org/10.1371/journal.pone.0187958.9002

The potentially water-covered pixels were evaluated in terms of a second condition. The
salt crust left by water evaporation yielded false-positive pixels of water-covered areas. To
exclude them, a second filter (salt filter) was included using a previously developed approach
[42] based on the condition that band 4 (near-infrared) reflectances lower than 0.4 were
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classified as non-salt. However, although these authors applied the conditions to land pixels,
we applied the threshold to the scenes after the first condition was assessed (Fig 3). To evaluate
the adequacy of the salt filter, we compared the automatically processed results obtained after
using only the first or after using both filters (2cA) through visual interpretations of aerial pho-
tographs (years 2006 and 2009; four bands; spatial resolution: 0.25-0.5 m) and qualitative field
observations (presence/absence of water); S1 Table provides information for the two latter
sources of validation. Satellite data analyses were performed using ENVI/IDL (Exelis Visual
Information Solutions, Boulder, CO, USA).

3.4 Quantification of environmental predictability

For each of the ponds, the degree of predictability in the variation of A in the time series was
estimated. Seven models with different assumptions were evaluated. Note that the term
‘model’ in this manuscript refers to a different approach to quantitatively implement a priori
concepts to calculate the predictability indices. Model assumptions have implications on
which variation of A is regarded as predictable. Our evaluation consisted of identifying similar-
ities and divergences between model outputs, and determining whether the divergences are
related to the capability of different organisms to predict environmental fluctuations. Five
models were developed in the present study according to Colwell’s approach, and discrete cat-
egories for the range of A values in the time series were established. Two additional models,
which constitute novel contributions of this study, followed a continuous approach, and there-
fore, raw observations of A were used. The different years in the time series were treated as rep-
licates; thus, the seven models were applied to the within-year variation. The mean water
surface area (A) for each pond was computed by averaging each month’s mean A (excluding
cloud-covered observations). The hydroperiod was estimated as the annual average of the frac-
tion of observations with A> 0 in each month (excluding cloud-covered observations).

MNDWI >0

|— Yes | No —|

TM4 <0.4 Soil

J A

Yes | No —|

Not water-
covered pixel

Fig 3. Water presence in a pixel: A two-condition assessment (2cA). The first condition differentiates
potentially water-covered pixels from soil, and the second condition differentiates salt-covered from water-
covered pixels.

https://doi.org/10.1371/journal.pone.0187958.g003
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Table 2. Models for predictability estimation. Statistic: parameter of the data distribution used to define the states; scaling: proportion between consecu-
tive range windows; s;: i-th state (discrete); raw data: water-surface area (A) after image processing.

Model

Type
Acronym

Discrete
coL_wd?

COL_Ana®

COL_Anw°®
COL_MAXIlin®

COL_MAXg®

Continuous
GAM_a'
GAM_w?®

Features

Excluded data Statistic (Scaling) Range Definition of States

None - 0, 1) s, ifA=0;
Sp, if A> 0.

None Mean (0,1) sy, ifA<(1-0.7) - A;
s2,if (1-0.7) - A <A< (140.7) - A;
sg, if (1+0.7) - A < A.

Dry states Mean (0,1 As in COL_Ana

None Maximum (Linear) 0,1 sy, if A< 1/3 - MAX(A);
sp, if 1/3 - MAX(A) < A< 2/3 - MAX(A);
sg, if 2/3 - MAX(A) < A.

None Maximum (Geometric) 0, 1) sy, if A<Va- MAX(A);
Sp, if Va - MAX(A) < A < 2/4 - MAX(A);
sg, if 2/4 - MAX(A) < A.

None - (0, o) Raw data

Dry states excluded for mean computation - (0, ) Raw data

& Colwell water/dry model.

® Colwell average neighborhood with all data included model.
¢ Colwell average neighborhood with water presence model.
9 Colwell maximum value linear scaling model.

¢ Colwell maximum value geometric scaling model.

f GAM with mean calculated with all data included model.

9 GAM with mean calculated when water is detected model

https://doi.org/10.1371/journal.pone.0187958.t1002

3.4.1 Discrete models based on Colwell’s approach. Colwell’s predictability (P) index
[21,22] consists of the summation of two metrics: constancy (which measures the degree in
which a pond remains in the same state) and contingency (which measures the repeatability of
the variation pattern). Colwell’s approach applies to nominal variables (values = states), and
therefore A (a continuous variable) was transformed into a nominal variable. The five discrete
models tested are described in Table 2.

The rationale for the number of states and thresholds was straightforward in some models,
such as COL_wd, in which two states (presence/absence of water) were considered. The num-
ber of states in the remaining discrete models was limited to three to (1) avoid excessive prolif-
eration of states and (2) accumulate sufficient data for each state. The thresholds between
states in COL_ANa and COL_ANw were defined under the assumption that most organisms
have a rather broad range of tolerance around the mean value of A, at which they are expected
to be best adapted (being vulnerable only to extreme values); nonetheless, it also accounts for
other organisms that are opportunistic for extremely high or low A values. In other words,
they focus on separating extreme values from regular values. Consequently, in these models,
the thresholds were A + 70% A, which shows a fairly wide intermediate range. Finally, in
COL_MAXIlin and COL_MAXg, most organisms would have a narrow tolerance range, con-
fined to one of the proposed partitions of the maximum value. In these models, the thresholds
were linear and geometric divisions of the maximum value, respectively, based on the assump-
tion that the geometric scaling of the variation of A around large values has a lower effect than
the same variation around small values.
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In Colwell’s approach, time is also required to be a nominal variable; thus, in our models,
time steps were matched to calendar months. In the months with more than one observation
of A, the A value was obtained by averaging A observations with the lowest cloud cover. For
those observations where partial cloud cover of the pond was found, the observation was only
considered if the assignation of a state was not affected by the cloud covered area of the pond.
Otherwise, the observation was excluded.

3.4.2 Continuous models: GAM predictability. This family of models is based on the
dispersion of observations in the time series around a typical intra-annual curve of the normal-
ized A (hereon A’ normalization: A/A). Because a continuous approach was used, any obser-
vation with cloud cover was excluded. The typical curve was fitted to A’ (dependent variable)
in relation to the day of the year. To avoid assuming an a priori, general, very constrained
shape for the curve (e.g., sine function), we performed General Additive Models (GAM) with
cubic splines as the smoothing function for identifying trends in the time-series data [55]
using the gam function (‘MGCV’ package, [56]) in R statistical software v.2.12.1 [57].

Predictability was estimated based on the departure of the observed values from the values
fitted by the GAM regression. The determination coefficient of the regression model regards
constancy as a lack of determination (prediction) from the independent variable (here, time)
and was thus not used. Hence, an index of predictability (Pgam) was developed based on the
dispersion of the data with respect to the fitted model:

Poan = SDL (2)
where SD,,; is the standard deviation of the residuals of the fitted model. Our predictability
index is inversely related to the coefficient of variation produced by the regression, which is
defined as the mean value of the independent variable divided by SD,.,. Note that the normali-
zation of the independent variable (4)) causes its mean values to approach 1, particularly when
the values with A = 0 were not excluded.

3.4.3 Relationships among predictability estimations. Pearson’s correlation coefficients
were computed to evaluate the relationships among the predictability estimates from each
model using (1) the 20 studied ponds and (2) 18 ponds (excluding the two most ephemeral
ponds; more than 90% of time series A = 0; HTU and HYE) because these were expected to
pose problems in regards to continuous metrics of predictability (see [20]). To facilitate inter-
pretation of the results, a standard Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) cluster analysis was performed with the ‘Pvclust’ package in R [58] using a dissimi-
larity matrix based on the chord distance (1/(2—2 - r)) of the predictability values of the 20
ponds, where r is Pearson’s correlation coefficient [59], and the data were resampled 10,000
times.

4. Results
4.1 Estimation of water-surface area (A): Assessment

To assess the accuracy of the A estimations, the estimations were compared with (1) inspec-
tions of aerial images, and (2) qualitative field data (presence/absence of water in the pond).
Additionally, A values that were visually estimated from raw scenes were compared to A esti-
mations (i.e., produced by automatic processing after applying the 2cA), and both sets of esti-
mations yielded consistent results. As a quantitative assessment, a total of 33 estimations of A
and estimations of water-covered pixels based on aerial scenes taken close in time (maximum
time for matching values corresponding to the two estimations was 18 days) were compared.
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Fig 4. Raw and processed data for four ponds. First column: aerial scenes. Second column: Landsat 5 satellite raw scenes.
Third column: results after applying the two-condition assessment to each pixel in each satellite scene. Brown pixels do not
accomplish the first condition (MNDWI<0). White pixels do accomplish the first condition but not the second one (MNDWI>0 and
TM4>0.4). Blue pixels do accomplish both conditions (MNDWI>0 and TM4<0.4, i.e., the pixel is considered a water-covered
pixel). Fourth column: from black (0%) to red (100%), proportion of scenes for each pixel that were estimated as water-covered.

https://doi.org/10.1371/journal.pone.0187958.9004

Both estimations were found to be strongly correlated (R* = 0.98, P-value<0.001; right panel in
S1 Fig; S1 Table), and no statistically significant differences were found between them (paired ¢-
test; t = 1.3, d.f. = 31, P-value = 0.2). Fig 4 shows instances of this comparison, stressing the role
of applying the filter for salt crust involved in 2cA. Moreover, an estimation of A from satellite
scenes based on only the first condition of the 2cA (i.e., without applying the salt filter) and a
comparison to estimations of water-covered pixels from aerial scenes are shown in the left panel
of S1 Fig. This quantitative assessment was complemented by a qualitative analysis in which A
estimations were compared with direct qualitative field observations (presence/absence of water
in the pond; n = 52) from previous studies [60,61] and Montero-Pau (personal communication)
obtained close in time (within the same month, S1 Table). The presence/absence of water
observed in the field matched in all cases (n = 52) with the satellite observations.

The comparison between automatically processed estimations of A with and without the
salt filter (i.e., the second condition in the 2cA) showed that this filter causes a 7.5% (overall
mean) reduction in A. For some of the ponds, no pixels were excluded by this condition (six
ponds), but in some others the reduction can achieve up to 100% of the pixels (S2 Fig). There-
fore, the second condition has different effect on A depending on the pond that is evaluated.

4.2 Estimation of the water-surface area (A): Historical data record

From the 27 years of monitoring, 8,640 estimations of A (20 ponds x 432 raw scenes) were
obtained. The maximum estimated size of the ponds ranged from 5 to 2,513 pixels. The
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automatic application of the 2cA to raw satellite scenes yielded 4,036 cloud-free A data points
(average per pond = 201; range 92-257). The complete time series of A for each pond are pro-
vided in S2 Table. For the smallest pond, A ranged from 0 to 4,500 m?, and for the largest
pond, the range of this value ranged from 17,000 to 2,263,000 mZ. In the time series of A, the
Pearson’s correlation coefficient (r) between ponds ranged from -0.31 to 0.86. The annual
hydroperiod ranged from 0.07 to 1.00 (Table 1). Three ponds (PET, SAL and SLD) achieved
the maximum hydroperiod because these ponds never completely dried out in our data
record.

4.3. Quantification of environmental predictability

Fig 5 illustrates how two models, one discrete (COL_ANa) and one continuous (GAM_a), esti-
mate the predictability of the variability of A in the time series for two ponds, Salobralejo
(SAL) and La Campana (CAM), which were selected due to their very different predictability
estimations. Despite the reduction of information caused by the discrete classification or the
regression model, the indices captured the different fluctuation patterns observed in the time
series for each of the ponds.

The predictability estimates for each pond and model are shown in Table 3. Maximum
predictability (i.e., 1) was achieved for three ponds (PET, SAL and SLD) with the COL_wd
model because these ponds never completely dried out in our data record and the COL_wd
model only considers the presence/absence of water. The coefficient of variation for the
predictability estimations under each model ranged from 0.32 to 0.72, values that can be asso-
ciated with the discrimination power of each model.

The relationships among models are shown in Fig 6. Two clusters of models were identified
using 0.90 as the distance threshold. Cluster A includes the COL_wd, GAM_a, COL_ANa,
GAM_w and COL_ANw models (bootstrap = 85%). This cluster includes discrete and contin-
uous models. Moreover, the correlation between predictability estimates with discrete vs. con-
tinuous models ranged from 0.49 to 0.88. Thus, continuous and discrete approaches can
produce similar results depending on other assumptions. The comparison of the two hemi-
matrixes in Fig 6 showed that the correlation between GAM_a and the other models in Cluster
A increased when excluding the two most ephemeral ponds (lowest correlation: 0.27 vs. 0.72).

Cluster B includes COL_MAXg and COL_MAXlin (bootstrap = 99%), the two discrete
models in which the states were defined with respect to the maximum observed A. Therefore,
according to our results, linear and geometric scaling appears to be secondary for predictability
estimations. Interestingly, some of the models in cluster A were negatively correlated with the
models in cluster B. This diverging result is associated with the predictability index estimations
in the ponds that frequently maintained some water cover (A>0), as shown in Fig 7. This fig-
ure depicts the performance of the models in clusters A and B, which was assessed by choosing
a representative model from each cluster (COL_ANa and COL_MAXlin) and showing their
predictability estimations against the proportion of observations in state 1 (the state that
includes A = 0) for each pond.

5. Discussion

The characterization of environmental fluctuations is a central issue in ecology and environ-
mental science that requires long-term time series [20]. Time series analysis often implies dis-
carding a high volume of observations; in our case, 27 years of observations were reduced by
53% due to cloud filtering. Not surprisingly, obtaining long-term time series data is regarded
as costly, and these datasets are consequently scarce [17]. In this context, remote sensing has
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Fig 5. Instances outlining the data analysis procedure for computing predictability estimates for two ponds
(SAL and CAM). Two models are compared: COL_ANa (discrete) and GAM_a (continuous). (a.1,2): Twenty-seven-
year time series of the water-surface area (A) obtained by Landsat 5/7 scenes after applying the 2cA. (b.1,2): Counts for
the two-way table (time steps vs. pond state) for the COL_ANa model; constancy, contingency and predictability indices
are shown. (c.1,2): Scatter plot of the normalized water-surface area (A = A/A) and day of the year (DOY) from the
complete time series; regression curves based on the GAM (solid line), 95% Cls (dashed lines), and predictability
indices are shown.

https://doi.org/10.1371/journal.pone.0187958.9g005

been proven to be a timely, reliable, global and cost-efficient tool for analysing a given environ-
mental variable over a long time series.

The general interest of our work relies first on the importance of evaluating long-term pat-
terns of the water-surface area in ponds located in arid regions, where salt crust is a confound-
ing feature in satellite images. These habitats are far from rare, and as dynamic island-like areas,
their fluctuating patterns can be related to their biota (see below). The conditions for water
detection applied in this study combine (1) the robustness of band ratios (MNDWIT index>0
[40]) and (2) a refinement needed for saline ponds (near-infrared band reflectance<0.4, based
on [42]). The consistency between the satellite-based measurements and measurements based
on more direct observations was found to be notable. Our study shows that satellite scenes, after
convenient processing, provide sufficient resolution for the detection of variations in A for
saline ponds ranging from 0.00013 to 1.19 km®. We have shown that the pipeline established
here allows quantification of the water cover in small ponds, which are of particular importance
in ecological studies of arid regions.

Second, the general interest of our study relies on a conceptual analysis of the notion of
predictability when it is quantitatively implemented using models. Based on our interest in

Table 3. Predictability estimates and statistics for each pond and model combination.

Pond

PET
SAL
ONT
HYG
SLD
ATA
HOR
HYR
cvi
HRE
HYN
HYC
CAM
BLA
HMT
CVI2
HYA
HYB
HYE
HTU
Mean
Coefficient of variation

https://doi.org/10.1371/journal.pone.0187958.t003

COL_wd

1.00
1.00
0.97
0.32
1.00
0.75
0.23
0.66
0.13
0.17
0.18
0.12
0.11
0.63
0.19
0.22
0.25
0.34
0.63
0.70
0.48
0.70

Model
GAM_a COL_ANa GAM_w COL_ANw COL_MAXg COL_MAXIlin
2.23 0.66 2.28 0.64 0.48 0.26
3.03 0.82 3.07 0.86 0.39 0.55
2.04 0.62 2.08 0.67 0.17 0.26
0.74 0.22 1.14 0.12 0.41 0.42
2.21 0.80 2.26 0.77 0.34 0.21
2.27 0.67 2.43 0.74 0.48 0.32
1.02 0.29 1.91 0.56 0.34 0.34
2.07 0.66 2.35 0.72 0.48 0.30
0.73 0.31 1.62 0.51 0.34 0.44
0.54 0.39 1.90 0.52 0.45 0.53
0.58 0.35 1.46 0.35 0.53 0.67
0.83 0.21 1.61 0.45 0.23 0.33
0.64 0.16 1.02 0.20 0.41 0.52
1.94 0.55 2.13 0.71 0.37 0.24
0.72 0.28 1.58 0.35 0.39 0.47
0.54 0.46 2.00 0.65 0.53 0.54
0.41 0.48 1.80 0.26 0.57 0.60
0.42 0.50 1.88 0.56 0.72 0.81
0.33 0.77 3.38 0.88 0.82 0.81
0.28 0.81 3.63 0.83 0.88 0.89
1.18 0.50 2.08 0.57 0.47 0.48
0.72 0.43 0.32 0.39 0.48 0.43
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practical applications, we performed our analysis using an actual system composed of time
series for the water cover of 20 ponds over 27 years, which allowed us to identify divergences
between predictability estimates. We also aimed to state that these differences among indices
are related to how organisms perceive fluctuations in their environment. Thus, the choice of
the predictability index should take into account the organism of interest.

= = =
&~ o)) (0]
o o

o

Predictability

o
N

®

0.2

0.4

0.6
Fraction of state 1

@

4 o COL_ANa

4° R2=0.82
é e COL_MAXIin
R?=0.97

0.8 1

Fig 7. Relation between a model from each cluster (COL_ANa and COL_MAXIlin) and the proportion of observations in
state 1 (the state that includes A = 0). The solid line indicates the quadratic least-square fitting, and R? is the determination
coefficient associated with the corresponding fitting.

https://doi.org/10.1371/journal.pone.0187958.9007
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One challenge is to assess the effect of the measurement scale (quantitative vs. qualitative)
on the focal variable. Many studies need to be based on a nominal scale or just prefer this
approach, while others use a quantitative scale. If quantitative data are available, a quantitative
analysis appears a priori to retain more information than a qualitative one. Fourier analysis
and AEMs [24,25] are alternative approaches for fluctuation analyses that address quantitative
data but are unable to address aperiodic observations. Unfortunately, this case is not uncom-
mon [62], and the continuous (GAM) models developed in this study address this problem.
However, in our study, the cluster analysis merges predictability estimates from discrete (nom-
inal) and continuous (quantitative) models. A direct inspection of correlation values among
predictability estimates confirmed that the cluster analysis does not force the aggrupation of
some discrete and some continuous models. Therefore, these approaches can yield similar
predictability results, and other assumptions have a higher impact on predictability estimates.
Nevertheless, in contrast with Fourier analysis, both approaches (Colwell’s approach and the
GAMs) ignore the correlation between consecutive observations because the days of the year
in different years are merged, which makes them share an underlying assumption that might
account for the similar estimations found in this study. Further studies should develop a time-
series analysis procedure that takes into account the correlation between consecutive observa-
tions and is able to address rather aperiodic observations. In the meantime Colwell approach,
which involves the discretization of a continuous variable, appears to be reliable compared
with the regression methods explored in this study and has the advantage of keeping the analy-
sis simple [20, 63, 64]. However, the discretization criteria could critically affect the predict-
ability estimations, and that is needed to be closely looked by researchers intending to apply
Colwell’s approach (see below).

Thus, a second challenge is to determine the type of variation in data that is relevant for esti-
mating unpredictability. For instance, extreme values could be much more-or much less-
important than would be accounted for in a linear approach, and unpredictability estimations
could be inflated by considering meaningless values. This problem translates into the scale
transformation (e.g., normalization) applied to the focal variable, which cannot be thoroughly
analysed without considering the organism for which unpredictability is evaluated. In previous
stream and river studies, the presence of many zeros in the time series caused the non-zero
observations to produce an extreme residual [20]. Here, we explored different models that con-
sider or not consider zeros in several ways, and we obtained similar results in the majority of
cases. However, one of the continuous models (GAM_a) differed from the rest of the models in
terms of classifying the two most ephemeral ponds (HTU and HYE; A = 0 in more than 90% of
observations), which likely caused the low correlation between GAM_a and some of the models
in cluster A. Most of the models assigned a high degree of predictability to these two ponds,
whereas GAM_a assigned them a low degree of predictability. Predictability estimation by
GAM_a is based on the coefficient of variation of A and tended to be high for these two ponds
(thus yielding low predictability) because their mean A is very low. This effect on the coefficient
of variation has been reported in statistical studies [65, 66]. In other words, GAM_a-and more
generally, the consideration of zeros to estimate the mean A in a continuous approach-could
inflate the estimation of environmental unpredictability. This effect is supported by direct
inspection of the data. In fact, HT'U and HYE ponds rather than unpredictable systems appear
to be ephemeral ponds, as they are dry most of the time (i.e., predictably dry).

As has been stressed for many years [8,9], predictability depends on the point of view of the
organism of interest, and confusion is possible between what human researchers and what
other organisms can predict. Therefore, no predictability metric can pretend to serve as an
absolute quantification of the degree of predictability of a specific environment, but instead,
time scales of periodic variations and other biological factors must be taken into account when
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referring to any specific predictability estimation [10]. Models designed under different bio-
logical assumptions are expected to produce different predictability results, which is the case
when comparing models between each of the two identified clusters. The organism’s features
that affect its capability to predict fluctuations are potentially numerous and poorly known;
thus, the proposal of general rules for selecting an appropriate predictability metric is inher-
ently difficult. In contrast, performing a selection based on the biological information available
for the case of interest is advisable. For instance, an inspection of the model assumptions sug-
gests that predictability in the models in cluster A is the one perceived by a generalist, eurioic,
small-sized organism, whereas the opposite is true for the models in cluster B. Hence, in
model COL_wd (cluster A), the presence of water—either with high A or low A-would be suffi-
cient to make the environment suitable. Consistently, in COL_ANa and COL_ANw, a wide
variation around the mean A value does not result in a state change. Thus, taking into account
the case of animals, the scaling of the models in cluster A could fit the case of aquatic inverte-
brates (such as cladocerans, rotifers, copepods and insect larvae, i.e., organisms sized less than
ca. 1 cm) that can achieve high population sizes in small volumes and tolerate a broad variation
in A. This a priori assessment was confirmed after dissecting the outputs from the models. As
shown in Fig 7, the models in both cluster A and cluster B did not confound ponds that are fre-
quently dry with unpredictable ponds. Both ephemeral ponds and nearly permanent ponds
achieved high predictability estimations. Thus, (a) frequent maintenance of some water and
(b) frequently dry or with a low water cover can be regarded as predictable for these animals.
In contrast to cluster A models, the models in cluster B assign a lower predictability to the
environment of ponds that frequently maintain water. This finding can be interpreted as that
the models in cluster B are sensitive to random variations in the amount of water when water
occurs. This sensitivity is welcomed if the organism of interest is affected by the extension of
the water cover, not being sufficient condition the presence of some water. This is likely the
case for large animals that typically need a large exploitation area and are close to the top of the
trophic chains (e.g., fish). Our ponds offer few opportunities for these animals because, accord-
ing to our analysis, the studied ponds do not fit in such environments. Consistently, the ani-
mals typically found in our study area are mostly restricted to small invertebrates [60,67] that
are able to display diapause stages. To the best of our knowledge, no large animals have been
reported in our study system, with the exception of migratory birds [68]. For waterfowls, the
seasonal home range would be the whole pond system rather than a single pond because they
can move easily from one pond to another. Therefore, if the fluctuation of A is poorly coupled
among ponds-as found in our system-waterfowls could exploit the ponds with high A, making
the system more predictable for them. In other words, single-pond fluctuation is fine-grained
for waterfowls.

6. Conclusions

When characterizing fluctuations in a natural system, ecologists face the following two prob-
lems: the need to gather long-term data and the handling of these valuable data that are tough
to acquire. We have shown that remote sensing data have become more accessible, which
opens an opportunity for ecologists to obtain the long time series needed to calculate predict-
ability metrics. Our analysis at this step is restricted to a specific variable (A) and type of habi-
tat, but this type is important in many geographic regions. Once this long-term data series is
acquired, a model that produces a predictability metric has to be developed. We thus per-
formed a conceptual analysis in which we propose several models based on how the variation
of the focal variable can be relevant to different organisms with different strategies and life his-
tories. Interestingly, in addition to Colwell’s approach, we have introduced GAM fitting as an
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alternative approach for measuring predictability; thus, the effect of a continuous vs. a discrete
approach could be studied. Our methodology extracted meaningful information regarding the
degree of predictability of a set of Mediterranean ponds. Interestingly, some model assump-
tions have been shown to exert minor effects (as shown by the correlation data and the cluster
analysis). In contrast, other model assumptions caused divergences in predictability estima-
tions, and we propose that this divergence can be associated with the differences in how the
organism of interest perceives fluctuations in its environment. The methodology described in
this manuscript is applicable to a wide variety of study systems and will be valuable for quanti-
fying and characterizing predictability, which is essential considering the predicted scenario of
upcoming global increases in the unpredictability of environmental fluctuations [3,5]. Interest-
ingly, the satellite Sentinel 2A, which was recently launched in 2015, and satellite Sentinel 2B,
which will be lunched in the near future, will work with Landsat 8 to provide images every
three to five days. This improvement in the temporal resolution of remote sensing data will
enable us to improve the area estimations and better study the variability.

Supporting information

S1 Fig. Relationships among the water-surface area (A) obtained through a direct inspec-
tion of aerial scenes and the A values from raw satellite scenes after applying only the first
condition (left panel, Y axis) and after applying the 2cA assessment (right panel, Y axis).
The dots are the values for 19 out of 20 ponds recorded in the years 2006 and 2009. The maxi-
mum time for matching values corresponding to the two estimations was 18 days. Linear least
squares fitting is represented as a continuous line, and the corresponding equation and deter-
mination coefficient are shown in the upper right corner of each panel. The dashed line repre-
sents the ideal situation in which a perfect match exists between the aerial and satellite
estimations of A. n = 33; the pair 0-0 was found in 18 cases in the left panel and 22 cases in the
left panel.
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S2 Fig. Bars: Percentage of satellite scenes in which salt-covered pixels (TM4< 0.4) were
detected after retaining potentially water-covered pixels (MNDWI> 0) at each pond. The
means and standard deviations (shown between parentheses) of the percentage of reduction
are shown above.
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S1 Table. Data used for validation of satellite water-surface area estimation (from aerial
scenes) and presence/absence of water (from field observations).
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$2 Table. Number of pixels assigned as water-covered pixels and to cloud-covered pixels
in each pond (columns) and satellite scene (rows).
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