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Abstract

The diversity of microbiota is best explored by understanding the phylogenetic structure of

the microbial communities. Traditionally, sequence alignment has been used for phyloge-

netic inference. However, alignment-based approaches come with significant challenges

and limitations when massive amounts of data are analyzed. In the recent decade, align-

ment-free approaches have enabled genome-scale phylogenetic inference. Here we evalu-

ate three alignment-free methods: ACS, CVTree, and Kr for phylogenetic inference with 16s

rRNA gene data. We use a taxonomic gold standard to compare the accuracy of alignment-

free phylogenetic inference with that of common microbiome-wide phylogenetic inference

pipelines based on PyNAST and MUSCLE alignments with FastTree and RAxML. We re-

simulate fecal communities from Human Microbiome Project data to evaluate the perfor-

mance of the methods on datasets with properties of real data. Our comparisons show that

alignment-free methods are not inferior to alignment-based methods in giving accurate and

robust phylogenic trees. Moreover, consensus ensembles of alignment-free phylogenies

are superior to those built from alignment-based methods in their ability to highlight commu-

nity differences in low power settings. In addition, the overall running times of alignment-

based and alignment-free phylogenetic inference are comparable. Taken together our

empirical results suggest that alignment-free methods provide a viable approach for micro-

biome-wide phylogenetic inference.

Introduction

Historically, bacterial systematics has been a difficult problem because bacteria lack morpho-

logical features, which would be easy to characterize. However, after Carl Woese and collabo-

rators started creating phylogenies based on small subunit (SSU) ribosomal RNA (rRNA)

sequences[1], sequence-based phylogenies have been accepted as the standard in creating the

Tree of Life inference by many biologists. Morphology-based taxonomies have been almost

entirely superseded by sequencing-based systematics approaches.
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The overwhelming explosion in the amount of genetic sequence data available for research

has been brought about in the last decade by advances in molecular sequencing technologies.

Traditional analysis pipelines for such data involve alignment-based methods such as BLAST

[2], PyNAST [3], NAST [4], and SINA [5]. The ability to perform high-throughput sequencing

of marker genes, such as 16S rRNA gene, has enabled en masse microbial community surveys.

The studies in this area have yielded valuable information for characterization of the human

microbiome and for understanding its role in many diseases such as irritable bowel syndrome,

chronic obstructive pulmonary disease [6], obesity [7, 8], diabetes [9], psoriasis [10], cancer

[11], and depression [12]. From the sequencing-informatics perspective, sequence alignment

has remained an important algorithmic approach in microbiomics. The challenge of align-

ment-based approaches is in dealing with the volume of the data in terms of computation time

and data management. Many analyses have reduced the severity of the problem by clustering

individual sequences into operational taxonomical units (OTUs). Doing so significantly

reduces the number of sequences that need to be aligned and have their phylogenetic relation-

ships inferred, typically from millions of raw sequences to a few thousand representative

sequences for the OTUs. However, many concerns still exist about the ability to infer reliable

pairwise alignments, and subsequently to infer multiple sequence alignments necessary for

phylogenetic inference.

In whole-genome phylogenetic inference, alignment-free approaches have been proposed

over the past three decades [13, 14], bringing with it an explosion of reports on new align-

ment-free approaches in the last 10 years [15]. These approaches typically forego the necessity

to infer multiple sequence alignments for phylogenetic inference by considering evolutionary

models built on more complex characters than single nucleotides or amino acids. A majority

of these models deal with quantitation of specific k-mer words, which are treated as unitary

traits. The idea of k-mer, or perfectly matched strings of selected length, have been used by

groups such as Blasdell and Gibbs et al in tree inferences for proteins and nucleotides [16]. By

ascertaining the frequency or presence and absence of these k-mers, a trait table or an evolu-

tionary distance matrix can be created to facilitate phylogenetic inference.

In this study, we aim to extend the application of three alignment-free methods, ACS [17],

CVTree [18], and Kr [19], to phylogenetic inference with 16S rRNA gene data. We evaluate

the performance of these methods in terms of accuracy and computation time. For reference,

we compare these methods to phylogenies derived from traditional alignment-based methods.

Namely, we infer phylogenies by FastTree [20] and RAxML [21] built on PyNAST [3] or MUS-

CLE [22] alignments, which are approaches widely used for 16S rRNA gene analysis in the

microbiome community (for example, see [23], [24], [25]). We use Greengenes taxonomy as a

gold standard to evaluate correctness of the trees inferred by all methods. We also utilize stool-

derived data from the Human Microbiome Project Data Analysis and Coordination Center

(hmpdacc.org) to re-simulate the data and test the performance of these methods for gut com-

munity studies, which are the most widely funded and studied to date.

Methods

Data

To re-simulate realistic datasets for method evaluation purposes, we have obtained sequences

from the Greengenes 16S rRNA gene database [26] and from the Human Microbiome Project

(HMP) Data Analysis and Coordination Center (DACC) [27]. We re-simulate human stool

communities by sampling OTUs from HMP datasets. We mimicked the typical characteristics

of a microbiome datasets in terms of the number and the representation of OTUs by resampling

from existing stool microbiota. Each re-simulated community consisted of approximately 5,000
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OTUs drawn randomly from OTUs present in HMP stool samples. This was done by filtering

Greengenes to only obtain species occurring in the stool subsets. The number of OTUs was cho-

sen as typical for evaluation of microbiome datasets.

Alignment-free phylogenetic inference methods

Next we describe the alignment-free methods for generating pairwise distance matrices.

Average common substring approach (ACS) [17] is based on matching statistics, and com-

putes locally maximal common substrings between two sequences, X and Y. The longest com-

mon subsequence for each position i in a sequence X is defined as the longest identical string

in sequence Y starting with the letter X[i]. The average length of these longest common sub-

strings is calculated as a reflection of similarity between X and Y. For example, given two

sequences X = ‘TCTGA’ and Y = ‘CCTGT’, the length would be 3. ACS is normalized to

account for the sequence lengths, resulting in a similarity measure between X and Y. To con-

vert it to a distance, the inverse is taken and a correction term is subtracted to ensure that the

distance between identical sequences is 0. The running time of ACS distance computation

algorithm is linear in the length of the longest sequence. The efficiency of the algorithm allows

pairwise distance computation for a moderate to large number of sequences.

CVTree [18] uses a composition vector approach. Given a DNA or amino acid sequence of

l, it finds the frequency of appearance of overlapping strings of a fixed length k in the sequence.

The frequency can also be divided by the total number (l-k+1) of k-strings to obtain the proba-

bility of that string appearing in the protein. The collection of frequencies and probabilities

can be thought of as the result of mutations and selection forces with each k-string as a unit.

While mutations happen randomly at the molecular level, selections are the forces that drive

evolution. Neutral mutations account for some randomness found in the k-string composi-

tion. They are referred to as the random background and must be subtracted from the simple

counting results to find the selective changes. After counting for all strings of k-1 mers and k-2

mers, the probability of appearance of k-string can be predicted using a Markov assumption.

The difference between the actual counts and predicted counts is then used as the component

of a new “normalized” CV, and pairwise distances between the new CVs are computed to gen-

erate a dissimilarity matrix.

Kr method [19] attempts to estimate pairwise sequence similarity based on the lengths of

exact matches between pairs of sequences at each position. Kr therefore uses a quantity similar

in concept to ACS, but computes the average shortest unique substring while ACS uses the

average common string. For example, given two sequences X = ‘TCTGA’ and Y = ‘TCGGT’, at

every position i along the sequence X, we find the shortest substring starting at i that is not

found in Y. In this case, ‘TCT’ is the shortest string starting at position 1 that is absent from Y.

The average length of these absent substrings is calculated to infer similarity between the two

sequences. Because this method is based on a mathematical model of DNA sequence evolu-

tion, it is restricted to DNA sequences. However, this method is reported to be more accurate

than model-free approaches [19].

Evaluation methodology

A general outline of the methods used in the comparisons is provided in Fig 1. We evaluate

the alignment-free methods relative to the common alignment-based inference approaches on

re-simulated stool communities.

After we filtered the OTUs from the HMP dataset, the taxonomic identity of these OTUs

have been used to generate the gold standard, with their respective reference sequences used

Alignment-free methods for microbiome data
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for tree inference. The obtained trees are then compared using PHYLIP program TREEDIST.

The parameters used for running individual programs can be found in S1 Text.

To compare the alignment-free methods to the state-of-the-art methods in microbiome

community, we have included trees obtained from alignment-based methods. Specifically, for

alignment method, we used PyNAST [3] and MUSCLE [22]. PyNAST is a widely used align-

ment-based tool for 16S rRNA gene analysis. It takes a set of sequence and aligns it against a

template alignment, and gives the output of a multiple sequence alignment with the same

number of positions as the template alignment. MUSCLE, short for Multiple Sequence Com-

parison by Log-Expectation, was shown to achieve similar accuracy and improved speed com-

pared to the other major methods for alignment of nucleotide and protein sequences. After

obtaining the alignment from either PyNAST or MUSCLE, we then use maximum likelihood

(ML) methods FastTree [20] and RAxML [21] for inferring the phylogeny. FastTree uses the

alignment to produce a maximum-likelihood phylogenetic tree by iterative rearrangement of

branches. It uses the Jukes-Cantor or generalized time-reversible (GTR) models of nucleotide

evolution. RAxML is the current leading method for large-scale ML estimation, and it is

shown to yield the best ML scores compare to many other methods. These alignment-based

trees have been included in the tree distance computation with alignment-free trees.

In the second comparison, we created consensus trees of each group to compare the accu-

racy of alignment-free and alignment-based trees as a whole. We used the same re-simulation

strategy as in the first comparison. The PHYLIP program CONSENSE is used to create con-

sensus trees from individual trees. We first computed the consensus tree of the alignment-free

trees using CONSENSE. After resolving multifurcations in the consensus tree by adding zero-

length branches, we next used FITCH to estimate the branch lengths of the consensus tree

under the three alignment free alternatives. The final branch lengths have been computed as

the average branch length for ACS, Kr and CVTree. Similarly, we also obtained consensus

Fig 1. Method evaluation flowchart. Subsets of 5000 representative sequences for operational taxonomical

units (OTU) of stool samples from the Human Microbiome Project have been drawn. Trees are obtained in

three ways: alignment-free method (left), golden standard based on taxomic identity (middle), and alignment-

based method using traditional methods (right). The trees are then compared to one another using Treedist,

with the distance representing how similar they are to each other (lower number denotes greater similarity).

Ten replicates of each comparison have been performed and the results are averaged.

https://doi.org/10.1371/journal.pone.0187940.g001
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trees for the alignment-based methods. We created a consensus for each alignment method

(such as a consensus with MUSCLE-based alignment, namely MUSCLE + FastTree and MUS-

CLE + RAxML) and for each tree inference (such as a consensus with FastTree inference,

namely MUSCLE + FastTree and PyNAST + FastTree). We also created a consensus tree of all

alignment-based trees. The consensus trees have been included in the tree distance computa-

tion as in the other comparisons.

Taxonomic tree generator algorithm. To establish a taxonomic tree, we created a “tree gen-

erator” program that generates the tree based on the taxonomy information provided by

Greengenes, which would serve as the “gold standard” in evaluating the accuracy of the trees.

The program does so by first storing the taxonomy information in the form of a matrix, which

includes the name of each sequence and its taxonomy information. It then goes through the

taxonomy information level by level (i.e. domain, kingdom, phylum. . .) and compares the

sequences to one another at each level. The resulting comparison results are written in the

required tree structure.

All experiments presented in this manuscript were run on the Asclepius Compute Cluster

at the Center for Health Informatics and Bioinformatics (CHIBI) at New York University Lan-

gone Medical Center (http://www.nyuinformatics.org).

Results

The distances to taxonomic tree for each method, across the 10 replicates, are reported in the

form of a box plot in Fig 2. We compare the methods first within each group and than to each

other.

Alignment-free methods perform comparably in recovering the

taxonomic tree

First, we evaluate the relative performance of the three alignment-free methods in recovering the

taxonomic tree. On average, all three methods perform comparably with no clear winner. Inter-

estingly, even though the overall similarity of the alignment-free trees to the taxonomic tree is

comparable, there is a lot of discordance among the trees inferred by the three alignment-free

Fig 2. Tree distances of alignment-free methods and alignment-based methods relative to the gold

standard taxonomic trees. Ten replicate subsets of sequences from Greengenes have been obtained and

phylogenies inferred using alignment-free methods (ACS, CVTree, and Kr) and alignment-based methods

(PyNAST or MUSCLE-based alignment, FastTree or RAxML inference). TREEDIST distances between the

phylogenies inferred by each method as well as the taxonomic gold standard have been computed. Smaller

distances indicate better resemblance of the taxonomy in the corresponding inferred phylogenies. Sequences

from HMP derived stool samples have been used to compare all the methods. Distances across the replicates

are reported. P = PyNAST, M = MUSCLE, F = FastTree, R = RAxML.

https://doi.org/10.1371/journal.pone.0187940.g002

Alignment-free methods for microbiome data

PLOS ONE | https://doi.org/10.1371/journal.pone.0187940 November 14, 2017 5 / 12

http://www.nyuinformatics.org/
https://doi.org/10.1371/journal.pone.0187940.g002
https://doi.org/10.1371/journal.pone.0187940


methods (S1 Fig). This discordance suggests that the distance metrics capture different aspects

of the evolutionary process.

PyNAST and FastTree are superior among alignment-based methods

We now compare the alignment-based methods. Alignment by PyNAST with inference by

FastTree clearly produces the most accurate tree. This is followed by alignment by MUSCLE

with inference by FastTree. The other two RAxML-based inferences lag behind, with

PyNAST/RAxML performing better than MUSCLE/RAxML.

Alignment-free methods lag alignment-based methods in recovering the

taxonomic tree

Alignment-based trees bear more resemblance of the taxonomic trees than the alignment-free

trees, which perform similarly to one another. FastTree obtained from PyNAST alignment is

the most accurate, followed by FastTree from MUSCLE alignment. FastTree inference thus

appears to produce the closest tree to the taxonomic tree.

Consensus tree from alignment-free methods is superior to consensus

tree from alignment-based methods in recovering the taxonomic tree

Although individual trees from alignment-free method on average perform worse than trees

from alignment-based method, we investigate how a consensus tree built from alignment-free

methods compares to alignment-based method in terms of performance. The large discor-

dance we observe before among alignment-free methods might now result in a more powerful

consensus compared to the consensus of the more similar alignment-based methods. There-

fore, we created a consensus tree from ACS, CVTree, and Kr, as well as consensus trees of a

combination of PyNAST, MUSCLE, FastTree, and RAxML. We use the same sequence subsets

as in the previous comparison to evaluate the similarity of a consensus trees with the taxo-

nomic tree. The result is consistent among the replicates, and the distances are reported in Fig

3. In all the cases, the consensus of alignment-free results in smaller distances to the gold

Fig 3. Tree distances of consensus tree of alignment-free methods, consensus of MUSCLE-based

alignments, consensus of PyNAST-based alignments, consensus of FastTree inference, consensus

of RAxML inference, consensus of all alignment-based methods relative to gold standard taxonomic

tree. Using the same subsets as in Fig 2, a consensus tree based on the three alignment-free methods has

been built. Similarly, consensus trees based on different combinations of alignment-based methods are built.

TREEDIST distances across the replicates are reported; smaller distances indicate better resemblance of the

consensus tree to the gold standard taxonomic tree.

https://doi.org/10.1371/journal.pone.0187940.g003
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standard taxonomic tree, showing superior performance to all the other consensus trees,

including the consensus tree of all the alignment-based methods.

Running time

For alignment-based methods, the timing is broken down into two components, with the first

getting alignment from either PyNAST or MUSCLE, and the second performing the inference

using FastTree or RAxML. PyNAST alignments took approximately 6 minutes, and MUSCLE

took about 3 hours. FastTree spent approximately 45–60 minutes generating the tree, while

RAxML took on average 25 hours. Therefore the total time varied from one hour (PyNAST/

FastTree) to up to 28 hours (MUSCLE/RAxML).

For alignment-free methods, the timing is composed of initially building distance matrices,

and then building trees from the distances matrices using NEIGHBOR. Building the distance

matrices with CVTree took approximately 5 minutes, while building the distance matrices for

ACS and Kr took approximately 5 hours. Neighbor took on average 1 to 2 hours to build a tree

for each of these methods. The total time varied from a little over 1 hour (CVTree/Neighbor)

to 7 hours (ACS/Neighbor and Kr/Neighbor).

Building the consensus tree from individual trees took approximately 3 minutes regardless

of the tree types.

Alignment-free methods result in better separation of relevant

experimental groups in PERMANOVA analyses

A commonly adopted approach for analysis of microbiome data is to perform permutational

multivatiate analysis of variance analysis (PERMANOVA) to associate the microbial commu-

nities with experimental variables [28]. This analysis uses arbitrary distances to compute

pseudo-F statistic for the factor of interest and assess its significance via permutations. The

choice of a distance for PERMANOVA analysis may have an effect on its power to detect dif-

ferences. Phylogenetically-based distances, such as weighted Unifrac [29] have been shown to

have superior performance in such analyses. The weighted Unifrac distance takes a phyloge-

netic tree as input to determine the differences between communities. A choice of a phyloge-

netic inference method thus affects the PERMANOVA inference with Unifrac distances.

We re-analyze the data from a recent study of the effect of sub-therapeutic antibiotic treat-

ment (STAT) on the microbiota [7]. In this study, mice have been continuously administered

low doses of antibiotics (penicillin, vancomycin, tetracyclin, and vancomycin-penicillin cock-

tail) in their drinking water or acidified water. At sacrifice the fecal and cecal contents of these

mice have been analyzed. We computed pairwise distances between all samples using weighted

Unifrac distances with phylogenies obtained by each of the alignment-free methods consid-

ered here and the FastTree with PyNAST tree used to analyze these data originally. We have

used PERMANOVA to associate the location (cecal or fecal) from which the sample has been

obtained, and the location in conjunction with the treatment type. Table 1 summarizes the

estimated effect sizes and significance values for this analysis. We note that the estimated effect

size based on FastTree weighted Unifrac distances is higher than for any of the alignment-free

methods or their consensus. However, when the treatment effect is considered, the estimated

effect is larger for the alignment-free methods, and largest for the alignment-free consensus.

This results holds regardless of which effect size measurement is used—the coefficient of deter-

mination (R2) or omega squared (ω2), which has been shown to be superior for microbiome

studies [30]. All of the results are statistically significant. This suggests that while FastTree phy-

logenies help improve separation for large effect sizes, the alignment-free phylogenies may be

better for narrowing in on smaller yet important effects (Fig 4).

Alignment-free methods for microbiome data
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Empirical results confirm better discriminatory power of alignment-free

consensus

We have further explored the question of whether alignment-free consensus tree helps to dis-

tinguish small effect sizes in PERMANOVA analysis of the weighted Unifrac distances. Here

we considered the control fecal specimens from the STAT dataset and simulated additional

datasets for comparison by permuting a prescribed number of OTU labels (250, 500, 1,000,

1,500 or 3,000 OTUs were perturbed). This allowed us to obtain datasets with varying effect

sizes without affecting the underlying phylogenetic structure between OTUs. We have ana-

lyzed the resulting simulated datasets for differences from the original data using PERMA-

NOVA with weighted Unifrac distances based on the alignment-free consensus and PyNAST

Table 1. Significance and effect size estimates for PERMANOVA testing (10,000 permutations) of the

association of the microbiome and experimental variables.

R2 ω2 P-value

Location

FastTree 0.546 0.536 <0.0001

ACS 0.362 0.351 <0.0001

Kr 0.370 0.359 <0.0001

CV 0.464 0.454 <0.0001

Consensus (ACS, Kr, CV) 0.297 0.286 <0.0001

Antibiotic type | Location

FastTree 0.098 0.056 <0.0001

ACS 0.127 0.084 <0.0001

Kr 0.121 0.079 <0.0001

CV 0.111 0.068 <0.0001

Consensus (ACS, Kr, CV) 0.138 0.095 <0.0001

https://doi.org/10.1371/journal.pone.0187940.t001

Fig 4. Principal coordinates analysis of the weighted unifrac distances computed with (A) FASTTREE, (B) ACS, (C) Kr, (D) CV, (E) alignment

free consensus phylogenies and grouped by sample location, and grouped by antibiotic treatment type C-control, P-penicillin, V-vancomycin,

T-tetracyclin, VP-vancomycin and penicillin after centering according to sample location with (F) FastTree, (G) ACS, (H) Kr, (I) CV, and (J)

alignment free consensus phylogenies.

https://doi.org/10.1371/journal.pone.0187940.g004
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with FastTree phylogeny (Fig 5). We note that when effect sizes are large (Fig 5A), the infer-

ence obtained with both trees are almost identical. However, in the cases with small effect

sizes, we note that the p-values obtained with alignment-free phylogenies tend to be lower,

indicating a higher power to detect small effects (Fig 5B).

Discussion

Our comparisons show that alignment-free methods are not inferior to alignment-based meth-

ods in giving accurate results in the form of robust phylogenic trees. In fact, consensus ensem-

bles of alignment-free phylogenies are far superior to those based on alignment-based

methods in correctly recovering taxonomic relationships.

In comparing the distances of taxonomic trees and trees derived from alignment-free meth-

ods, it appears that even though the three alignment-free methods have similar accuracy, they

capture different aspects of the evolutionary process, resulting in different tree topologies.

Alignment-based methods, on the other hand, are much more similar to one another. Thus, it

is likely that alignment-free methods approximate the evolutionary features using a variety of

techniques that capture different characteristics of the true evolutionary process.

When each individual alignment-free tree is compared to an alignment-based tree from a

combination of PyNAST, MUSCLE, RAxML and FastTree, the performance is lower, with the

tree from PyNAST/FastTree showing the greatest accuracy. However, the consensus of the

alignment-free methods performs far superiorly to the consensus from alignment-based meth-

ods in terms of accuracy. The greater dissimilarity among the alignment-free trees as noted

Fig 5. Comparison of effect size in PERMANOVA analysis with alignment-free consensus tree and with an alignment-

based method. We have simulated data with various effect sizes by resampling permuted communities from control fecal

specimens of the STAT dataset.ω2 has been computed in comparison of the weighted Unifrac distances based on both trees. The

plots show the log ratio of the p-value vs. the mean of the estimated effect sizes. In (A) the entire range of effect sizes is considered

and we note that at high effect sizes there is agreement in inference based on the two trees. In (B) small effect sizes are examined

closely. Here the significant positive intercept of the regression indicates that alignment-free consensus phylogeny results in lower p-

value than phylogeny inferred with FastTree based on PyNAST alignment.

https://doi.org/10.1371/journal.pone.0187940.g005

Alignment-free methods for microbiome data

PLOS ONE | https://doi.org/10.1371/journal.pone.0187940 November 14, 2017 9 / 12

https://doi.org/10.1371/journal.pone.0187940.g005
https://doi.org/10.1371/journal.pone.0187940


above results in less resolved consensus trees, which are more reflective of the taxonomic gold

standard.

Moreover, alignment-free methods appear to be superior at deriving better separation of

small effect sizes. We are able to show through our re-analysis of a dataset on sub-therapeutic

antibiotics that alignment-free phylogenies facilitated better separation of the effect of the rele-

vant treatment. Similarly, our analysis of simulated datasets of fecal specimens with varying

effect sizes also confirmed that alignment-free phylogenies are more sensitive at detecting

small effects than their alignment-based counterparts.

Overall, the running times of alignment-based and alignment-free phylogenetic inference

are comparable. In terms of running time, CVTree is the fastest method, which takes only

approximately 5 minutes to generate the distance matrices while maintaining similar accuracy

to the slower alternatives. The fact that ACS and Kr are slow in building distance matrices

reflects on potential algorithmic and implementation inefficiencies, rather than inferior

computational complexity. This inefficiency should be possible to overcome with additional

software engineering. Creating the consensus tree from the individual trees requires a rela-

tively short running time. While the total time for building the consensus tree (including

building the individual trees) is significantly longer than for PyNAST/FastTree, the accuracy

achieved may make it a worthwhile endeavor. It is also worth noting that while PyNAST and

FastTree were considerably faster than the alignment-free methods, the other combinations

took significantly longer times. In particular, MUSCLE took about three hours longer than

PyNAST and RAxML, averaging about 24 hours (versus only an hour for FastTree). The result

of PyNAST/FastTree, as noted above, was also better than any other alignment-based

combination.

Although alignment-free methods are able to overcome the limitations of alignment-based

methods as discussed previously, they are often passed over because of the presumed compro-

mise in accuracy. However, our study showed that while individual tree may have decreased

accuracy, their consensus trees may actually achieve greater accuracy. Most importantly as

demonstrated by our re-analysis of the sub-therapeutic antibiotic treatment dataset, some

studies may benefit from utilization of alignment-free trees, which may help to bring out

important smaller effects.
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