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Empresa Brasileira de Pesquisa Agropecuária, Brası́lia, Distrito Federal, Brazil, 4 Embrapa Clima

Temperado, Empresa Brasileira de Pesquisa Agropecuária, Pelotas, Rio Grande do Sul, Brazil,
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Abstract

Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the

production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic

respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is

10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is impor-

tant component of flooding. Even when oxygen is externally available, oxygen deficiency

frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems,

seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional

responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars

under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve

and respond to hypoxia, stable and differentially expressed genes were characterized struc-

turally and compositionally comparing its mechanistic relationship. Between cultivars,

Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of

phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein

myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and

fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin

(Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional

changes for genes in amino acids and derivative metabolic process suggest involvement of

amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endo-

plasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter

TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-

responsive elements) frequency. Gene groups also differed in structure, composition, and

codon usage, indicating biological significances. Additional data suggests that cis-acting
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ABRE elements can mediate gene expression independent of ABA in soybean roots under

hypoxia.

Introduction

Regimes of excess water (flooding) influence the distribution and diversity of species in natural

ecosystems [1] and lead to yield losses of many farmland crops [2]. The increase in flooding

events over the past six decades is associated with climate change, which threatens food security

of the growing human population [3]. Among the four major crops (soybean, wheat, maize,

and rice), only rice is adapted to soil waterlogging and all are sensitive to submergence [2].

The oxygen diffusion in water is 10,000 times lower than in air [4]. Thus, water surrounding

roots (waterlogging) or entire plants (submergence) can cause severe energy crisis once oxygen

is required for energy production through mitochondrial respiration [5]. Additionally, even

when oxygen is externally available, oxygen deficiency is frequent metabolic status of bulky,

dense or metabolically active tissues such as phloem, meristems, seeds, and fruits [6]. It is

required in several metabolic pathways, including heme, sterol, and fatty-acid biosynthesis [6].

Orchestrated by complex gene regulatory network, plants and other organisms need to per-

ceive, signal, and promote biochemical, physiological, and morpho-anatomical changes appro-

priate to survive and thrive under oxygen level fluctuations. The adaptation capacities of crops

validated under stress field conditions have shown association with gene duplication events

[7]. As an example, the multigenic SNORKEL (SK) and SUBMERGENCE-1 (SUB1) loci are

found in deep-water and submergence-tolerant rice varieties, respectively [8,9]. Both loci are

members of AP2 (APETALA2)/ERF (Ethylene Responsive Factor) plant-specific transcription

factors superfamily. They encode tandem-repeated genes, of which SK2 [8] and SUB1A-1 [9]

are majorly responsible for the rapid-growth avoidance escape (SK2) and energy saving quies-

cence (SUB1A-1) strategies against oxygen deprivation.

Unlike rice, soybean genome does not contain SUB1 and SK2 orthologs [10]. So far, only

QTLs (Quantitative Trait Loci) with small effect for waterlogging tolerance have already been

predicted in soybean [11,12]. In addition, few soybean studies of transcriptome-wide

responses to flooding stress have already been reported, and those that have all examine a sin-

gle genotype. Chen et al. [13] evaluated the leaf transcriptome from adult soybean seven days

after waterlogging. Yin et al. [14] performed transcriptomic analysis of flooding-tolerant line

and ABA-treated newly germinated seedlings under hypoxic stress. Others studies analyzed

transcriptomes from shoots (cotyledons including hypocotyls) [10] and roots including hypo-

cotyls [15,16] of newly germinated soybean seedlings under hypoxic stress.

In the present study, we analyzed conserved and divergent root transcriptional responses

between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic

stress by using RNA-seq platform. For progress to understand how soybean genes evolve and

respond to hypoxic stress, stable (SGs) and differentially expressed genes (DEGs) were struc-

turally and compositionally characterized, comparing its mechanistic relationship with expres-

sion regulation.

Materials and methods

Grain yield

Under field conditions, Embrapa 45 and BR 4 seeds were sown on December 21sh, 2011, at

Embrapa Clima Temperado, Pelotas, RS, Brazil (latitude 31˚42’S and longitude 52˚24’W). The
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experiment was carried out in randomized blocks, with four replicates (75 plants per plot, at a

density of 200,000 plants/ha). The seed emergence occurred six days after sowing. The first

waterlogging occurred 18 days after sowing due to heavy rain, lasting five days. We observed

mild symptoms of yellowing leaves. On February 15th, 2012, we waterlogged the soil beds,

maintaining water level 2 cm above the soil surface for 10 days. The plants developed typical

reaction to waterlogging. Harvest was done on May 23th, 2012. All seeds were collected and

corrected to 13% moisture content. Data met assumptions of the analysis of variance

(ANOVA). Thus, means were compared by the Tukey test 5%.

Plant material for RNA-seq and qRT-PCR analysis

Previously described [17], using a hydroponic system under greenhouse conditions, the exper-

iment was set in a randomized block design composed of twelve treatments: two cultivars

(Embrapa 45 and BR 4), two oxygen conditions [fully aerobic state (normoxy) and hypoxic],

and three treatment sampling times (0.5h, 4h, and 28h). Each treatment has three biological

replicates (four plantlets per replicate in order to reduce biological variation). At each time

point, root tissues were collected and immediately frozen in liquid nitrogen before being

stored at -80˚C. We compared stressed and unstressed samples at the same time point to

remove putative additive effects, such as gene-intrinsic effects (e.g., circadian rhythm [18]),

differences in developmental stages among individuals, or any unknown variation between the

time points [17].

Total RNA was extracted using Trizol reagent (Invitrogen) and treated with DNase I (Invi-

trogen) according to manufacturer instructions. RNA concentration and purity were mea-

sured using a spectrophotometer (NanoDrop, ND-1000), and the integrity of the molecules

was analyzed on 1% agarose gels stained with ethidium bromide.

Transcriptome library construction, deep sequencing, and mapping of

reads

For each of twelve treatments, equimolar quantities of purified total RNA from roots of twelve

plants were pooled to result one library. Then, the twelve libraries were sent to Fasteris SA

(Plan-les-Ouates, Switzerland) for processing and sequencing.

The RNA quality and integrity was checked using an Agilent 2100 Bioanalyzer (Agi-

lent, Palo Alto, CA), of which only samples with a RIN � 8.0 were used. The twelve librar-

ies were processed (poly-A purification, fractionation, cDNA synthesis using random

primers, and ligation to bar-coded adapters), fragments of 150–250 bp were isolated and

multiplexed, resulting one sequencing library. The sequencing library is a pool of equi-

molar quantities from twelve initial libraries, each library with a specific barcode for fur-

ther bioinformatic discrimination. Single end reads were generated by the Illumina

HiSeq 2000 (read length 1 × 100 base; one lane of the flow-cell; Illumina, Inc. San Diego,

CA). The raw data, deposited in the ArrayExpress database (http://www.ebi.ac.uk/

arrayexpress) under accession number E-MTAB-5709, was uploaded to the GeneSifter

platform (Geospiza, Seattle, WA) for alignment with the soybean genome (assembly

Glyma 1.1) [19]. The mapping of reads and transcripts analysis was done as described

previously [18].

For structural analysis of non-symbiotic hemoglobin Glyma11g12980.1 transcript, reads

from each cultivar were de novo assembled with Trinity [20] (standard parameters with mini-

mum contig length of 400bp) and mapped to the Glyma11g12980.1 reference (Phytozome

transcript model) using BWA-MEM (v0.7.5) [21] default settings.
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Transcriptomic analysis

For each time point (0.5, 4, and 28h), the expression ratio (fold-change, fc) of genes was per-

formed by dividing transcript abundance values (in RPM = Reads per Mapped Million) from

plants under hypoxic and normoxic conditions. The statistical significance of DEGs were

obtained by using Bioconductor package edgeR [22], corrected by Benjamini and Hochberg

method [23]. We only considered as DEGs those showing fold-change� 2 (up),� -2 (down),

adj. p-value� 0.01, and with more than 20 mapped reads (RPM� 9) in at least one of the two

compared libraries.

Gene set enrichment analysis was performed using Singular Enrichment Analysis (SEA)

provided by agriGO (http://bioinfo.cau.edu.cn/agriGO/) [24]. We chose hypergeometric test,

corrected by Hochberg FDR method, plant GO slim database. Soybean pathways of DEGs

related to amino acids and its derivatives were analyzed using KEGG Mapper—Search&Color

Pathway [25]. The Relative Synonymous Codon Usage (RSCU) was calculated with CodonW

1.4.4 (http://mobyle.pasteur.fr/cgi-bin/portal.py?#forms::CodonW). The copy numbers of soy-

bean nuclear tRNA genes was extracted from the genomic tRNA database (http://gtrnadb.

ucsc.edu/) [26]. Samples sizes used for structural and compositional analysis among groups of

genes are shown in the Table A in S1 Supporting Information.

The Microsoft Excel (Microsoft, Redmond, WA) was used for TATA-box searching in pro-

moter regions and structural/compositional characterization of genes. For hypothesis testing

on binary data, we used Microsoft Excel add-in Real Statistics Resource Pack (ver. 3.3.1, http://

www.real-statistics.com/).

qRT-PCR analysis

For quantitative real-time PCR (qRT-PCR) analysis, the synthesis of cDNA, design of primers,

and expression analysis of genes used to verify reliability of RNA-seq expression data were

done as described previously [17] (Table D in S1 Supporting Information).

Results and discussion

In the present study, we analyzed root RNA-seq data from flood-tolerant Embrapa 45 and

flood-sensitive BR 4 soybean cultivars that showed contrasting grain yields when cultivated in

waterlogged soil (Fig 1). In order to evaluate pairwise RNA-seq data, the relative expression of

six common hypoxia-responsive genes [Trehalose-6-Phosphate Synthase (Glyma17g07530),

Ascorbate Peroxidase (Glyma12g07780), Sucrose Synthase (Glyma13g17420), Alternative Oxi-

dase (Glyma04g14800), non-symbiotic Hemoglobin (nsHB; Glyma11g12980), and Nitrate

Reductase (Glyma06g11430)] were determined by qRT-PCR. The non-log-transformed

qRT-PCR and RNA-seq expression data were consistent for all these genes (Fig 2) showing a

strong positive Pearson correlation (r = 0.95; P< 0.001), indicating reliability in our transcrip-

tome analysis.

Transcriptome reconfiguration

Induction of signaling genes and down-regulation of genes related with energy-consum-

ing processes under hypoxia. From 54,174 predicted protein-coding genes in the soybean

genome (assembly Glyma 1.1) [19], 2,656 up-regulated (URGs) and 4,970 down-regulated

genes (DRGs) were found in both cultivars under hypoxic stress. Of these total, after 0.5, 4,

and 28h of root hypoxia, 1,144, 5,687, and 3,761 genes were differentially expressed, of which

89, 28, and 46% were URGs, respectively (Fig 3). In Arabidopsis thaliana, another flood-sensi-

tive species, more URGs were also observed in roots after 0.5h of hypoxic stress, and URGs

Transcriptome reconfiguration under hypoxic stress
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were more prevalent deeper into stress conditions [27]. In contrast to our findings in soybean

data, where DRGs number decreased after 28h, DRGs remained after 168h of waterlogging in

roots of flood-tolerant gray poplar (Populus × canescens) [28]. Even so, Embrapa 45 showed

Fig 1. Grain yields of two soybean cultivars (flood-tolerant Embrapa 45 and flood-sensitive BR 4)

under two moisture regimes in the soil. Control indicates well-watered conditions (70% available water in

the soil). n = 4, except for BR 4 under waterlogging (n = 3). Each biological repetition consisted of 75 plants,

from which grain yield were converted to 200,000 plants per hectare. Means values (± S.E.M.) followed by

different capital letters between cultivars under same soil condition, and lowercase letters between soil

conditions for same cultivar, significantly differ according to Tukey test 5%.

https://doi.org/10.1371/journal.pone.0187920.g001

Fig 2. Validation of pairwise RNA-seq data through qRT-PCR. Six hypoxia-responsive genes (TPS:

Trehalose-6-Phosphate Synthase, Glyma17g07530; APX: Ascorbate Peroxidase, Glyma12g07780; SUSY:

Sucrose Synthase, Glyma13g17420; AOX: Alternative Oxidase, Glyma04g14800; nsHB: non-symbiotic

Hemoglobin, Glyma11g12980; and NR: Nitrate Reductase, Glyma06g11430) were analyzed in flood-tolerant

Embrapa 45 (Blue chart) and flood-sensitive BR 4 (Green chart) soybean cultivars. The transcripts

abundance of the target genes from plants subjected to hypoxic conditions for different periods of time were

compared with the respective controls (normoxic condition). Differential gene expression statistically

significant: *p < 0.05, **p < 0.01, and ***p < 0.001. From qRT-PCR, raw data was normalized using the

ELF1B and ACTB reference genes [17]. The no qRT-PCR amplification of Glyma11g12980 is clarified in Fig B

in S1 Supporting Information.

https://doi.org/10.1371/journal.pone.0187920.g002
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fewer URGs and more DRGs than BR 4, of which the greatest difference in DEGs between cul-

tivars was after 28h where Embrapa 45 (4,216 DRGs) had more DRGs than BR 4 (2,582 DRGs)

(Fig 3).

Gene function was determined by identifying Gene Ontology (GO) categories for DEGs

and SGs. The most enrichment for GO categories was found after 0.5h in URGs from both cul-

tivars and after 4-28h in DRGs mainly from Embrapa 45 (Fig 3). Noteworthy GO categories in

URGs were gene expression regulation (GO:0010468), more specifically for transcription

(GO:0006350) and protein modification (GO:0006464) involving transcription factors

(GO:0003700) and kinases (GO:0016301) activities. Overrepresented in DRGs were energy-

demanding processes, including transport (GO:0005215) and biosynthesis (GO:0009058), as

well as translation (GO:0006412), most of which encode ribosomal proteins (GO:0005198;

structural molecule activity). Further, transcription factors (GO:0003700), kinases

(GO:0016301) and transporters (GO:0005215) were enriched in DEGs, while more general

functions such as binding (GO:0005488) in SGs. Our results show that hypoxia induces con-

trolling/signaling genes and suppresses genes related with energy-consuming processes in soy-

bean. Therefore, both induction and repression of genes may be important for flooding

tolerance.

Fig 3. Number and GO enrichment analysis of up-, down-, and stable-regulated genes in flood-

tolerant Embrapa 45 (E), flood-sensitive BR 4 (B), and in both soybean cultivars (C). Differentially

expressed genes: fold-change� 2 (up),� -2 (down); adj. p� 0.01; RPM� 9 (control or stress datasets).

Stable-regulated genes: fold-change� 1.1 or� -1.1; RPM� 9 (control and stress datasets). RPM� 9: at

least 20 reads in all datasets. Red GO names are cited in the text.

https://doi.org/10.1371/journal.pone.0187920.g003
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Hypoxic soybean roots experience changes in amino acids and amino acid-related

metabolism. After 4h of hypoxia, URGs and DRGs were enriched for reorganization of cellu-

lar amino acid and derivative metabolic processes (GO:0006519) (Fig 3). Alterations in amino

acid metabolism have been previously observed in hypoxic roots of soybean [29], Lotus japoni-
cus [30], and gray poplar [28], including high accumulation of alanine and GABA (Gamma-

Amino Butyric Acid) as well as reduction of aspartate level. In agreement, we observed up-reg-

ulation of alanine aminotransferase (Glyma07g05130) and glutamate decarboxylase (Gly-

ma08g09670) at all-time points in both cultivars (S2 File).

Glutamate is directly related to alanine and aspartate metabolism via transamination, and

to GABA via decarboxylation [31]. Interestingly, we observed induction of the genes NADH-

dependent glutamate synthase (Glyma04g41540 and Glyma19g16486) and aspartate amino-

transferase (Glyma14g13480, Glyma17g33050, Glyma06g08670, and Glyma01g32360), as well

as repression of ferredoxin-dependent glutamate synthase (Glyma03g28410 and Gly-

ma19g31120), ATP-dependent asparagine synthase (Glyma11g27480, Glyma11g27720, Gly-

ma14g37440, and Glyma18g06840) (ArrayExpress database, accession number E-MTAB-

5709). These responses suggests roots change NADH oxidation to save ATP for glutamate syn-

thesis under hypoxia.

While expression of aspartate kinase, aspartate semialdehyde dehydrogenase and homocys-

teine S-methyltransferase increases under hypoxia, we observed repression of polyamines and

phenylpropanoids biosynthesis-related genes, including upstream genes from shikimate path-

way (Fig A in S1 Supporting Information, S2 File). Among DRGs was found S-adenosyl-L-

methionine (SAM) synthase (EC 2.5.1.6). SAM connects to ethylene, polyamines, and phenyl-

propanoid-derived lignin pathways (Fig A in S1 Supporting Information) as well as histone

and nucleic acid methylation for gene expression regulation [32,33]. Studies involving exoge-

nous application or endogenous production of polyamines via genetic manipulation have

shown increased tolerance to a broad spectrum of abiotic stresses [34], opening opportunities

for improvement of soybean flooding tolerance by genetic engineering approaches.

Same gene, different regulation between cultivars: Identification of candidate genes for

flooding-tolerance. The phosphoglucomutase (Glyma05g34790) gene was up-regulated in

Embrapa 45 and down-regulated in BR 4 soybean cultivar after 4h of hypoxic stress (Fig 4). Its

up-regulation in the flood-tolerant cultivar is in accordance with a shift in sucrose catabolism

from ATP-dependent invertase-hexokinase to energy-saving SuSy-UGPase pathway [5]. In

both cultivars, SuSy (Glyma19g40041, Glyma09g08550, and Glyma15g20180) and UGPase

(Glyma11g33160) genes were observed up-regulated, while genes down-regulation were inver-

tase (Glyma10g35890) and hexokinase (Glyma05g35890, Glyma07g12190, and Gly-

ma17g37720) genes.

Higher induction of an unknown protein related to N-terminal protein myristoylation

(Glyma06g03430), suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620)

were observed in flood-tolerant Embrapa 45. The A. thaliana ortholog of Glyma10g32620

(AT3G23400) is required for resistance to multiple stresses [35]. Moreover, differential expres-

sion of fibrillin genes correspond to plastoglobule number in leaves of contrasting soybean

genotypes under drought and waterlogging stresses [36].

Although the nsHB gene (Glyma11g12980) exhibited similar expression ratio (in fold-

change) between the two cultivars, the expression level (in RPM) in Embrapa 45 was lower

under normoxic and hypoxic conditions (Fig 4). The last 284 nucleotides of the nsHB 3’UTR

(3’Untranslated Region) are absent only in Embrapa 45 (Fig B in S1 Supporting Information).

This explains the absence of qRT-PCR amplification in Embrapa 45 (Fig 2) and the similar

transcriptional profile (qRT-PCR and RNA-seq) in both cultivars (Fig 2). Considering the

important role of nsHB to protect plants under hypoxic stress [37], further study is required to

Transcriptome reconfiguration under hypoxic stress
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understand the alternate 3’UTR structures influence transcription, transcript stability, and

protein abundance.

Function, structure, and composition of gene groups: Comparing its

mechanistic relationship with expression regulation

To further understanding how soybean genes evolve and respond to hypoxia, the top 40 tran-

scripts (all time points in both cultivars) and top 500 transcripts (at least one time point in

both cultivars, except for S500 keeping all time points as criterion) stable and DEGs were

structurally/compositionally characterized, comparing its mechanistic relationship with

expression regulation.

The top gene groups differ functionally. As noted above, the genes aspartate amino-

transferase (Glyma01g32360) and SAM decarboxylase (Glyma17g07830) were ranked in top

40 up-regulated (U40) and down-regulated (D40) groups, respectively. Likewise, phenylpropa-

noid/flavonoid related (D500) and SuSy-UGPase (U500) genes as well as three paralogs of Gly-

ma06g03430 (N-terminal protein myristoylation) (U500) belonged to top 500 groups.

Genes associated with ethylene biosynthesis (ACC oxidase: Glyma05g36310), glycolysis

(Pyruvate kinase: Glyma10g34490), ethanol fermentation (pyruvate decarboxylase: Gly-

ma01g29190 and Glyma03g07380; alcohol dehydrogenase: Glyma04g39190 and Gly-

ma14g27940), biotic stress defense (kunitz trypsin protease inhibitor: Glyma16g33770;

polygalacturonase inhibiting protein: Glyma05g25370 and Glyma08g08360), and flooding

governing acclimation (ERFVII related to A. thaliana HRE2: Glyma19g40070) were found in

U40.

In the D40 were genes involved in antimicrobial defense (cysteine-rich secretory proteins:

Glyma13g32500, Glyma13g32510, Glyma13g32530, and Glyma13g32540), gene regulation

Fig 4. Relative expression (in fold-change) and expression level (in RPM) in flood-tolerant Embrapa

45 and flood-sensitive BR 4 soybean cultivars along three time points. The analyzed genes were

phosphoglucomutase (Glyma05g34790), N-terminal protein myristoylation (Glyma06g03430), fibrillin

(Glyma10g32620), suppressor of phyA-105 (Glyma06g37080), and non-symbiotic hemoglobin (nsHB;

Glyma11g12980). Differentially expressed genes: fold-change� 2 (up),� -2 (down); adj. p� 0.01; RPM� 9

(control or stress datasets). RPM� 9: at least 20 reads in all datasets.

https://doi.org/10.1371/journal.pone.0187920.g004
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(bZIP: Glyma05g22860 and Glyma17g17100; MYB: Glyma13g20510; NAC: Glyma08g18470),

oxygen consuming (2-oxoglutarate oxygenase: Glyma03g23770, Glyma07g12210, and Gly-

ma08g18000; cytochrome P450: Glyma03g02410 and Glyma04g03790), and transport of dicar-

boxylate (Glyma07g39580), sulfite (Glyma07g30570), manganese (2+) and iron (2+)

(Glyma08g08090, Glyma16g28340, and Glyma09g21920). These ions can accumulate to toxic

levels in waterlogged plants [38–40].

The top 40 stable group (S40) has genes associated with protein (Glyma09g08830, Gly-

ma06g01120, Glyma18g10060, Glyma18g32830, and Glyma04g23560) and nucleic acid bind-

ing (Glyma03g01920, Glyma18g11950, Glyma18g32190, Glyma06g48070, Glyma09g06750,

Glyma12g29270, Glyma04g04880, and Glyma01g44460). For flooding stress, these genes are

promising candidate reference genes for qRT-PCR normalization, given their higher stability

compared to stable genes commonly used in the literature [17].

Top gene groups have different TATA box, ABRE, and DRE motif usage in promoter

sequences. Does ABRE mediate gene expression independent of ABA in hypoxic soybean

roots?. Transcription of protein-coding genes in eukaryotes requires numerous protein fac-

tors to recognize specific DNA loci. The core promoter region, proximal to the transcription

start-site (TSS), recruits general transcription factors involved in basal transcription [41] and

cis-regulatory elements from extended promoter recruits DNA-bound transcription factors

(activators or repressors) to fine-tune the transcriptional control [42].

The general regulator TATA-box binding protein (TBP) is required for transcription initia-

tion by all three eukaryotic RNA polymerases [43]. TBP can bind to various DNA sequences

but has higher affinity for the consensus TATA-box [44]. Based on previous work [45–47], we

scanned for the core sequence TATA extending 4 bp in the 3’ direction within the 50 bp region

upstream of the predicted TSS (between -50 and -1). We found more DEGs (from 21% in

U500 to 40% in D40) with the consensus TATA box sequence TATA(T/A)ATA than SGs (at

most 6% in S500) (Fig 5, Table B in S1 Supporting Information). Our results are in agreement

with hexamer sequences TATA(T/A)A over-represented in A. thaliana, Oryza sativa, and Gly-
cine max genomes [48]. Similarly, Tirosh et al. [45] observed a correlation between consensus

TATA-containing genes being differentially expressed and TATA less-containing genes stable

expressed in yeast, metazoans, and plants.

Higher TBP turnover at consensus TATA- compared to TATA-less promoters is associated

with specific coactivators [46,49]. Coactivators are multisubunit complexes represented by

SAGA (Spt-Ada-Gcn5-Acetyltransferase), TFIID (transcription Factor II D), related with TBP

binding on TATA and TATA-less promoters, respectively [49], and Mediator [50]. The latter

is organized into head, middle, tail, and Cdk8 kinase modules to converge and transmit signals

from sequence-specific transcription factors to RNA polymerase [51,52]. Here, mediator com-

ponents Glyma13g16910 (head MED20a) and Glyma13g31480 (tail MED16) were at least

Fig 5. Percentage of genes with which putative promoter region contain consensus TATA box, ABRE,

and/or DRE/CRT motifs. Statistical significances from pairwise comparisons are provided in Table B in S1

Supporting Information.

https://doi.org/10.1371/journal.pone.0187920.g005
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three times down- and nine times up-regulated after 4 and 28h of hypoxia, respectively, in

both cultivars. The head module MED20a subunit participates in transcription regulation of

miRNA and protein-coding genes involved with plant development, time flowering, and fruit

size in A. thaliana [53]. In contrast, the tail module MED16 component regulates several biotic

[54,55] and abiotic [56–58] stress responses in plants. Med16 is required for transcriptional

activation of cold- and dehydration-inducible genes that have C-repeat/dehydration-respon-

sive elements (CRT/DRE) promoter motifs controlled by CRT/DRE-binding transcription fac-

tors (CBF/DREB) [57,58].

The CRT/DRE and CBF/DREB, the cis-acting ABA-responsive elements (ABRE) and corre-

sponding trans-acting factors ABRE-binding proteins/ABRE-binding factors (AREB/ABF)

play important roles in abiotic stress tolerance in plants [59]. Based on the genomatix database

(http://www.genomatix.de/) [60], we found that cis-acting ABRE and DRE/CRT motifs were

most frequent in the putative promoter region (1000 bp up- and 100 bp down-stream the TSS)

of top up- compared to top down-regulated genes (Fig 5, Table B in S1 Supporting Informa-

tion). The AREB/ABF genes Glyma06g04353 and Glyma19g30230 increased their mRNA

abundance (~2 fc) after 28h of hypoxia. The higher differential expression of GmDREB1B;1

(Glyma20g29410 [61]) and of GmDREB2A;2 (Glyma14g06080 [62]) was observed after 0.5h

(>20 fc) and 28h (>24 fc) of hypoxia, respectively. Both these genes are also induced by heat,

cold, drought, and salinity stress, and up-regulate ABA receptor GmPYL21 (Glyma13g30210

[63]) [61,62]. GmPYL14 (Glyma14g06100, up-regulated by GmDREB2A;2 [62]), and

GmPYL21 were up-regulated under hypoxia (>9 and >3 fc after 4h, respectively). These

receptors interact with the phosphatase GmPP2C1 (Glyma13g16640, at most 3 fc under hyp-

oxia), inhibiting it in an ABA independent manner [63]. Interestingly, Kidokoro et al. [61]

observed that transcriptional activation of GmPYL21 by GmDREB1B;1 can enhance ABRE-

mediated gene expression in an ABA-independent manner under cold stress, although ABA

levels are not increased under such condition. We propose that ABRE-mediated gene expres-

sion is ABA-independent in hypoxic soybean roots. Although exogenous application of ABA

improves flooding tolerance of plants [64–66], endogenous ABA decreases in roots under

flooding stress [67–69]. We observed down-regulation of genes related to ABA biosynthesis

(Glyma19g06540, Glyma06g08944, Glyma13g27220, Glyma11g21160, and Glyma14g04950)

and up-regulation of ABA inactivation genes GmCYP707As (Glyma16g20490, Gly-

ma01g35660, and Glyma09g35250 [70]). In addition to GmCYP707As, hypoxia changes

expression of soybean orthologs of A. thaliana genes involved in ABA signaling (ABA recep-

tors Pyl4-6; phosphatases ABI1-2, HAB1-2, HAI1-3, and AHG3; AFP1-4; MAPKKK18)

dependent on SRK2D/E/I (SNF1-related kinases SRK2D/SnRK2.2, SRK2E/SnRK2.6, and

SRK2I/SnRK2.3) (Genevestigator microarray database [71]) (S3 File). SRK2D/E/I are key acti-

vators of AREB/ABF proteins [72]. Glyma01g39020, which is most similar in amino acid

sequence to SRK2D/E/I, is up-regulated 2- and 3-fold after 4 and 28h of hypoxia. Moreover,

orthologous genes of CIPK-6 and CIPK-25 (Glyma17g08270, Glyma04g06520, and Gly-

ma06g06550) were up-regulated at all-time points (from 4 to 40 fc) under hypoxia. These are

kinases involved in Ca+2-mediated expression of DREB1-2 and ABA signaling [73,74]. Strik-

ingly, although ABI1-2, PP2CA, and HAI1-2 genes from A. thaliana are down-regulated

under hypoxic stress, we observed strong up-regulation of soybean orthologs of Gly-

ma01g43460 (HAI3) transcripts at all-time points (S3 File). These A. thaliana genes are up-reg-

ulated under drought, osmotic, and salinity stresses (S3 File) and soybean genes under

drought stress [18], stresses associated with ABA production. In agreement with a role for

AREB in tolerance of diverse abiotic stresses, our results indicate although ABA level decreases

in soybean roots under hypoxia, ABRE-mediated gene expression may occur. In this context,

AREB/ABF are powerful candidates to improve flooding tolerance.
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Top gene groups differed in structure, composition, and codon usage. How may hyp-

oxia alter translation?. Compared to SGs, DEGs are smaller, with shorter CDS (coding

sequence) length and fewer introns (Fig 6, Table C in S1 Supporting Information). Similar

results were observed in A. thaliana [75], yeasts, and mice [76] for genes responsive to other

stresses. Shorter genes with fewer introns demand less energy [77] and can have faster expres-

sion dynamics [78]. Interestingly, SGs also seem to have improvement of energetic and time

costs. We compared soybean SGs with cognate proteins [79], and analyzed A. thaliana data

sets of immunopurified polysomal mRNAs [80] and translationally inactive mRNAs [81]. The

results suggest that energy is saved from translation by down-regulation of cognate soybean

proteins under hypoxia (Fig C in S1 Supporting Information). In this context, stable mRNAs

from A. thaliana are sequestered into stress granules and poorly associated with translating

ribosomes under hypoxia. Upon reoxygenation, they are rapidly released from stress granules

forming new polyribosomes, minimizing the need for de novo transcription.

The higher intron number and number of splicing variants in soybean SGs (Fig 6, Tables B

and C in S1 Supporting Information) are in agreement with the higher gene body (i.e., tran-

script region) methylation in SGs [75,82,83], involved in splicing regulation [84–86]. Here,

whereas SGs exhibited steeper 5’ to 3’ negative G+C and CpG gradient, no decrement from

start to middle region of DEGs were observed (Fig D and Table C in S1 Supporting Informa-

tion). The low strength but diverged G+C and CpG patterns among gene groups can be influ-

enced by gene structure, recombination, and DNA methylation [87]. Moreover, C3pG1 (C at

Fig 6. Structural features among gene groups. The groups are formed by top 40 and 500 ranked up- (U),

down-regulated (D), and stable-genes (S) to hypoxia, and genome. The box is determined by the 25th and

75th percentiles with a line as the median and a black square as the mean of the data. Error bars extend 1.5

times the interquartile range from the 25th and 75th percentiles. Statistical significances from pairwise

comparisons are provided in Tables B and C in S1 Supporting Information.

https://doi.org/10.1371/journal.pone.0187920.g006
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third position of a codon binding G at first position of a neighbor codon) and G1 content were

higher among di- and mono-nucleotides, respectively, and C3 was the mono-nucleotide with

more diverged content among gene groups, mainly at CDS middle region.

The relative synonymous codon usage (RSCU) analysis for all 59 synonymous codons

showed that C3 content divergences highlighted in 2-fold degenerate pyrimidine ending

codons between CDS edges as well as among gene groups at CDS middle region (Fig 7). It is

noteworthy that 2-fold degenerate codons ending in pyrimidines seem to be in majority

[maybe exclusively, including in soybean (Fig E in S1 Supporting Information)] decoded by

G34 tRNAs (G at position 34 of the tRNA, the first anticodon position) in all three domains of

life (archaea, bacteria, and eukarya) [88,89]. This suggests strong positive selection to discrimi-

nate correct cognate C3 and wobble U3 codons from the incorrect near-cognate codons G3

and A3 (e.g., CAC/U histidine versus CAG/A glutamine). C3 over U3 2-fold degenerate end-

ing codon bias also occurs at evolutionarily conserved amino acids sites across 12 fly drosophi-

lid species and correspond to higher levels of G34-to-Q34 substitution [90]. This opens a

question if Q34 tRNA influences the compositional divergence among soybean gene groups.

Remarkably, queuine (q), the free base of Q (queuosine), is only synthesized by bacteria and

salvaged by most eukaryotes [91]. Example is the legume model Medicago truncatula, in which

rhizobium Q synthesis is required for effective nitrogen-fixing symbiosis [92]. In contrast, this

is not observed in Brassicaceae, including A. thaliana, given the absence of genes encoding

transglycosylases that catalyze q insertion in target G34U35N36 tRNAs (N = any base), found

in Medicago [91] and soybean (Glyma04g10706, Glyma01g40041, Glyma13g10281, Gly-

ma11g05250, Glyma06g10555, and Glyma08g48310). Besides Q, wybutosine (yW) is another

hypermodified nucleoside derived from G, but yW is found exclusively at position 37 (neigh-

boring anticodon sequence) of tRNAs that decode phenylalanine (codons UUU and UUC;

Fig 7. Heat map of relative synonymous codon usage (RSCU) for start, middle, and end 30 CDS

(coding sequence) codons ending in pyrimidine (C and T) from different soybean gene groups. The

groups are formed by top 40 and 500 ranked up- (U), down-regulated (D), and stable-genes (S) to hypoxia,

and genome (G). Asp, Cys, Tyr, His, Phe, and Asn are coding by 2-fold degenerate pyrimidine ending codons.

Heat map of RSCU for all 59 synonymous codons including for whole CDS extension is provided in Fig E in S1

Supporting Information.

https://doi.org/10.1371/journal.pone.0187920.g007
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biased here among soybean gene groups), important to reduce polyuridine translational

frameshift errors [93].

Here, DEGs related to modification of inosine, queuosine, wybutosine, pseudouridine, and

methylation (tRNA and DNA methyltransferases), as well as aminoacylation of tRNAs (amino

acid charging) were observed under hypoxia (S4 File). In addition, our results indicate that

hypoxia impairs biosynthesis of methionine, mainly SAM, and consequently DNA and tRNA

methylation (Fig A in S1 Supporting Information, S2 File). Although S-methylmethionine

cycle seems to alleviate methionine decrement by transcriptional up-regulation of homocyste-

ine S-methyltransferase (ec: 2.1.1.10), genes encoding folate-dependent methionine synthase

(ec: 2.1.1.14) as well as SAM synthase (EC 2.5.1.6) and SAH hydrolase (EC 3.3.1.1) were down-

regulated under hypoxic stress (Fig A in S1 Supporting Information, S2 File). This can also

occur at protein level [79].

Differential expression of aminoacyl-tRNA synthetases (aaRS) also occur in soybean leaf

under drought stress, with more aaRS DEGs in wild-type than in transgenic lines overexpres-

sing BiP chaperone [94]. The BiP (Binding Protein) major regulates the endoplasmic reticulum

(ER) stress [95]. Here, many ER stress related genes [96] were differentially expressed (S5 File),

including down-regulation of BiP (Glyma05g36600, Glyma05g36620, Glyma08g02940, and

Glyma08g02960; from -2 to -10 fc after 4 and 28h in both cultivars under hypoxia). Among

these aaRS differentially expressed, Glyma14g11711 (aspartyl-tRNA synthetase) was up-regu-

lated at all-time points in the two cultivars (from 5 to 16 fc). Curiously, transgenic plants over-

expressing an aspartyl tRNA synthase (AspRS) orthologue (At4g31180) improve tolerance to

biotic stress [97]. The At4g31180 is target of a synthetic isomer of GABA, called BABA (β-

Amino Butyric Acid) [97]. BABA primes plants to enhance tolerance against broad-spectrum

of biotic and abiotic stresses [98]. Inhibition of AspRS activity by BABA accumulates

uncharged tRNA Asp, which as others uncharged tRNAs is signaling molecule to attenuate

translation by Gcn2-eIF2α system, and subsequently alleviate ER stress [99]. Based on this, fur-

ther studies may help to elucidate involvement of amino acids metabolism in tRNA modifica-

tions, translation accuracy/efficiency, and ER stress under hypoxia. In addition, BiP and aaRS

are candidates for biotechnology applications for improvement in flooding tolerance.

Supporting information

S1 Supporting Information. File containing all supporting Tables (A-D) and Figures

(A-E). Table A in S1 Supporting Information. Samples sizes used for structural and composi-

tional analysis among groups of genes. Table B in S1 Supporting Information. Fisher’s pair-

wise comparisons between gene groups. Table C in S1 Supporting Information. Mann-

Whitney pairwise comparisons. Table D in S1 Supporting Information. Primer pairs used in

the study. Fig A in S1 Supporting Information. KEGG pathways showing transcriptional

changes for amino acids and derivative metabolic process in both Embrapa 45 and BR 4 soy-

bean cultivars. Fig B in S1 Supporting Information. Structural divergence of non-symbiotic

hemoglobin Glyma11g12980.1 transcript between BR 4 and Embrapa 45 cultivars by mapping

(A) and de novo assembly (B) of reads. Fig C in S1 Supporting Information. Steady-state sta-

ble mRNAs tend to be translationally down-regulated (A), decreasing their association with

ribosomes (of which include RPL18 component) by their sequestration into stress granules

(ribonucleoprotein complexes including UBP1C) under hypoxia, whereas upon reoxygenation

they are rapidly released from stress granules forming new polyribosomes (B). Fig D in S1

Supporting Information. Compositional features for full (normalized to 90 nucleotides),

start, middle, and end 90 nucleotides length from coding sequences from different soybean

gene groups. Fig E in S1 Supporting Information. Heat map of RSCU (Relative Synonymous
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Codon Usage) for full, first, middle, and last 30 CDS (coding sequence) codons length from

different soybean gene groups.

(PDF)

S1 File. Tab-delimited file showing raw data for gene expression from flood-tolerant

Embrapa 45 (E) and flood-sensitive BR 4 (B) soybean cultivars under normoxia (N) and

hypoxia (H) along 0.5, 4, and 28h. Top 40 and 500 ranked up- (U), down-regulated (D), and

stable-genes (S) are shown in separate excel sheets named accordingly.

(XLSX)

S2 File. Differentially expressed genes (DEGs) related with amino acids and derivative

metabolic process in hypoxic roots of flood-tolerant Embrapa 45 (E) and flood-sensitive

BR 4 (B) soybean cultivars along 0.5, 4, and 28h. DEGs: fold-change� 2 (up),� -2 (down);

adj. p� 0.01; RPM� 9 (control or stress datasets). RPM� 9: at least 20 reads in all datasets.

(XLSX)

S3 File. Differentially expressed genes (DEGs) from hypoxic roots of flood-tolerant

Embrapa 45 (E) and flood-sensitive BR 4 (B) soybean cultivars along 0.5, 4, and 28h, and

Arabidopsis thaliana orthologs related with ABA metabolism and signaling dependent of

SRK2D/E/I responding to diverse treatments (from Genevestigator microarray database)

[71].

(XLSX)

S4 File. Differentially expressed genes (DEGs) related with modification of I34, Q34,

yW37, pseudouridine, and methylation (tRNA and DNA methyltransferases), as well as

aminoacylation of tRNAs (amino acid charging) in hypoxic roots of flood-tolerant

Embrapa 45 (E) and flood-sensitive BR 4 (B) soybean cultivars along 0.5, 4, and 28h.

(XLSX)

S5 File. Differentially expressed genes (DEGs) related with endoplasmic reticulum stress

[unfolded protein response (UPR) and ER stress-induced plant-specific cell death signal-

ing pathways] [96] analyzed in hypoxic soybean roots of flood-tolerant Embrapa 45 (E)

and flood-sensitive BR 4 (B) soybean cultivars along 0.5, 4, and 28h. DEGs: fold-change� 2

(up),� -2 (down); adj. p� 0.01; RPM� 9 (control or stress datasets). RPM� 9: at least 20

reads in all datasets.

(XLSX)
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