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Abstract

Geometric approaches to network analysis combine simply defined models with great

descriptive power. In this work we provide a method for embedding directed acyclic graphs

(DAG) into Minkowski spacetime using Multidimensional scaling (MDS). First we generalise

the classical MDS algorithm, defined only for metrics with a Riemannian signature, to mani-

folds of any metric signature. We then use this general method to develop an algorithm which

exploits the causal structure of a DAG to assign space and time coordinates in a Minkowski

spacetime to each vertex. As in the causal set approach to quantum gravity, causal connec-

tions in the discrete graph correspond to timelike separation in the continuous spacetime.

The method is demonstrated by calculating embeddings for simple models of causal sets

and random DAGs, as well as real citation networks. We find that the citation networks we

test yield significantly more accurate embeddings that random DAGs of the same size. Finally

we suggest a number of applications in citation analysis such as paper recommendation,

identifying missing citations and fitting citation models to data using this geometric approach.

Introduction

Network science seeks to understand the organisation and dynamics of complex systems by

considering the structure of the interactions of their constituent parts. Studying the structure

of these complex networks is a vital part of a wide variety of academic fields such as neurosci-

ence, social science and economics [1]. Capturing aspects of a complex system as a graph can

bring physical insights and predictive power. Yet these graphs can still be very complicated.

Network Geometry is a developing approach in network science [2] which further abstracts

the system by modelling the nodes of the network as points in a geometric space. Examples of

this approach include latent space models [3], and links made between geometry and network

clustering [4] and community structure [5]. In some cases this geometric embedding corre-

sponds to physical space, such as when modelling wireless networks as random geometric

graphs (RGG) [6], or considering networks embedding in geographic space [7, 8]. In other

cases, the embedding geometry is not the familiar Euclidean one. Recent work discussing

hyperbolic space [9–11] has revealed that non-Euclidean geometries can capture relevant net-

work characteristics, a theme we will build upon in this paper. Scale free degree distributions

naturally arise when networks are embedded in hyperbolic space [12] and there has been sig-

nificant interest in embedding networks in spaces with uniform curvature [13, 14]. Local

PLOS ONE | https://doi.org/10.1371/journal.pone.0187301 November 6, 2017 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Clough JR, Evans TS (2017) Embedding

graphs in Lorentzian spacetime. PLoS ONE 12(11):

e0187301. https://doi.org/10.1371/journal.

pone.0187301

Editor: Naoki Masuda, University of Bristol,

UNITED KINGDOM

Received: April 10, 2017

Accepted: October 16, 2017

Published: November 6, 2017

Copyright: © 2017 Clough, Evans. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was funded by EPSRC grant

EP/L504786/1. There was no additional external

funding received for this study. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0187301
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187301&domain=pdf&date_stamp=2017-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187301&domain=pdf&date_stamp=2017-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187301&domain=pdf&date_stamp=2017-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187301&domain=pdf&date_stamp=2017-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187301&domain=pdf&date_stamp=2017-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187301&domain=pdf&date_stamp=2017-11-06
https://doi.org/10.1371/journal.pone.0187301
https://doi.org/10.1371/journal.pone.0187301
http://creativecommons.org/licenses/by/4.0/


measures of curvature have also been used when characterising graph structure, for example

using Ricci curvature to describe graph structure [15–18] or for routing in networks [19]. Con-

versely, many common network models such as Erdos-Renyi graphs and the Small-World

model have been shown to lack hyperbolicity [20, 21].

As well as considering geometric models which have properties similar to real networks, it

is also possible to take a given network and embed it in a geometric space by assigning coordi-

nates to each node such that nearby nodes are more likely to share an edge than those far from

each other. In a good embedding most of the network’s edges can be predicted from the coor-

dinates of the nodes. Specifying coordinates for N nodes in D dimensions requires much

less information that an N × N adjacency matrix, providing D� N and so a good geometric

embedding provides a concise description of a network’s structure. For example, in [22] pro-

tein interaction networks are embedded in low-dimension Euclidean space.

Notably though, in all approaches so far the target space, whether curved or not is Rie-

mannian meaning that all distances are positive and a distance of zero exists only between a

point and itself. In this paper we will discuss embedding graphs in pseudo-Riemannian geome-

tries in which these restrictions are relaxed. Our focus here is Lorentzian geometry, which is of

special importance in physics as it describes the geometry of spacetime. The simplest example

is Minkowski spacetime, which is isotropic and flat, and so analogous to Euclidean space in

this regard.

The graphs which are most appropriately associated with Lorentzian geometry are Directed

Acyclic Graphs (DAG). This is because Lorentzian geometry has causal structure which is also

present in this particular class of networks [23–25]. In the causal set approach to quantum grav-

ity, DAGs are used as a discrete way of describing the structure of our universe’s spacetime [26].

In DAGs where the edges represent dependencies or causal relations, it is natural to embed in a

spacetime because in physics it is separation in the universe’s Lorentzian spacetime which deter-

mines whether one event can causally affect another or not. The acyclic property of DAGs

allows their nodes to be ordered, with all edges respecting that order and in our approach, this

natural ordering of nodes corresponds to the time direction in the embedding spacetime.

The approach we outline here seeks to match the causal structure of a DAG (the ‘ancestors’

and ‘descendants’ of each vertex) with the underlying causal structure of Minkowski space-

time. For this reason, this approach is not applicable to undirected graphs (where there is no

edge direction to describe the direction of a causal relationship) or to directed graphs with

cycles (as closed causal loops cannot exist in Minkowski spacetime).

In this paper we will show how to find reasonable spacetime coordinates for each node in a

DAG so that the causal relationships in the network are well matched with the causal relation-

ships in the embedding spacetime. The process has two steps: firstly, spacelike and timelike

separations are estimated for each pair of nodes using tools from the causal set approach to

quantum gravity. Secondly, a generalised form of Multidimensional Scaling (MDS) is used

to find spacetime coordinates which best respect these separations. For clarity we begin by

reviewing MDS and generalising it to pseudo-Riemannian spaces, then discuss estimating sep-

arations on the graph.

Methods

Review of classical MDS

Suppose we have N objects, which live in a D dimensional Euclidean space, and we are given

the squared Euclidean distance, Sij between each pair i and j. We wish to find the coordinates

of the objects, which will be D dimensional vectors, xi for each object i, such that they fit the

constraint that |xi − xj|
2 = Sij. The classical MDS algorithm solves this problem by using this
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N × N matrix of square distances, S, and then constructing the double centred matrix

B ¼ � 1

2
JSJ where J ¼ 1 � 1

N 1:1T. It can then be shown (see [27]) that

B ¼ X
T
X ð1Þ

where X is an N × D matrix of co-ordinate vectors x which satisfy the constraint of recovering

the original distances, and with the centre of mass of the coordinates at the origin. As well as

being real and symmetric, B is also guaranteed to be semi-positive definite, i.e. it has no nega-

tive eigenvalues. So we can then find (up to a factor of a rotation) the coordinates in X by

decomposing B into

B ¼ U
TΣU ð2Þ

where Σ is a diagonal matrix of the eigenvalues of B, and U a matrix of its eigenvectors. A solu-

tion is given by

X ¼
ffiffiffi
Σ
p

U ð3Þ

This process yields coordinates in N dimensions, but only D of the eigenvalues will be non-

zero. It is possible retrieve coordinates in fewer dimensions, by using only the largest D̂ eigen-

values and their corresponding eigenvectors. The larger eigenvalues correspond to principle

components, meaning that using them as the coordinates minimises the square difference

between the original distances we started with, and those calculated from these inferred coor-

dinates. These coordinates are in this sense the most accurate D̂ dimensional representation of

the original data and it is in this manner that MDS can be used for dimensionality reduction.

As well as this simple version of the algorithm, faster approximations also exist. Landmark

MDS [28] is a two step process, where first a small number of ‘landmark’ points have their posi-

tions fixed to each other using the usual MDS method, and second, the remaining points are

fixed using only their distances to the landmarks. Pivot MDS [29] provides further improve-

ments by iteratively updating the positions of the landmarks, or pivots, using the rest of the

points, and then updating the positions of the rest of the points using the pivots. Although we

omit the details here these faster methods are also applicable to the approach we describe below

and we include implementations of them in our code which is freely available [30].

Lorentzian multidimensional scaling

Minkowski spacetime is a combination of a d-dimensional Euclidean space, and one time

dimension forming a (d + 1) dimensional spacetime. A point i in this spacetime, has coordi-

nates xi consisting of a time coordinate, x0
i , and spatial coordinates xk

i , with k = 1, 2, . . ., d. The

Minkowski separation between two such spacetime points i and j is given by

Mij ¼ Mðxi; xjÞ ¼ � c2ðx0
i � x0

j Þ
2
þ
Xd

k¼1

ðxk
i � xk

j Þ
2

ð4Þ

where c is the speed of information flow. We may always choose to work in terms of coordi-

nates where this speed is equal to 1. For instance in special relativity, c is the speed of light but

we may measure distance in light-seconds, and time in seconds such that the numerical value

of c is 1 in these units. In Minkowski spacetime, pairs of points, i and j can then be classified

into three types: for a Mij > 0 the pair is spacelike separated, for a Mij < 0 the pair is timelike

separated, while pairs on the boundary, or light-cone, defined by Mij = 0 are called lightlike

separated. In physics, timelike separated events can be causally connected, meaning that infor-

mation can travel the past event to the future event. Spacelike separated points cannot be
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causally related because they are separated by too much space and too little time for any signal

to reach from one to the other.

We can now ask the same question that classical Euclidean MDS poses: given pairwise

separations Mij, for points in this spacetime, can we recover coordinates which respect these

separations?

Proceeding with the classical Euclidean algorithm we can construct the double centred

matrix B as before using B ¼ � 1

2
JMJ. However we now encounter a problem when decom-

posing B. Previously Σ, the eigenvalues of B, were guaranteed to be non-negative, but now we

find one negative eigenvalue corresponding to the time dimension’s negative sign in Eq 4.

Since we need to take the square root of these eigenvalues, and we want real number coordi-

nates, this is a problem.

It turns out that the changes required to the classical MDS algorithm are remarkably simple

(details are given in S1 Appendix)). Instead of looking for a matrix of coordinates X such that

B ¼ X
T
X, we now search for solutions to

B ¼ X
T
GX ð5Þ

where G is matrix representing the metric of the embedding space. For classical MDS with its

Euclidean space G is just the identity matrix so this factor drops out from the analysis. Instead

we now choose G to represent the Minkowski metric, which in our conventions is a diagonal

matrix with −1 in the first column and +1 in the others. Since B is still real and symmetric, we

decompose B into the matrix of eigenvectors U and the diagonal matrix of eigenvalues Σ as

before but we now need solutions to

X
T
GX ¼ U

TΣU : ð6Þ

The difference to classical MDS is that we associate each negative eigenvalue in Σ with a corre-

sponding entry of −1 in the in the diagonal metric matrix G. Positive eigenvalues are linked to

entries of +1 in G as before, while zero eigenvalues correspond to zeros in G. The solution we

seek is therefore X ¼ U
ffiffiffiffiffiffi
jΣj

p
as the negative signs of Σ are captured by G allowing us to take

the square root of |Σ| to leave us with real coordinates in X, mimicking the procedure followed

in classical MDS. For our Minkowski space example, the coordinates derived from the eigen-

vector with the largest negative eigenvalue are labelled the time coordinates, and those derived

from the eigenvectors of the d largest positive eigenvalues are the d spatial coordinates.

Graph distance in spacetime

In the Euclidean case, the geometric approach says that nodes that are near to each other

should be more likely to share an edge than those which are far away. In the simplest case, a

random geometric graph, nodes are placed randomly in a Euclidean space and pairs of nodes

within some threshold distance share an edge while remaining pairs do not [31–33]. This

means that the distance in the Euclidean space between two nodes can be approximated in the

network by the number of edges on the shortest path between them [22].

What is a useful approach to take in for DAGs in Lorentzian geometry? In many networks

which form DAGs the reason that the graph is acyclic is that the edges represent some kind of

causal relationship. This is the case for citation networks, family trees and scheduling prob-

lems. In physics the possibility of causal relationships is determined by geometry. One event

can cause another only if they are timelike separated (Mij < 0 in Eq (4)), and cannot if they are

spacelike separated (Mij > 0). Therefore we seek to assign coordinates to the nodes such that

those pairs connected by some directed path are timelike separated, while the remaining

unconnected pairs are spacelike separated. To be precise, since timelike separation is a
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transitive relationship but the edges in the network might not be, we are trying to achieve this

criteria on the transitive closure of the network [34].

This is the same construction as in the causal set approach to quantum gravity. In this the-

ory the underlying structure of the universe’s spacetime is a causal set, which is a locally finite

partially ordered set. Causal sets form transitively closed DAGs and so whether or not the real

spacetime of the universe actually does consist of a causal set, the theory does give us a natural

way of relating a discrete graph to points in a continuous spacetime. Although we use results

from the causal set literature, we do not discuss them in detail and direct the reader to [24, 26,

35, 36] for more details.

Estimating geodesic distance

Given a DAG, how can we estimate the separation between each pair, Mij using only the graph

structure? To do this we use a simple model of uniformly scattered points in Minkowski space-

time. We are effectively trying to fit a DAG to a uniformly scattered causal set model, in the

same way that approaches embedding networks in Euclidean space using MDS are fitting the

network to a random geometric graph.

Let GDðNÞ, which we will call a causal set graph, be a DAG constructed as follows. Each of

the N vertices is associated with a coordinate in a D dimensional Minkowski spacetime, chosen

uniformly at random from [0, 1]D. This range of coordinates is chosen in our examples for

simplicity but this does not need to be the case in general. A directed edge is then placed

between any distinct pair of vertices whose coordinates are timelike separated with the edge

direction from past to future.

It was conjectured by Myrheim [37] and later shown in [38, 39] that for timelike separated

vertices i and j in GDðNÞ the squared length of longest path, respecting the direction of the

edges is proportional to their timelike separation, in the limit of N!1. We will therefore use

the squared length of the longest directed path to estimate of Mij for timelike separated pairs.

Finding the distance between spacelike pairs is more challenging and there is currently no

method which is both as accurate and as easily calculated as the longest path is for timelike

pairs [24]. Approximations are known, and we will use a very simple one, described in [40, 41]

as ‘naive spatial distance’. Suppose we have two disconnected vertices i and j in GD meaning

they are spacelike separated. We then look for all pairs of nodes, k and l, where k is in the future

of both i and j while l is both their pasts. We then choose the pair, k� and l�, with the minimum

longest path amongst all the pairs. The timelike separation between k� and l� is then used as an

estimate for the spacelike separation between i and j. If no such pair exists, we set the spacelike

distance of i and j equal to some maximal distance which is a parameter of the algorithm. In

the examples shown here, we used the length of the longest path in the graph as this parameter.

Fig 1 gives an example.

This estimate is simple and at first appealing, although it becomes increasingly inaccurate in

more than two dimensions when N!1 (hence ‘naive’). Nonetheless we find it is sufficient for

our purposes. We tried using the two-link method described in [41] but found that even for

graphs with 2000 nodes too many cases had no two-links and so the spacelike separation couldn’t

be calculated resulting in a worse embedding. This is partly because it is inaccurate only for large

graphs but also because in the MDS algorithm each point’s coordinates is fixed by many separa-

tions, both timelike and spacelike which limits the effect of noise from a few poor estimations.

Given a graph, these timelike and spacelike separation estimates define our separation

matrix M (where timelike separation has the − sign in our conventions), on which we can per-

form the Lorentzian MDS algorithm described above to embed it in Minkowski spacetime, as

summarized in the algorithm box below.
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Fig 1. Estimating Minkowski separations in a graph. The Minkowski separation between nodes A and F, MAF is approximated as −25

units as 5 is the number of edges in the longest direction-respecting path between them. Nodes B and G are spacelike separated. To

estimate this separation we find a pair of points in their mutual past and future. In this case, the only such pair is (A, F). The naive spatial

separation between (B, G) is then given by the timelike separation between (A, F) so is +25 units. Note, only the edges not implied by

transitivity have been drawn.

https://doi.org/10.1371/journal.pone.0187301.g001

DAG embedding algorithm

1. For every pair i and j connected by a directed path, find the length of the longest

directed path between them, Lij.

2. For every other pair, find the naive spacelike distance Nij.

3. Create separation matrix, M, such that Mij is � L2
ij if there is a path from i to j and

N2
ij otherwise.

4. Use Lorentzian MDS with M as the input matrix of squared separations.

Embedding graphs in Lorentzian spacetime
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Results

Once the Lorentzian MDS algorithm has estimated coordinates in D-dimensional Minkowski

spacetime for each vertex in the graph, how can we assess the accuracy of the embedding?

Informally, a good embedding is one where the edges, or chains of edges in the graph corre-

spond to timelike separation of the nodes and non-edges correspond to spacelike separation.

Perhaps surprisingly, not every DAG can be embedded perfectly so that this relation is

respected for all pairs [42], even for an arbitrarily large dimension of spacetime. Even where a

DAG can be perfectly embedded the discrete structure of the graph will introduce noise mean-

ing that we will not necessarily recover the original coordinates exactly.

To quantify the effectiveness of an embedding we will take the estimated coordinates and

use them to rebuild the graph by again placing edges only between timelike separated pairs. If

there are edges between the same vertices in the recreated graph and in the original graph, the

embedding is an accurate one, and if not then it is poor. As in [22] we will measure this using

the sensitivity (the fraction of the correct edges which were predicted) and specificity (the frac-

tion of correct non-edges which were predicted). We are effectively considering the estimated

coordinates as a method of predicting edges in the original graph.

We will illustrate our method on several citation networks: the citations within the hep-

th section (high energy physics theory) of arXiv up to 2003 produced for the 2003 KDD cup

[43], similarly for the hep-ph section (high energy physics phenomenology) [43], for the

Supreme Court of the US (SCOTUS) [44], Minkowski spacetime causal set graphs as

described above, and finally random DAGs. By a random DAG we mean an Erdős-Rényi

random graph, with the nodes placed in a random order and edges directed with respect

to that order, and finally the graph is transitively completed. Figs 2 and 3 give examples

of a D = 2 embedding for the hep-ph and hep-th citation networks from the KDD cup

dataset.

To compare the sensitivities and specificities of the various embeddings we use the estab-

lished method of the area under the receiver-operator curve (AUC). Varying a continuous

parameter, the sensitivity and specificity of the embedding is measured, and plotted, as in Fig

4. and the area under this curve describes the embedding’s quality.

The continuous parameter we will vary is the speed of light (or the speed information can

be transferred) in the embedding Minkowski space, c. Previously, we have set c = 1, but varying

this speed will change which nodes are connected in new network generated from the MDS

coordinates. Now, nodes i and j are connected if their coordinates satisfy

� cðx0
i � x0

j Þ
2
þ
Xd

k¼1

ðxk
i � xk

j Þ
2
< 0 ð7Þ

For small values of c, very few nodes are connected and so the specificity is high (few false posi-

tives) but the sensitivity is low (many false negatives). For large values of c, many nodes are

connected and so the reverse is true.

We will compare various DAGs of size N = 1000, and results are shown in Fig 5. The causal

set graphs G2ð1000Þ are stochastically generated as described previously. The random DAGs

are Erdos-Renyi graphs with the edges then directed according to a random ordering on the

nodes, and then transitively completed [45]. The number of edges in the original ER graph is

chosen to roughly match the KDD Cup citation networks but the comparatively poor AUC

scores of the random DAGs is a robust to changes in this parameter.
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Fig 2. Papers from arXiv embedded in Minkowski space using Lorentzian MDS. A visualisation of a D = 1 + 1 embedding of the top

2000 most cited papers in the hep-ph citation network, where node size is proportional to the number of citations. Node colour

corresponds to publication date, and in both cases this correlates strongly with the time coordinate obtained from the embedding

algorithm. The hep-ph citation network appears more broad in space indicating more pairs of papers which are spacelike separated

from each other.

https://doi.org/10.1371/journal.pone.0187301.g002
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Fig 3. Papers from arXiv embedded in Minkowski space using Lorentzian MDS. A visualisation of a D = 1 + 1 embedding of the top

2000 most cited papers in the hep-th citation network, where node size is proportional to the number of citations. Node colour

corresponds to publication date, and in both cases this correlates strongly with the time coordinate obtained from the embedding

algorithm. In contrast to the hep-ph network, the hep-th citation network has most of its papers in a long chain indicating more timelike

separated pairs. We highlight the central placement of the most cited paper in that citation network hep-th/9711200, Maldacena’s paper

“The Large N Limit of Superconformal Field Theories and Supergravity”. The visually ‘narrow’ citation network of hep-th and ‘broad’

hep-ph agrees with our previous findings in [25].

https://doi.org/10.1371/journal.pone.0187301.g003
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Discussion and conclusions

We foresee this approach being applied in two cases. Firstly, there are applications where the

network data of interest is in the form of a DAG and so as is the case for causal sets the natural

geometric approach to take is a Lorentzian one. Finding an effective geometric embedding of a

network provides a powerful tool for the analysis of that network as it allows standard geomet-

ric techniques and intuition to be used. Calculations of network properties can be made more

efficient, for example, when finding optimal routes from one node to another, the node coor-

dinates provide local information which can improve routing algorithms [10]. Models built on

hyperbolic spaces can yield scale free, clustered networks with community structure illustrat-

ing the remarkable power that geometric approaches have to recover complex network proper-

ties [12], and we suggest the same could be true of DAGs in Lorentzian spacetimes.

A second application is in dimensionality reduction. Our method may be used where there

is some domain specific reason to think that the appropriate target space should be Lorentzian,

because datapoints are associated with points in time and are related in some causal way. Gen-

eralising the equations for classical MDS allows it to be used on any metric signature, even

though we have focused only on the Lorentzian signature here. To our knowledge this pseudo-

Riemannian output is a new development, although some manifold learning techniques exist

which can take pseudo-Riemannian manifolds as their input [46, 47]. We note that when per-

forming the embedding one can find multiple negative eigenvalues, suggesting that embedding

Fig 4. Sensitivity of results. Curves showing the sensitivity and specificity of embeddings into D = 2 Minkowski

space of causal set graphs in two-, three- and four-dimensional spacetimes, and of a citation network from the

hep-th section of arXiv, all with N = 1000 vertices.

https://doi.org/10.1371/journal.pone.0187301.g004
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in spaces with more than one timelike dimension is also possible, as are potential embeddings

into Lorentzian manifolds other than Minkowski space, incorporating curvature or preferred

directions. Furthermore dimensionality reduction algorithms which begin by building a graph

of nearest neighbours (such as Isomap [48]) could be adapted to have a Lorentzian spacetime

as the target space using the kind of longest-path approach we describe here.

The visualisation of networks is a problem in its own right, and two or three dimensional

embeddings from our method can be combined with standard plotting software to give net-

work visualisations for DAGs in which the causal ordering is explicit. Such visualisations are

used in bibliometrics to help identify distinct fields or assist literature reviews [49].

When standard dimensionality reduction techniques are used on high-dimensional datasets

it is common to see complicated, abstract features of the data represented by directions in the

reduced coordinates which may represent underlying degrees of freedom in the mechanism

generating the data. See for example in [48] where this effect is apparent on images and hand-

written digits.

In the cases of citation analysis we conjecture that the spatial dimensions that result from a

geometric approach correspond to similarity in the topic of a paper, and so our approach

yields spatial similarities between papers while accounting for the time difference in their

Fig 5. The quality of embeddings. Area under the curve (AUC) values represent the quality of an embedding. Here we show the AUC

values for embedding graphs with 2000 nodes into D = 2 Minkowski spacetime. A value of 1 represents a perfect embedding, and a value of

0.5 is random chance. The two-dimensional causal set graph has, as expected, the highest value, since there must be coordinates allowing

a perfect embedding (the original coordinates used when building that graph). Higher dimensional causal sets can be embedded less well,

but still better than a random DAG (far right). Error bars show the standard deviations of this measurement over 20 randomly generated

examples. Notably, the three citation networks we use as examples have significantly higher values that the random DAG illustrating that

they have structure which allows a better fit to Minkowski spacetime. The comparatively better fit of the hep-th network over the hep-ph
network into 2-dimensional spacetime agrees with our result in [25].

https://doi.org/10.1371/journal.pone.0187301.g005
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publication. Once estimated coordinates are known, the idea that nodes may be ‘similar’ can

be expressed as nodes being close in their spatial coordinates. Two papers that do not cite each

other, or share authors or citations might still be close in the embedded coordinates since

these are calculated globally using information from all vertices and edges. Closeness in the

embedded coordinates is then a similarity measure which can be used for applications such as

clustering, paper recommendation, and centrality measures, the effectiveness of which is an

avenue for future work.

Another use of this approach is where edges in a network are placed primarily according to

some geometric rule but their connections are also governed by some smaller second order

effect. It may only be possible to measure the smaller effect once we have accounted for the pri-

mary geometric one by assigning coordinates. We can see this phenomenon clearly when the

geometric embedding is in real geographic space, such as in [50] where accounting for geo-

graphic distance in phone-call data allows more accurate prediction of the second order effect

of shared language.

The focus in this paper has been to show how the MDS approach may be adapted to embed

networks in a spaces with a distinct time direction, such as Minkowski spacetime and other

non-Riemannian spaces. The algorithms we used provide an illustration but we expect more

and scalable algorithms will be possible with further work. In our implementation the majority

of the computation time is taken up calculating the spacelike distances in the graph. Since this

involves counting many longest paths it is more challenging than the calculations of effective

distances in traditional MDS methods and we expect improvements on our simple approach

should be possible. The second part of the process is the assignment of coordinates given the

spacetime distances. A central result here is that working with a spacetime is a straightforward

adaptation of the standard Euclidean MDS methods. This means that the established MDS

algorithms can be applied in this context so we expect that existing techniques, e.g. Landmark

MDS [28] or Pivot MDS [29], will deliver optimal performance.

In conclusion our approach is a general one that we hope finds use in a wide range of appli-

cations in network embedding, visualisation, geometric analysis and dimensionality reduction

problems where a Lorentzian target space may be appropriate. In particular datasets of causally

related events or objects naturally correspond to an embedding in Lorentzian spacetime and

so are obvious candidates for this approach. To this end we direct readers to [30] where a

Python implementation of our approach is available, along with examples including those

used to generate some of the diagrams in this paper.

Supporting information

S1 Appendix. Derivation of Lorentzian MDS.
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