
RESEARCH ARTICLE

Authorship attribution of source code by

using back propagation neural network based

on particle swarm optimization

Xinyu Yang, Guoai Xu*, Qi Li, Yanhui Guo, Miao Zhang

National Engineering Lab for Mobile Network Technologies, Beijing University of Posts and

Telecommunications, Beijing, China

* xga@bupt.edu.cn

Abstract

Authorship attribution is to identify the most likely author of a given sample among a set of

candidate known authors. It can be not only applied to discover the original author of plain

text, such as novels, blogs, emails, posts etc., but also used to identify source code pro-

grammers. Authorship attribution of source code is required in diverse applications, ranging

from malicious code tracking to solving authorship dispute or software plagiarism detection.

This paper aims to propose a new method to identify the programmer of Java source code

samples with a higher accuracy. To this end, it first introduces back propagation (BP) neural

network based on particle swarm optimization (PSO) into authorship attribution of source

code. It begins by computing a set of defined feature metrics, including lexical and layout

metrics, structure and syntax metrics, totally 19 dimensions. Then these metrics are input to

neural network for supervised learning, the weights of which are output by PSO and BP

hybrid algorithm. The effectiveness of the proposed method is evaluated on a collected

dataset with 3,022 Java files belong to 40 authors. Experiment results show that the pro-

posed method achieves 91.060% accuracy. And a comparison with previous work on

authorship attribution of source code for Java language illustrates that this proposed method

outperforms others overall, also with an acceptable overhead.

Introduction

Nowadays with the rapid growth and popularity of Internet, software plagiarism is becoming

more and more common. In this context code attribution may be helpful. [1] Authorship attri-

bution of source code is to identify the author of a given source code among a set of candidate

known authors. Apart from software plagiarism, it also has practical value in solving author-

ship dispute, software forensics, and malicious code tracking etc. [2–5]

Source code can be treated as function text to some extent. The expression of source code is

less free than text due to complication limitations. However, programmers still leave finger-

prints in their source code. [6] For example, if a programmer wrote a sort code once, he would

probably use this encapsulated code fragment again when confronted with the same problem.

This makes his programming style consistent and also becomes the main reason why program-

mers can be identified from stylistics analyses. [7]

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Yang X, Xu G, Li Q, Guo Y, Zhang M

(2017) Authorship attribution of source code by

using back propagation neural network based on

particle swarm optimization. PLoS ONE 12(11):

e0187204. https://doi.org/10.1371/journal.

pone.0187204

Editor: Yong Deng, Southwest University, CHINA

Received: February 28, 2017

Accepted: September 29, 2017

Published: November 2, 2017

Copyright: © 2017 Yang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant source

files are available from Github (https://github.com/

buptlearner/authorship_attribution).

Funding: This work was supported by the National

High Technology Research and Development

Program of China (863 Program) [grant number

2015AA017202]. It was also supported by the

National Key Research and Development Program

of China - CyberSpace Security Project “Mobile

Terminal Key Technologies at a High Security

Level” [grant number 2017YFB0801903]. The

funders had no role in study design, data collection

https://doi.org/10.1371/journal.pone.0187204
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187204&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187204&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187204&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187204&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187204&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187204&domain=pdf&date_stamp=2017-11-02
https://doi.org/10.1371/journal.pone.0187204
https://doi.org/10.1371/journal.pone.0187204
http://creativecommons.org/licenses/by/4.0/
https://github.com/buptlearner/authorship_attribution
https://github.com/buptlearner/authorship_attribution

Authorship attribution has gained wide attention since Krsul’s initial work [8]. To solve

this problem, large amounts of source codes belong to candidate authors are dealt for stylistic

features to determine the likelihood with the sample to be tested. While this problem has

already been studied previously, our work focuses on authorship attribution for Java source

code, aiming at achieving higher recognition accuracy with fewer features as much as possible.

In this paper, a novel authorship attribution model is designed and implemented. First of

all, feature metrics are defined on the lexical, layout, structure and syntax aspects. The feature

space should cover all the aspects of program writing style and its dimensionality also needs to

avoid bringing computational complexity. After that, this paper attempts to first introduce

back propagation (BP) neural network based on particle swarm optimization (PSO), PSOBP

(BP based on PSO) in short, into authorship attribution. Finally, a series of experiments are

conducted to evaluate the model effectiveness, with 91.060% accuracy. Moreover, the accuracy,

overhead and parameter sensitivity of the proposed method are analyzed in detail.

In summary, the contribution of this paper is the following ones:

• A complete framework of source code authorship attribution based on PSOBP has been pro-

posed, including two main procedures feature extraction and sample classification.

• The extracted features contain not only lexical and layout level metrics, but also structure

and syntax level metrics, all scalable.

• A prototype system of the proposed approach and evaluation experiments based on a real-

world dataset have been performed, owning a competitive advantage over previous work.

The remainder of this paper is organized as follows. The related work is described in Sec-

tion 2. Section 3 specifically introduces the source code authorship attribution method using

PSOBP. And experimental results are showed and analyzed in Section 4. Finally, we discuss

conclusions and future work further in Section 5.

Related work

At present research in authorship attribution of source code for C/C++ is relatively mature

[9], but less systematic work for Java language. In 2004, Ding and Samadzadeh [10] adapted

Krsul’s C metrics for Java, that is, programming layout, style and structure metrics, and used

statistical process to measure their contribution. The results show that 48 metrics out of 56

extracted metrics are identified as being contributive. However, the authors did not provide

the final subset or rank all features. Shortly afterwards Lange and Mancoridis [11] indicated

that Ding used mostly scalar metrics derived from source codes, so they formulated their 18

metrics as histogram distributions, with approximately making up one third of Ding’s metrics.

But some metrics are somewhat unbounded, for example the indentation categories [12].

Then Shevertalov et al. [13] only selected four of Lange’s metrics, leading spaces, leading tabs,

line length, words per line, and used genetic algorithm to discretize metrics. The evaluation

was carried out with 20 open source developers and over 750,000 lines of Java source codes.

But this feature set is also non-reproducible as they did not provide details on the final set.

Apart from above papers, there is much valuable work for source code authorship attribution.

[14–20] It is worth mentioning that Burrows et al. [12] summarized previous classification

techniques, either information retrieval ranking or machine learning in 2012, concluding that

they obtain around 90% and 85% accuracy respectively for a one-in-ten classification problem.

To data for Java source code authorship attribution, the highest accuracy in the related work is

achieved by Frantzeskou et al. [21] They used 1,500 7-grams to reach 96.9% accuracy

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 2 / 18

and analysis, decision to publish or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0187204

classifying 30 programmers. They demonstrated that comments, layout features and naming

patterns have a strong influence on the classification accuracy.

The extracted metrics for C/C++ language can also be introduced into the authorship attri-

bution for Java language partially. For example, Aylin et al. [9, 22] investigated machine learn-

ing methods to de-anonymize authors of C/C++ both on the source code level and the binary

code level. They not only made use of lexical and layout metrics, but also took syntactic metrics

into consideration. They have already achieved 94% and 98% accuracy with 1,600 and 250

class authors respectively. Recently Wilco et al. [6] also proposed to extract structural features

from the abstract syntax tree (AST) to identify JavaScript programmers. The accuracy achieves

85% for 34 authors.

Proposed method

The goal of source code authorship attribution is to ascribe a specified source code sample to

one of candidate authors. Machine learning methods are always used to tackle classification

problem. And it is impossible to obtain satisfactory results without appropriate features. To

this end, the flowchart of our proposed methods is divided into two procedures shown in Fig

1, namely extracting stylistics features and classifying samples using PSOBP neural network.

First all the collected source codes are pretreated to extract feature metrics one by one Java

file. It is necessary that these selected feature metrics should be quite specific to certain pro-

gramming style, making up a programmer’s problem-solving vocabulary. And at the same

time, the features should cover all the aspects of programing style. Feature metrics on lexical,

layout, structure and syntax levels are defined. These extracted features form a feature line,

representing the Java source file belong to its corresponding author.

Afterwards these processed feature lines are separated into training data and test data on a

pro-rata basis, all with author labels. Neural network uses training data to build a classification

model, whose network weights are output by PSOBP. It is mentioned that different initial

parameter settings have different models, which are adjusted on the basis of engineering expe-

rience. Once obtained the expected model, identification results are given using test data. A

detailed technical description of all the main steps is given in the corresponding sections.

Feature extraction

Software programs are analogous to text to some degree, therefore it is quite possible to mea-

sure an author’s programming style on the lexical level. But different from pure text it still has

Fig 1. Framework overview.

https://doi.org/10.1371/journal.pone.0187204.g001

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 3 / 18

https://doi.org/10.1371/journal.pone.0187204.g001
https://doi.org/10.1371/journal.pone.0187204

structure features. To date, the extracted software metrics used for authorship attribution differ

in thousands of ways. Referring to previous work, this paper summarizes feature metrics into

two categories, namely programming lexical and layout metrics, structure and syntax metrics.

Here, lexical and layout metrics are mainly derived from Ding’s paper [10]. We analyze these

metrics combining engineering experience, delete some useless metrics and merge some

related metrics into an independent one. For example, “a list of metrics indicating indentation

style” (labeled as STY1 in Ding’s paper) includes “percentage of open braces that are along a

line” (labeled as STY1a in Ding’s paper), “percentage of open braces that are the first character

in a line” (labeled as STY1b in Ding’s paper), “percentage of open braces that are the last char-

acter in a line” (labeled as STY1c in Ding’s paper) three petit metrics. But in our paper, these

are summarized to a metric “percentage of open braces alone in a line”. It means to compute

the percentage of open braces alone in a line to all lines with open braces. This metric can

represent how an author expresses nested structure codes. Meanwhile, some metrics are

unbounded, for example “average indentation in white spaces after open braces” (labeled as

STY1g in Ding’s paper). Some compilers have their own rules therefore making the program-

ming indentation style less free. In this situation, this feature contributes little to identifying a

certain author. Thus we decide to delete these metrics. In this paper we define 8 metrics on the

lexical and layout level, labeled as PRO and STY in the following Table 1.

Only lexical and layout metrics are not enough to describe the programming style of a sin-

gle source file comprehensively. The structure and syntax metrics do not confine to text fea-

tures any longer, but analyze the source code as a whole [23]. The metric extraction relies on

abstract syntax tree (AST), which is a tree structure of source code abstract syntax. We totally

define 11 metrics on the structure and syntax level, labeled as PSM in Table 1. Finally, after

adjusting the metrics according to the classification effect multiple times, 19 metrics are

defined totally. An overview of these metrics is given in Table 1. These 19 metrics are either

percent or numerical value, all quantitatively scalable. In addition, our software metrics are

Table 1. Programming metrics extracted from Java source code files.

Metrics Description

PRO1 Ratio of blank lines to code lines

PRO2 Ratio of comment lines to code lines

PRO3 Percentage of block comments to all comment lines

PRO4 Percentage of open braces ({) alone in a line

PRO5 Percentage of close braces (}) alone in a line

STY1 Percentage of variable naming without uppercase letters

STY2 Percentage of variable naming starting with lowercase letters

STY3 Average variable name length

PSM1 Ratio of macro variables

PSM2 Percentage of “for” statements to all loop statements

PSM3 Preference for cyclic variables

PSM4 Percentage of “if” statements to all conditional statements

PSM5 Ratio of branch statements

PSM6 Average number of methods per class

PSM7 Ratio of “try” structure

PSM8 Percentage of “catch” statements when dealing with exceptions

PSM9 Average number of interfaces per class

PSM10 Average character number per Java file

PSM11 Maximum depth of an AST

https://doi.org/10.1371/journal.pone.0187204.t001

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 4 / 18

https://doi.org/10.1371/journal.pone.0187204.t001
https://doi.org/10.1371/journal.pone.0187204

suitable for both compiled files and source code fragments. But syntax error is not discussed

further in this paper.

Classifier

There is a lot of research work on how to optimize BP neural network to accelerate conver-

gence and avoid local minimum. Particle swarm optimization is one of the optimization algo-

rithms based on swarm intelligence. It shares individual information to make the swarm move

towards the optimal solution. In this section, some related knowledge about BP and PSO algo-

rithm is reviewed respectively, to help understand the subsequent method.

BP algorithm. BP neural network is currently one of the most widely used neural network

models. [24–25] It is a multi-layer feed-forward network trained by the error back propagation

algorithm. This means that BP neural network uses the gradient descent method, adjusts

the weights and thresholds of the network through back propagation in order to make the

quadratic sum of the network error minimum. BP network can learn and store a lot of input-

output model mapping, without revealing the mathematical equations of the mapping rela-

tionship in advance. In general, BP neural network structure includes input layer, hidden layer

and output layer as shown in Fig 1. BP neural network has a strong nonlinear mapping ability,

especially suitable for classification or approximation problem.

PSO algorithm. BP neural network has a strong self-learning and generalization ability,

and also easy to implement, making it often being applied to classification problem. However,

BP neural network has several drawbacks, such as slow convergence speed, low prediction abil-

ity and locally optimal solution [26]. PSO [27–30] overcomes these above defects and at the

same time controls the training time of neural network in a reasonable range. Thus, substitut-

ing PSO for gradient descent method to train BP parameters can improve performance greatly.

In PSO algorithm, the solution for optimization problem can be treated as searching for the

proper “particle”. The procedure is described below. Firstly, the initial solution is generated,

i.e. initialize N particles in the D dimension feasible solution to constitute population x = {x1,

x2,. . ., xN}. Each particle has two vectors, namely position and velocity, denoted as xi = {xi1, xi2,

. . ., xiD} and vi = {vi1, vi2,. . ., viD}. Secondly, calculate the fitness value of these particles accord-

ing to the objective function. In the iteration process, the particle updates two extremes timely,

one is pid the best solution searched by the particle itself, and the other is gid the optimal solu-

tion searched by the population currently. Finally, loop above steps until a satisfied fitness is

met or the maximum number of iterations is reached.

The original formulae used for updating velocity and position are shown below in Eq (1)

and Eq (2):

vidðt þ 1Þ ¼ vidðtÞ þ c1 � randðÞ � ½pidðtÞ � xidðtÞ� þ c2 � randðÞ � ½pgdðtÞ � xidðtÞ� ð1Þ

xidðt þ 1Þ ¼ xidðtÞ þ vidðt þ 1Þ 1 � i � n; 1 � d � D ð2Þ

Where, vid (t+1) represents the d dimension velocity of the ith particle in generation iteration

t+1, vid (t) and xid (t) are the d dimension velocity and position of the ith particle in generation

iteration t, c1 and c2 are the acceleration towards pid and gid, r1 and r2 are the random number

between 0 and 1. In order to control the development and exploration ability of PSO algorithm,

inertia weight is introduced into Eq (1), forming the standard PSO algorithm as Eq (3). [31]

vidðt þ 1Þ ¼ wvidðtÞ þ c1 � randðÞ � ½pidðtÞ � xidðtÞ� þ c2 � randðÞ � ½pgdðtÞ � xidðtÞ� ð3Þ

It can be seen that w controls the influence of previous speed on current one. Large inertia

weight makes particles have great speed, owing a strong exploration ability, while small inertia

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 5 / 18

https://doi.org/10.1371/journal.pone.0187204

weight makes particles have a strong development ability. To balance the exploration and

development ability, inertia weight must be chosen reasonably. In this paper, we leverage the

time-varying inertia weight as Eq (4).

w ¼ wmax � ðwmax � wminÞ=itermax � iter ð4Þ

The inertia weight is valued in linear decreasing way. In this formula, iter denotes the cur-

rent number of iterations, itermax means the largest number of iterations, wmax is the initial

value of inertia weight, and wmin is the final value.

Enhancing BP with PSO. PSO algorithm has a strong ability to find a global optimal solu-

tion. However, the search progress will become slow and even all the particles fall into a local

optimal value near the global optimal value, whereas, BP algorithm has the advantage of local

searching ability. Thus, PSO and BP algorithm can be combined to make full use of the PSO

global search feature and BP local search feature to form a hybrid algorithm PSOBP. In this

paper, the searching process of PSOBP is as follows: Firstly initialize a group of particles. Sec-

ondly the velocity and position of all the particles are updated according to equations, and a

new set of particles are generated. Thirdly these particles are used to search the global best

position using PSO algorithm. Finally, BP algorithm is made use of to search around the above

global optimum. The flowchart of PSOBP algorithm is also illustrated in Fig 2. In this way,

PSOBP algorithm is able to find the optimal solution quickly and accurately.

The PSOBP procedure is summarized as follows:

Step 1: initialize a group of particles randomly over the searching space.

Step 2: evaluate each particle’s fitness value, Pb is set as the position of current particle and Pg is

the best position of all the particles.

Step 3: if the maximum of iterations is reached, then go to Step 8, otherwise go to Step 4.

Step 4: store the best position of each particle and global best position, and then update the

position and velocity of all the particles according to Eq (2) and Eq (3), thus a new set of

particles are generated. If a particle flies beyond the position boundary, then its position

will be set Xmin or Xmax; if a particle velocity is beyond the velocity boundary, then its veloc-

ity will be set Vmin or Vmax.

Step 5: evaluate each new particle’s fitness value. If the new position of the ith particle is better

than Pib, then substitute Pib with the new position, otherwise Pib stays unchanged. Likewise,

if the best position of all new particles is better than Pg, the new position is set as Pg, other-

wise Pg stay unchanged.

Step 6: reduce the inertia weight w according to Eq (4).

Step 7: if the global optimum Pg remains unchanged for ten generations, then go to Step 8, oth-

erwise go to Step 3.

Step 8: Use the BP algorithm to search around Pg. If the BP search result is better than Pg, use

the new search result as the final optimum; or else output Pg as the global optimum.

Although PSOBP overcomes the limitations of BP and PSO algorithms, it is still inevitable

to exist some drawbacks. Like other optimization algorithms, it has several parameters needing

to be adjusted. However, parameter selection is lacking of systematic, standardized theoretical

work. In this paper, we set parameter values on the basis of previous work and engineering

experience. Fortunately, there are not too many parameters for PSOBP algorithm. In addition,

as the problem scale goes larger sharply, the complexity of neural network will increase. At the

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 6 / 18

https://doi.org/10.1371/journal.pone.0187204

same time, the classification accuracy will decrease and more running time will be spent. How-

ever in this paper, the authors we need to deal with are still small-scale but satisfy practical

needs, this phenomenon is not that obvious.

Experiment evaluation

In the evaluation section, experimental results are present. The authorship dataset section

gives an overview of the data we collected. Then we demonstrate the training procedure,

Fig 2. The flowchart of PSOBP.

https://doi.org/10.1371/journal.pone.0187204.g002

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 7 / 18

https://doi.org/10.1371/journal.pone.0187204.g002
https://doi.org/10.1371/journal.pone.0187204

including how to use the training data and test data, how to adjust BP and PSO parameters.

Afterwards we compare PSOBP and BP, and also evaluate the effectiveness of PSOBP against

previous work. Finally, we conclude the evaluation with summarizing the method and provid-

ing software engineering insights.

Authorship dataset

Obtaining a representative dataset for authorship attribution is rather important, thus how to

select an appropriate dataset will be a key issue. Our goal is to solve practical author identifica-

tion problem, so the selected dataset should be close to “ground truth”, and provide sufficient

information as much as possible. Unfortunately, there is no such existing dataset for source

code authorship attribution. To this end, source code samples are crawled from an open source

code website.

Github (accessible at https://github.com//) has become the largest code storage site and

open source community in the world, with more than nine million registered users and 21.1

million code repositories. Moreover, whether a repository is committed by a single author or

multiple authors is also marked. Here we do not consider the situation where a single source

code is completed by multiple programmers, which is out of the scope of this paper. Only

these repositories that are contributed by a single author are collected. Although we cannot

guarantee that single author codes in Github refer to single authors absolutely, as there are var-

ious instances where multiple developers work on the code and commit it by a single author,

the noise in the dataset code is evitable. By doing so, each repository is able to represent a sin-

gle developer roughly, and it is possible to distinguish between multiple developers. The collec-

tion was completed in September 2016. Generally speaking, Java repositories are much fewer

than C/C++ language. We collected source code samples belong to 100 authors meeting the

above restriction. These 100 authors have 1 to 3 repositories, and most of them only have one

repository.

After collecting the dataset we have carried out data cleaning. On the one hand, some

authors only have few Java source code files, bringing difficulty to machine learning. On the

other hand, certain parts of Java source code samples are automatically generated by the sys-

tem, containing no author programming style information. Such data will interfere with the

classification accuracy. Therefore, it is essential to take measures to filter the collected dataset.

Firstly, we adopt a predefined blacklist of third-party library names, which are crawled from

the Maven Repository. Therefore, most of library codes are removed from projects. However,

it is hard to find the libraries written by other developers as extension. Secondly, when a pro-

grammer develops an Android application to achieve a specific function, he is bound to write

his own codes. Although certain parts of the code are generated by the system, for example the

abstract class and interface framework code and so on, they account for a small proportion.

This noise has little effect on the final classification result. Thirdly, some JUnit test cases are

automatically generated while developers will also write their own test cases. In this situation,

it is difficult to determine which parts are written by developers themselves. So in this paper,

all the JUnit test cases are roughly removed. Finally, the author folders whose total Java source

code files are fewer than 10 have also been removed. Through the above data filtering strate-

gies, the authorship dataset comprises 3,022 Java files with 40 authors. For learning and study

purposes, we have published the experimental dataset (accessible at https://github.com/

buptlearner/authorship_attribution). The minimum file number that an author contributes is

11, and the maximum is 712. The frequency distribution histogram of 40 authors’ Java source

files is shown in Fig 3. Three quarters of total authors own less than 81 files, and 8 authors

have source code files ranging from 81 to 151. These two intervals make up the vast majority

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 8 / 18

https://github.com//
https://github.com/buptlearner/authorship_attribution
https://github.com/buptlearner/authorship_attribution
https://doi.org/10.1371/journal.pone.0187204

of all the data. There is one author owing 201 files, and only one author has the largest number

of files, 712 source codes. This data distribution conforms to actual situation. In addition, sta-

tistics data shows that the average line length is 98.63, ranging from 16 lines to 11,418 lines.

Training procedure

In machine learning the classification model should not only be suitable for training data, but

also most importantly able to make reliable predictions on general untrained data, thus it is

necessary to avoid over-fitting problem. To this end, several measures are taken. First, in nor-

mal conditions the more adequate training data is, the better a classification model is. In the

training procedure the authorship dataset has provided enough data points for PSOBP to train

a proper classification model. Second, in the model design phase the dimension of input fea-

ture vector and hidden neurons are controlled in a reasonable range. Third, in order to make

Fig 3. The frequency distribution histogram of Java files.

https://doi.org/10.1371/journal.pone.0187204.g003

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 9 / 18

https://doi.org/10.1371/journal.pone.0187204.g003
https://doi.org/10.1371/journal.pone.0187204

full use of the dataset and eliminate the effect of sample choosing, cross-validation is used to

evaluate the effectiveness of the classification model.

In the initial phrase, particles are randomly over the search space, ranging from -1 to 1, and

PSO and BP parameters are also set at this time. As PSOBP is sensitive for initialization param-

eters [32–34], different initialization parameters will obtain different classification models. In

this paper, these important parameters of PSO and BP are adjusted using controlling variable

method. Table 2 lists their names, corresponding definition, note and value used in this experi-

ment. The population size N is usually set between 20 and 40. Experiments show that for most

of problems, 30 particles can achieve satisfactory results, but for certain difficult problems, it

can also be set 100 or 200. In this paper, population size is 100. The particle length D is the size

of problem, determined by the specific optimization problem. D = (indim+1)×hiddennum +

(hiddennum+1)×outdim, indim, hiddennum and outdim mean the neuron number of input

layer, hidden layer and output layer respectively. The maximum velocity Vmax determines the

maximum distance that a particle can move in a single iteration. The maximum velocity must

be limited, otherwise a particle might run out of the search space. Vmax is usually set to the

width of the particle range. After adjusting several times, we set Vmax 1 and Vmin -1 in this

paper. The inertia weight w decreases as Eq (4), and let the initial w be 0.9. The acceleration

constants, both c1 and c2 are 1.49, different from the default setting 2.0. r1 and r2 are two ran-

dom numbers in the range of [0,1].

The parameters used in this paper are not default configurations, they are adjusted accord-

ing to the specific authorship attribution problem. Hence, we make use of controlling variable

method to compare the result against several parameters configurations. For example, we

change the maximum velocity and keep the other parameters the same as our final configura-

tion. Then parameters are determined according to classification results. In order to avoid the

influence of accidental factors such as random variables, experiments should be repeated sev-

eral times. Therefore each time a variable is adjusted we carry out experiments three times and

take the average shown in Table 3. For population size, inertia weight, acceleration constants,

we also repeat the operation. In the comparison procedure, the training data and test data is

3:1. Table 3 lists the classification result of different parameter configurations. It is worth men-

tioning that actually for each single variable, we try continuous data, but only a few default set-

tings are listed.

In addition of parameters, the structure of neural network plays an important role in build-

ing an appropriate model. The neural network has three layers, input layer, hidden layer and

output layer as in Fig 4. The input layer contains 19 neurons, corresponding to 19 dimension

features, all numeric value. The hidden layer has 150 neurons. The hidden layer structure is

determined according to empirical formula and engineering experience. The output layer con-

tains 40 neurons, corresponding to 40 authors. The function of hidden layer and output layer

has a great influence on neural network prediction precision. Generally, the function of hidden

Table 2. Key parameters of PSO algorithm.

Name Definition Note Value

N Population size Usually 20~40 100

D Particle length Determined by the optimization problem Design formula as above

Vmax Maximum velocity Maximum velocity limit in each dimension 1

w Inertia weight Linear decreasing weight generally from 1.5 to 0.5 Eq (4)

wmax = 0.9, wmin = 0.4

c1,c2 Acceleration constant Usually both 2.0 c1 = c2 = 1.49

r1,r2 Random number Between 0 and 1 Random number

https://doi.org/10.1371/journal.pone.0187204.t002

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 10 / 18

https://doi.org/10.1371/journal.pone.0187204.t002
https://doi.org/10.1371/journal.pone.0187204

layer nodes is logsig or tansig, and the function of output layer nodes is tansig or purelin. In this

paper, the functions of hidden and output layer are both tansig.

Classification comparison of PSOBP and BP

Cross-validation is employed multiple times to evaluate the effectiveness of our proposed

method. In this experiment we take ten 10-fold cross-validation. Specially, we divide the origi-

nal dataset into 10 subsets. Each time a subset is treated as validation data in turn and the oth-

ers are reserved for training. All of them are labeled with corresponding author numbers. On

this basis, we obtain ten sets of training data and validation data. PSOBP and BP neural net-

works are used to get classification models using training data, and validation data is used to

evaluate the model accuracy. If the predicted output is in accordance with the actual author

number, we determine that this sample is classified correctly, otherwise wrongly. We take the

average as the accuracy of a 10-fold cross-validation. The results of ten 10-fold cross-validation

for BP and PSOBP are illustrated in Table 4 respectively. Due to stochastic nature of the

PSOBP algorithm, mean value and standard deviation instead of each accuracy value are

given. Taking cross validation can avoid over-fitting effectively, making the result more con-

vincing. Finally, PSOBP achieves 91.060%, higher over BP 76.093%. When the classification

Table 3. The effect of different parameter configurations.

Single variable Classification accuracy

Vmax = 10 89.073%

N = 40 88.571%

wmax = 1.8 88.711%

c1 = c2 = 2.0 87.215%

Our final configuration 90.659%

https://doi.org/10.1371/journal.pone.0187204.t003

Fig 4. The structure of neural network.

https://doi.org/10.1371/journal.pone.0187204.g004

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0187204.t003
https://doi.org/10.1371/journal.pone.0187204.g004
https://doi.org/10.1371/journal.pone.0187204

accuracy is more than a certain value, it will be not that easy to be improved further. But it per-

forms relatively stable, no significant ups and downs.

It can be seen that in Fig 5(1–10) the x-axis is just the validation data of one 10-fold cross-

validation, one tenth of the total Java source code samples. And the y-axis represents the

author number, ranging from 1 to 40. Restricted by the limited space in figures, we only add

one legend in Fig 5(1). The legend displays that, the green solid line means the actual output,

numerical growth in discretization. The red triangle line stands for the BP prediction output,

and the blue circular line represents the PSOBP prediction output. It is obvious that PSOBP

outperforms than BP on the same given validation data. The PSOBP predicted output overlap

the actual output in the vast majority of cases. It is worth mentioning that in our experiment

PSOBP and BP use the same common parameters, including neurons, training epochs, learn-

ing function, experiment error and so on.

However, in a 10-fold cross-validation certain experiment accuracy is obviously lower than

the others, making standard deviation not that small. Examining its corresponding original

author samples, we make the following analyses. The source codes derived from Github may

not belong to their claimed authors completely, as some source code fragments may be copied

and pasted from existing codes. And some authors may come from a same organization,

which may have detailed and strict requirements for programming style. Thus in this situation

it is difficult to distinguish two authors from the stylistic features, which make up the main

part of our proposed feature space. That is the reason why the accuracy of certain test can be

relatively lower. But the overall accuracy is satisfactory and in practice a more accurate result

can be obtained combined with artificial analyses.

Comparison to previous work

There are several classical machine learning approaches often used for classification problem.

Conducting a number of comparison experiments to demonstrate the effectiveness of our pro-

posed approach is essential. In this comparison procedure, our collected dataset is split into

training data and test data to classify programs from 40 authors. The former account for 75%

(2,267 Java source code files) while the latter constitute 25% (755 Java source code files).

Repeat the experiment multiple times and take the average as the final result. Both accuracy

and running time are considered, listed in Table 5.

It can be seen that with the same other conditions, PSOBP accuracy is higher than others

achieving 90.659%, although it takes much more time. The time spent in our work is more

than other AI classifiers, but they are all within a reasonable and tolerant range. Further we

Table 4. Cross validation accuracy of BP and PSOBP neural network. (percentage %).

Counter Mean value Standard deviation Mean value Standard deviation

k = 1 75.913 2.477 91.218 4.493

k = 2 76.246 3.402 91.342 4.060

k = 3 75.944 2.940 90.567 6.067

k = 4 75.969 4.156 91.001 4.394

k = 5 76.050 3.197 91.008 4.682

k = 6 75.945 3.027 91.093 6.046

k = 7 76.439 4.606 91.106 5.018

k = 8 76.507 2.476 91.080 4.444

k = 9 75.785 2.056 91.013 5.331

k = 10 76.132 3.420 91.172 4.152

BP: 76.093 PSOBP: 91.060

https://doi.org/10.1371/journal.pone.0187204.t004

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 12 / 18

https://doi.org/10.1371/journal.pone.0187204.t004
https://doi.org/10.1371/journal.pone.0187204

Fig 5. The classification results of PSOBP and BP neural network in one 10-fold cross-validation

experiment.

https://doi.org/10.1371/journal.pone.0187204.g005

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 13 / 18

https://doi.org/10.1371/journal.pone.0187204.g005
https://doi.org/10.1371/journal.pone.0187204

analyze that these extra time is mostly spent in the process of searching for the global optimal

solution, including searching for appropriate network parameters and neural network optimi-

zation. Once finding an optimized NN model, it takes only 0.38 seconds on average to judge

the authors of given test samples for PSOBP. It is intuitive that with the problem size increases,

the particle scale, hidden neurons, and other parameters should be adjusted accordingly.

These all lead to time increasing. In this paper, we aim to identify 40 authors, and the time is

reasonable for the problem size.

There is a number of related work as summarized in Section 2 in the literature. In this

paper, we aim at solving authorship attribution of source code written by Java language. To

our best knowledge we summarized the typical and all Java source code authorship attribution

work in Table 6. Generally speaking, we significantly outperform them according to the num-

ber of classification programmers and corresponding accuracy. However, we notice that Frant-

zeskou et al. identified 30 programmers, achieving 96.9% accuracy, but the average lines of all

source code files in their dataset (172 lines of code on average) are longer than ours (98 lines of

code on average).With the author scale slightly larger, the accuracy of our proposed method

still remains relatively high.

At the same time, compared to recently published work for other popular languages, for

example C/C++/JavaScript, the experimental results of our propose method are also valuable.

In the reference [22], Aylin et al. de-anonymized authors of C/C++ achieving 94% and 98%

accuracy with 1600 and 250 class authors respectively. However, the collected Java language

repositories are much smaller than C/C++, leading to the accuracy decrease of machine learn-

ing classifiers correspondingly. It is inevitable unless expanding the dataset. Wilco et al. [6]

identified JavaScript programmers with 85% accuracy for 34 authors. Taken together, results

in this paper can satisfy practical engineering needs.

Results discussion

In this section, we summarize the conclusions drawn from the above experiments. In particu-

lar, the difficulty of this problem, the effectiveness and limitations of our current approach are

discussed comprehensively.

Table 5. Comparison to other classifiers.

Classifier Accuracy Running time (s)

Random Forest 79.735% 9.679

Support Vector Machine 73.642% 201.220 a

Naïve Bayes 49.007% 11.974

BP 75.107% 48.200a

This work 90.659% 582.812a

a Including the time spent in optimization procedure.

https://doi.org/10.1371/journal.pone.0187204.t005

Table 6. Comparison to previous work.

Related work # of Programmers Results

Ding and Samadzadeh [10] 46 67.2%

Lange and Mancoridis [11] 20 75%

Shevertalov et al. [13] 20 75%

Frantzeskou et al. [21] 30 96.9%

This work 40 91.1%

https://doi.org/10.1371/journal.pone.0187204.t006

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 14 / 18

https://doi.org/10.1371/journal.pone.0187204.t005
https://doi.org/10.1371/journal.pone.0187204.t006
https://doi.org/10.1371/journal.pone.0187204

Problem difficulty. The experiment collecting all authors’ repositories from Github to

date resembles a real world scenario. The Java repository is scanned from end to end to ensure

that it belongs to a single author. In such an experiment setting, the collected dataset excludes

those repositories that are contributed by multiple authors or forked from others’. Thus the

limitation of the dataset does not allow us to assess the effect of attributing code samples com-

pleted by multiple developers. This is also beyond the scope of our study. However, we are

convinced that these defined features will also have a reference value for multiple author classi-

fication problem.

There are fewer Java files than C/C++ generally. Furthermore, after the data filtering proce-

dure our final dataset is with fewer authors, fewer average Java files than most datasets used for

C/C++ authorship attribution. This brings challenge to the subsequent machine learning clas-

sification method. Moreover, there are varieties of programming features for authorship attri-

bution, but not all of them contribute a lot. It should also be considered carefully which subset

of features will be chosen.

Method effectiveness. Multiple research groups have published source code authorship

attribution work so far. Their experiment environment and evaluation methodologies vary

greatly, making it difficult to judge which one is the most accurate. But a series of comparison

experiments are conducted. Our proposed method performs better than theirs generally, espe-

cially appropriate to deal with collections of moderate size. In conclusion, we use relatively

fewer features, feasible method to achieve our goal.

Parameter sensitivity. No matter PSOBP or BP will be affected by parameters a lot. Given

a set of data samples, these parameters should be adjusted according to the problem to be

solved. But once the classification model is built, it will no longer change. The parameter tun-

ing of PSO and BP is also studied in various work, in this paper we set these adjustable parame-

ters according to these empirical conclusions and engineering experience. As the parameters

used in this paper are not default configurations, we carry out a series of experiments to vali-

date the parameter effectiveness. Meanwhile, we also give an explanation about the meanings

of these parameters.

Conclusion

De-anonymizing programmers has practical meaning when source codes are available. To this

end, a new approach based on PSOBP to authorship attribution of source code has been pres-

ent. First, 19 dimension feature metrics are defined systematically and comprehensively. Not

only feature metrics on the lexical and layout level are contained, but also structure and syntax

feature metrics are taken into consideration. And these features are language specific, aiming

at expressing Java properties.

Then we first introduce back propagation neural network based on particle swarm optimi-

zation algorithm to authorship attribution of source code. The proposed method uses neural

network to build a classification model, whose weights are output by PSOBP algorithm.

Finally, a prototype system is devised and implemented. At present no suitable existing

dataset is available for authorship attribution of source code. Thus our evaluation experiments

are carried on a collected dataset crawled from the open source website Github. It comprises

3,022 Java files belong to 40 authors. The average line length of these Java files is 98.63, ranging

from 16 lines to 11,418 lines. On this dataset, our proposed method can achieve a higher accu-

racy 91.060%, overall outperforming previous work for identifying Java programmers. And

the spent time is also within a reasonable range.

In summary, our proposed method can assist authorship attribution of source code work.

In the future work, we plan to investigate if these proposed feature metrics still contribute to

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 15 / 18

https://doi.org/10.1371/journal.pone.0187204

identify authors of executable binaries. Also, other variant algorithms of PSO and new optimi-

zation algorithms combined with BP will be studied for better performance in the authorship

attribution of source code field.

Acknowledgments

This work was supported by the National High Technology Research and Development Pro-

gram of China (863 Program) [grant number 2015AA017202]. It was also supported by the

National Key Research and Development Program of China—CyberSpace Security Project

“Mobile Terminal Key Technologies at a High Security Level” [grant number

2017YFB0801903].

Author Contributions

Conceptualization: Qi Li.

Data curation: Xinyu Yang.

Funding acquisition: Guoai Xu.

Investigation: Xinyu Yang, Qi Li.

Methodology: Xinyu Yang, Guoai Xu, Qi Li, Yanhui Guo, Miao Zhang.

Project administration: Xinyu Yang.

Resources: Xinyu Yang, Miao Zhang.

Software: Xinyu Yang.

Supervision: Guoai Xu, Qi Li, Yanhui Guo, Miao Zhang.

Validation: Xinyu Yang, Miao Zhang.

Writing – original draft: Xinyu Yang, Guoai Xu.

Writing – review & editing: Xinyu Yang, Yanhui Guo.

References
1. MacDonell SG, Buckingham D, Gray AR, Sallis PJ. Software forensics: extending authorship analysis

techniques to computer programs. JL & Inf. Sci., 2002, 13: 34.

2. Tian ZZ, Zheng QH, Liu T, Fan M, Zhuang EY, Yang ZJ. Software plagiarism detection with birthmarks

based on dynamic key instruction sequences. IEEE Transactions on Software Engineering, 2015, 41

(12): 1217–1235. https://doi.org/10.1109/TSE.2015.2454508

3. Burrows S, Tahaghoghi SMM. Source code authorship attribution using n-grams. Proceedings of the

Twelth Australasian Document Computing Symposium, Melbourne, Australia, RMIT University. 2007:

32–39.

4. Burrows S, Uitdenbogerd AL, Turpin A. Application of information retrieval techniques for source code

authorship attribution. International Conference on Database Systems for Advanced Applications.

Springer Berlin Heidelberg, 2009: 699–713. https://doi.org/10.1007/978-3-642-00887-0_61

5. Longstaff TA, Schultz EE. Beyond preliminary analysis of the WANK and OILZ worms: A case study of

malicious code. Computers & Security, 1993, 12(1): 61–77. https://doi.org/10.1016/0167-4048(93)

90013-U

6. Wisse W, Veenman C. Scripting DNA: Identifying the JavaScript programmer. Digital Investigation,

2015, 15: 61–71. https://doi.org/10.1016/j.diin.2015.09.001

7. Neme A, Pulido JRG, Muñoz A, Hernández S, Dey T. Stylistics analysis and authorship attribution algo-

rithms based on self-organizing maps. Neurocomputing, 2015, 147: 147–159. https://doi.org/10.1016/j.

neucom.2014.03.064

8. Krsul I, Spafford EH. Authorship analysis: Identifying the author of a program. Computers & Security,

1997, 16(3): 233–257. https://doi.org/10.1016/S0167-4048(97)00005-9

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 16 / 18

https://doi.org/10.1109/TSE.2015.2454508
https://doi.org/10.1007/978-3-642-00887-0_61
https://doi.org/10.1016/0167-4048(93)90013-U
https://doi.org/10.1016/0167-4048(93)90013-U
https://doi.org/10.1016/j.diin.2015.09.001
https://doi.org/10.1016/j.neucom.2014.03.064
https://doi.org/10.1016/j.neucom.2014.03.064
https://doi.org/10.1016/S0167-4048(97)00005-9
https://doi.org/10.1371/journal.pone.0187204

9. Caliskan-Islam A, Yamaguchi F, Dauber E, Harang R, Rieck K, Greenstadt R, et al. When coding style

survives compilation: De-anonymizing programmers from executable binaries. Preprint. Available from:

arXiv:1512.08546.

10. Ding H, Samadzadeh MH. Extraction of Java program fingerprints for software authorship identification.

Journal of Systems and Software, 2004, 72(1): 49–57. https://doi.org/10.1016/S0164-1212(03)00049-

9

11. Lange RC, Mancoridis S. Using code metric histograms and genetic algorithms to perform author identi-

fication for software forensics. Proceedings of the 9th annual conference on Genetic and evolutionary

computation. ACM, 2007: 2082–2089. 10.1145/1276958.1277364.

12. Burrows S, Uitdenbogerd AL, Turpin A. Comparing techniques for authorship attribution of source code.

Software: Practice and Experience, 2014, 44(1): 1–32. https://doi.org/10.1002/spe.2146

13. Shevertalov M, Kothari J, Stehle E, Mancoridis S. On the use of discretized source code metrics for

author identification. Search Based Software Engineering, 2009 1st International Symposium on. IEEE,

2009: 69–78. 10.1109/SSBSE.2009.18.

14. Kothari J, Shevertalov M, Stehle E, Mancoridis S. A probabilistic approach to source code authorship

identification. Information Technology, 2007. ITNG’07. Fourth International Conference on. IEEE, 2007:

243–248. 10.1109/ITNG.2007.17.

15. Elenbogen BS, Seliya N. Detecting outsourced student programming assignments. Journal of Comput-

ing Sciences in Colleges, 2008, 23(3): 50–57.

16. Gray A, Sallis P, MacDonell S. Identified: A dictionary-based system for extracting source code metrics

for software forensics. Proceedings of the 1998 International Conference on Software Engineering:

Education & Practice. IEEE Computer Society, 1998: 252.

17. Spafford EH, Weeber SA. Software forensics: Can we track code to its authors?. Computers & Security,

1993, 12(6): 585–595. https://doi.org/10.1016/0167-4048(93)90055-A

18. Rosenblum N, Zhu XJ, Miller BP. Who wrote this code? identifying the authors of program binaries.

European Symposium on Research in Computer Security. Springer Berlin Heidelberg, 2011: 172–189.

10.1007/978-3-642-23822-2_10.

19. Pellin BN. Using classification techniques to determine source code authorship. White Paper: Depart-

ment of Computer Science, University of Wisconsin, 2000.

20. Hayes JH, Offutt J. Recognizing authors: an examination of the consistent programmer hypothesis.

Software Testing, Verification and Reliability, 2010, 20(4): 329–356. https://doi.org/10.1002/stvr.412

21. Frantzeskou G, Gritzalis S, MacDonell SG. Source code authorship analysis for supporting the cyber-

crime investigation process. Handbook of Research on Computational Forensics, Digital Crime, and

Investigation: Methods and Solutions, 2004: 470–495. https://doi.org/10.4018/978-1-60566-836-9.

ch020

22. Caliskan-Islam A, Harang R, Liu A, Narayanan A, Voss C, Yamaguchi F, et al. De-anonymizing pro-

grammers via code stylometry. 24th USENIX Security Symposium (USENIX Security), Washington,

DC. 2015.

23. Lim H, Park H, Choi S, Han T. A method for detecting the theft of Java programs through analysis of the

control flow information. Information and Software Technology, 2009, 51(9): 1338–1350. https://doi.

org/10.1016/j.infsof.2009.04.011

24. Almási AD, Woźniak S, Cristea V, Leblebici Y, Engbersen T. Review of advances in neural networks:

Neural design technology stack. Neurocomputing, 2016, 174: 31–41. https://doi.org/10.1016/j.neucom.

2015.02.092

25. Huang J, Li YF, Xie M. An empirical analysis of data preprocessing for machine learning-based software

cost estimation. Information and software Technology, 2015, 67: 108–127. https://doi.org/10.1016/j.

infsof.2015.07.004

26. Tian YB, Chen F, Zhang ZK. The hybrid neural network technology (The second edition). Science

Press. 2015.

27. Kennedy J. Particle swarm optimization. Encyclopedia of machine learning. Springer US, 2011: 760–

766.

28. Esmin AAA, Coelho RA, Matwin S. A review on particle swarm optimization algorithm and its variants to

clustering high-dimensional data. Artificial Intelligence Review, 2015, 44(1): 23–45. https://doi.org/10.

1007/s10462-013-9400-4

29. Illias HA, Chai XR, Bakar AHA, Mokhlis H. Transformer incipient fault prediction using combined artifi-

cial neural network and various particle swarm optimisation techniques. Plos One, 2015, 10(6): 1–16.

https://doi.org/10.1371/journal.pone.0129363 PMID: 26103634

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 17 / 18

https://doi.org/10.1016/S0164-1212(03)00049-9
https://doi.org/10.1016/S0164-1212(03)00049-9
https://doi.org/10.1002/spe.2146
https://doi.org/10.1016/0167-4048(93)90055-A
https://doi.org/10.1002/stvr.412
https://doi.org/10.4018/978-1-60566-836-9.ch020
https://doi.org/10.4018/978-1-60566-836-9.ch020
https://doi.org/10.1016/j.infsof.2009.04.011
https://doi.org/10.1016/j.infsof.2009.04.011
https://doi.org/10.1016/j.neucom.2015.02.092
https://doi.org/10.1016/j.neucom.2015.02.092
https://doi.org/10.1016/j.infsof.2015.07.004
https://doi.org/10.1016/j.infsof.2015.07.004
https://doi.org/10.1007/s10462-013-9400-4
https://doi.org/10.1007/s10462-013-9400-4
https://doi.org/10.1371/journal.pone.0129363
http://www.ncbi.nlm.nih.gov/pubmed/26103634
https://doi.org/10.1371/journal.pone.0187204

30. Illias HA, Chai XR, Bakar AHA. Hybrid modified evolutionary particle swarm optimisation-time varying

acceleration coefficient-artificial neural network for power transformer fault diagnosis. Measurement,

2016, 90:94–102. https://doi.org/10.1016/j.measurement.2016.04.052

31. Shi Y, Eberhart RC. A modified particle swarm optimizer. Proceedings of the IEEE Conference on Evo-

lutionary Computation, 1998: 69–73.

32. Zhang JR, Zhang J, Lok TM, R.Lyu M. A hybridparticle swarm optimization back-propagation algorithm

for feedforward neural network training. Applied mathematics and computation, 2007, 185(2): 1026–

1037. https://doi.org/10.1016/j.amc.2006.07.025

33. Jafrasteh B, Fathianpour N. A hybrid simultaneous perturbation artificial bee colony and back-propaga-

tion algorithm for training a local linear radial basis neural network on ore grade estimation. Neurocom-

puting, 2017, 235: 217–227. https://doi.org/10.1016/j.neucom.2017.01.016

34. Ren C, An N, Wang JZ, Li L, Hu B, Shang D. Optimal parameters selection for BP neural network based

on particle swarm optimization: A case study of wind speed forecasting. Knowledge-Based Systems,

2014, 56: 226–239. https://doi.org/10.1016/j.knosys.2013.11.015

Authorship attribution of source code using PSOBP

PLOS ONE | https://doi.org/10.1371/journal.pone.0187204 November 2, 2017 18 / 18

https://doi.org/10.1016/j.measurement.2016.04.052
https://doi.org/10.1016/j.amc.2006.07.025
https://doi.org/10.1016/j.neucom.2017.01.016
https://doi.org/10.1016/j.knosys.2013.11.015
https://doi.org/10.1371/journal.pone.0187204

