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Abstract

Background

8-oxoG, a common DNA lesion resulting from reactive oxygen species (ROS), has been

shown to be associated with cancer initiation. hOGG1 DNA glycosylase is the primary

enzyme responsible for excision of 8-oxoG through base excision repair (BER). Integrins

are members of a family of cell surface receptors that mediate the cell-cell and extracellular

matrix (ECM) interactions. Integrins are involved in almost every aspect of carcinogenesis,

from cell differentiation, cell proliferation, metastasis to angiogenesis. Loss of ITGA2

expression was associated with enhanced tumor intravasation and metastasis of breast and

colon cancer. XPD gene encodes DNA helicase enzyme that is involved in nucleotide exci-

sion repair (NER). It is shown in previous research that XPD homozygous wildtype Lys/Lys

genotype was associated with higher odds of NPC.

Methods

We conducted a 1 to N case-control study involving 300 nasopharyngeal carcinoma (NPC)

cases and 533 controls matched by age, gender and ethnicity to investigate the effect of

hOGG1 Ser326Cys, ITGA2 C807T and XPD Lys751Gln polymorphisms on NPC risk. Link-

age disequilibrium and haplotype analysis were conducted to explore the association of

allele combinations with NPC risk. Restriction fragment length polymorphism (RFLP-PCR)

was used for DNA genotyping.

Results

No significant association was observed between hOGG1 Ser326Cys and ITGA2 C807T

polymorphisms with NPC risk after adjustment for age, gender, ethnicity, cigarette smoking,

alcohol and salted fish consumption. Lys/Lys genotype of XPD Lys751Gln polymorphism

was associated with increased NPC risk (OR = 1.60, 95% CI = 1.06–2.43). Subjects with
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history of smoking (OR = 1.81, 95% CI = 1.26–2.60), and salted fish consumption before

age of 10 (OR = 1.77, 95% CI = 1.30–2.42) were observed to have increased odds of NPC.

The odds of developing NPC of CGC haplotype was significantly higher compared to refer-

ence AGC haplotype (OR = 2.20, 95% CI = 1.06–4.58).

Conclusion

The allele combination of CGC from hOGG1, ITGA2 and XPD polymorphisms was signifi-

cantly associated with increased odds of NPC.

Introduction

Nasopharyngeal carcinoma (NPC) develops commonly in the Fossa of Rosenmuller of the

nasopharynx. It is a rare malignancy in most parts of the world with an annual frequency less

than 1 per 100 000 population [1]. Certain populations such as Chinese living in Guangdong

province of Mainland China and Southeast Asia as well as natives from Arctic region (Alaska

and Greenland) experience a much higher NPC risk compared to the rest of the world [2].

NPC is the 4th most common cancer in Malaysia in 2007 [3]. Given the increasing incidence of

NPC cases and the fact that many cases are diagnosed at an advanced stage [4], it is important

to find ways of ensuring early diagnosis and prompt treatment. This is challenging as the naso-

pharynx is not easily visualized and accessed. Discovering biomarkers for NPC screening is

one of the ways in which a susceptible population could be identified early, which will help

physicians in early detection and treatment of NPC.

Several environmental factors have been shown to be consistently associated with NPC.

EBV infection [5], consumption of salted fish at an early age [6–7] (possibly due to nitrosa-

mines mutagenicity), prolonged occupational exposure to wood dust [8] and long-term ciga-

rette smoking [9] are examples of risk factors implicated in NPC carcinogenesis. In addition,

normal cellular metabolic processes are also capable of producing hydroxyl radicals that can

cause oxidative damage to DNA [10]. Oxidative stress has been linked to increased cancer

risk via reactive oxygen species (ROS) acting in different stages of tumorigenesis [11]. One

common mutagenic by-product resulting from oxidative damage is 8-oxo-7,8-dihydrogua-

nine (8-oxoG), which is a G:C to T:A transversion causing agent [12]. Human 8-oxoguanine

DNA glycosylase 1 (hOGG1) is the primary enzyme responsible for excision of 8-oxoG

through base excision repair (BER). Short-patch BER removes 8-oxoG through the action of

DNA glycosylase and AP lyase followed by the re-synthesis of DNA by DNA polymerase β.

DNA is ligated by DNA ligase III eventually to complete the repair [13]. hOGG1 protein ini-

tiates BER via its ability to identify the damaged base. The presence and functionality of

hOGG1 protein affects the level of BER activity directly. Several studies on association of

hOGG1 Ser326Cys polymorphism with various cancers demonstrated that hOGG1-Cys326

conferred higher risk of cancer [14–17]. However, a study conducted in a Chinese population

suggested otherwise with hOGG1-Ser326 conferring increased cancer risk instead [18]. Simi-

larly for NPC, studies from different countries showed inconsistent results. Cho et al [19]

demonstrated that Ser/Cys and Cys/Cys genotypes of hOGG1 gene (Ser326Cys) is associated

with altered risk of NPC (OR = 1.6, 95% CI = 1.0–2.6). Laantri et al however showed that nei-

ther Ser/Cys nor Cys/Cys genotypes of hOGG1 gene (Ser326Cys) were significantly associ-

ated with NPC risk (OR = 1.22, 95% CI = 0.77–1.90) [20].
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Xeroderma pigmentosum group D (XPD) gene encodes for 5’-3’ DNA helicase enzyme that

is involved in transcription factor IIH (TFIIH) complex of nucleotide excision repair (NER)

[21]. TFIIH is mainly made up of 2 sub-complexes which are the core and cdk-activating

kinase (CAK) complex [22]. 6 sub-units namely XPB, p62, p52, p44, p34 and p8 combined to

form the core whereas another 3 sub-units cdk7, cdk-activating kinase assembly factor I

(MATI) and cyclin H bound to form CAK complex [22]. The remaining component XPD

physically bridges 2 sub-complexes together to form a functional TFIIH complex [23–24].

TFIIH complex is responsible for the dual-incision process in NER that helps to unwind the

DNA at the damaged region [25]. Deficient XPD-p44 interaction results in impaired unwind-

ing of DNA in NER due to sub-optimal helicase activity [26]. XPD Lys751Gln polymorphism

is located in carboxy terminal domain (CTD) where XPD-p44 interaction takes place [27].

XPD homozygous wildtype Lys/Lys genotype has been shown to be associated with higher

odds of NPC (OR = 1.58, 95% CI = 1.05–2.38, p = 0.028) [28].

Integrins are members of a family of cell surface receptors that mediate the cell-cell and

cell-extracellular matrices (ECM) interactions [29]. It has been demonstrated that integrins

played an important role in apoptosis [29], tumor angiogenesis [30] and metastasis [31]. Integ-

rins are heterodimeric and consist of 2 transmembrane glycoproteins (α and β) that are non-

covalently bound together [32]. Thus far, there are 16 α and 8 β subunits in the integrin family

that combine and produce more than 22 different αβ cell surface receptors [32]. Integrin α2 is

an important collagen receptor that is mainly expressed on platelets and epithelial cells [33].

Under normal cell differentiation, expression of ITGA2 is regulated and kept within normal

range but its over-expression is associated with decreased tumor cells motility and invasiveness

[34–36]. Loss of ITGA2 in cancer cells is associated with metastasis in breast and colon carci-

noma [33, 37]. ITGA2 C807T polymorphism is a silent nucleotide change in position 807

(TTC/TTT, rs1126643) which resulted in no amino acid change. Recent studies have indicated

that ITGA2 C807T polymorphism was associated with increased risk of various cancers

namely colorectal and breast carcinoma [38–39].

We describe results from a matched case-control study investigating the effect of hOGG1

Ser326Cys, ITGA2 C807T and XPD Lys751Glu polymorphisms on the risk of NPC.

Materials and methods

The study was approved by the Medical Research Ethics Committee of the Ministry of Health

Malaysia (NMRR-11-1038-10007). Written informed consent was obtained from all research

participants involved in this study. We assumed the exposure rate of hOGG1 Ser326Cys poly-

morphism in controls at 61% [19] and estimated that this polymorphism could increase NPC

risk by 100%. Using the formula adopted by Schlesselman [40] on matched case-control study,

with two sided alpha level of 0.05, 196 matched pairs were needed to attain a power of 90% to

detect a 100% increase in NPC risk in the proportion of patients with hOGG1 Ser326Cys poly-

morphism. 300 histologically confirmed NPC cases and 533 healthy controls were recruited

from two public hospitals in this study. For NPC cases, the inclusion criteria were histologi-

cally confirmed NPC patients who were diagnosed from the year 2008 onwards. NPC cases

who were 18 years of age and below at the time of recruitment were excluded. The inclusion

criteria for healthy controls were individuals that have resided in Malaysia for at least 5 years

and without having had a history of cancer. All controls were matched to the cases by age (±3

years), gender and ethnicity. Personal information on demographic factors, smoking status,

alcohol and salted fish consumption were collected at recruitment. Smoking status and alcohol

consumption were divided into 2 categories: never/ever smoked and never/ever consumed
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alcohol. For salted fish consumption, classification used was never/ever consumed salted fish

at age of 10.

DNA extraction and storage

2 ml of venous blood was obtained from every research subject. Fresh blood was immediately

placed into an EDTA coated vacutainer. Filled EDTA tube was stored on ice and transferred

back on the same day to the laboratory in the university to be processed. DNA was extracted

from the blood using QIAamp1 DNA mini kit (QIAGEN, Venlo, Netherlands) and immedi-

ately stored in minus 20˚C freezer until further use.

DNA genotyping

hOGG1 Ser326Cys (rs1052133), ITGA2 C807T (rs1126643) and XPD Lys751Gln (rs13181)

polymorphisms were assessed by using RFLP-PCR (Restriction Fragment Length Polymor-

phism). Sequence of forward and reverse primers used in DNA genotyping are listed in

Table 1. Outcome of the PCR for the XPD, hOGG1 and ITGA2 genotyping were products of

302 bp, 184 bp and 115 bp respectively. The details on PCR composition, PCR condition and

RFLP digestion are listed in Table 2. For each polymorphism, there were 3 possible results

depending on the subject’s genotype (Fig 1). In the case of XPD, samples were identified as

homozygous Lys/Lys if the results showed full digestion with 102 bp and 82 bp product.

Homozygous Gln/Gln samples showed only single PCR product that was 184 bp in size. All 3

products of different sizes were observed for heterozygous Lys/Gln. For hOGG1, homozygous

Ser/Ser showed only a single 302bp product while homozygous Cys/Cys was fully digested into

2 different products that were 186 bp and 116 bp in size. All 3 products of different sizes were

observed for heterozygous Ser/Cys. For ITGA2, homozygous CC was fully digested into 2

products that were 92 bp and 23 bp in size. For homozygous TT, no digestion occurred and

Table 1. Sequence of forward and reverse primers used in DNA genotyping.

Polymorphisms Forward primer sequence Reverse primer sequence

hOGG1

(rs1052133)

5’-CTT CCA CCT CCC AAC ACT GTC
AC-3’

5’-GTG CCT GGC CTT TGA GGT AGT
C-3’

ITGA2 (rs1126643) 5’-GTG TTT AAC TTG AAC ACA TAT-
3’

5’-ACC TTG CAT ATT GAA TTG CTT-
3’

XPD (rs13181) 50-CCC CCT CTC CCT TTC CTC TG-30 50-AAC CAG GGC CAG GCA AGA C-30

https://doi.org/10.1371/journal.pone.0187200.t001

Table 2. Details on PCR composition, PCR condition and RFLP digestion of XPD, hOGG1 and ITGA2 polymorphism.

Polymorphisms XPD Lys751Gln (rs13181) hOGG1 Ser326Cys (rs1052133) ITGA2 C807T (rs1126643)

PCR

composition

25μl PCR reaction consisting of 12.5μl of

GoTaq® Green Master Mix (Promega,

USA), 0.5μl of each primer (from working

concentration of 10μm), 0.5 μl of genomic

DNA, and the remaining was nuclease free

water.

25μl PCR reaction with 12.5μl of GoTaq®

Green Master Mix (Promega, USA), 0.5μl of

each primer (from working concentration of

10μm), 0.5 μl of genomic DNA, and the

remaining was nuclease free water.

25μl PCR reaction consisting of 12.5μl of

GoTaq® Green Master Mix (Promega,

USA), 1.0μl of each primer (from working

concentration of 10μm), 0.5 μl of genomic

DNA, and the remaining was nuclease free

water.

PCR condition 95˚C for 5 minutes, 35 cycles each of 95˚C

for 40 seconds, followed by 56˚C for 30s

and 72˚C for 30s, with final extension of

72˚C for 5 min.

95˚C for 5 minutes, 32 cycles each of 95˚C

for 30 seconds, followed by 63˚C for 30s

and 72˚C for 30s, with final extension of

72˚C for 5 min.

95˚C for 5 minutes, 35 cycles each of 95˚C

for 30 seconds, followed by 55˚C for 30s

and 72˚C for 30s, with final extension of

72˚C for 5 min.

RFLP digestion PCR product was digested by restriction

enzyme MboII (New England Biolabs,

Ipswich, MA, UK).

PCR product was digested by restriction

enzyme Fnu4HI (New England Biolabs,

Ipswich, MA, UK).

PCR product was digested by restriction

enzyme TaqI (New England Biolabs,

Ipswich, MA, UK).

https://doi.org/10.1371/journal.pone.0187200.t002
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only a single 115 bp product was visible. All 3 products of different sizes were observed for het-

erozygous CT. For quality control, 10% of the total PCR products were sent for DNA sequenc-

ing to confirm the results of RFLP-PCR.

Statistical analysis

Relative frequencies were used to describe variables studied including socio-demographic and

exposure data using SPSS version 21. Deviation from Hardy Weinberg equilibrium (HWE)

was tested using Court Lab Calculator on controls [41]. Conditional logistic regression

(STATA 10) was used to estimate adjusted odds ratio (ORs) and 95% confidence interval (CI)

for NPC risk comparing variants of hOGG1 and ITGA2 polymorphisms with wild type, con-

trolling for cigarette smoking, alcohol and salted fish consumption. Co-dominant model is

used in the estimation of odds ratio. A p-value less than 0.05 was considered as statistically sig-

nificant. Linkage disequilibrium (LD) of the 3 loci, haplotypes and their frequencies as well as

association with NPC risks were determined by using web-based SNPstats software [42].

Results

Characteristics of study population

A total of 300 cases of histologically confirmed NPC and 533 healthy controls were available

for analysis in present study. The demographic and exposure data are shown in Table 3. The

average age of cases and controls was 52.8 and 53.6 years respectively. Male to female ratio for

both cases and controls was 3:1. Of 300 cases, 213 (71.0%) cases were of Chinese origin, 84

(28.0%) cases were of Malay origin, and the remaining 3 (1.0%) cases were classified under

other origins. Of the 533 controls, 378 (70.9%) were of Chinese origin, 150 (28.1%) controls

were of Malay origin and the remaining 5 (1.0%) controls were classified under other origins.

NPC patients were more likely to ever consume salted fish at 10 years of age compared to

controls (OR = 1.77, 95% CI = 1.30–2.42). Study participants with previous smoking history

were more likely to develop NPC (OR = 1.81, 95% CI = 1.26–2.60). There was no significant

Fig 1. Gel electrophoresis of PCR-RFLP products for representative blood samples for the hOGG1

Ser326Cys polymorphism. Lane M represents 100bp DNA ladder marker (QIAgen), lanes 1 represents

positive control (RFLP reaction with genotype-known PCR product), lanes 3 represents Ser/Ser genotype

(302bp), lanes 2, 5, 6, 8 and 10–13 represent Ser/Cys genotype (302bp, 186bp and 116bp), lanes 4, 7 and 9

represent Cys/Cys genotype (186bp and 116bp), lane 14 represents negative controls (RFLP reaction without

PCR product) and lane 15 represents negative control (RFLP reaction without PCR product but with

restriction enzyme, Fnu4H1).

https://doi.org/10.1371/journal.pone.0187200.g001
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difference observed in NPC susceptibility between study subjects who ever consumed alcohol

with those who never (OR = 1.41, 95% CI = 0.97–2.06).

Genotypic distribution of XPD Lys751Gln (rs13181), hOGG1 Ser326Cys

(rs1052133) and ITGA2 C807T (rs1126643) polymorphisms

Genotypic frequencies of controls were in Hardy Weinberg Equilibrium for all 3 polymor-

phisms as shown in Table 4. 100% concordance was achieved between results from RFLP-PCR

Table 3. Characteristics of the study population.

Characteristics Cases (%) N = 300 Control (%) N = 533

Age (years)

Mean (SD) 52.8 (10.88) 53.6 (11.15)

Gender, N (%)

Male 232 (77.3%) 407 (76.4%)

Female 68 (22.7%) 126 (23.6%)

Ethnicity, N (%)

Chinese 213 (71.0%) 378 (70.9%)

Malay 84 (28.0%) 150 (28.1%)

Others 3 (1.0%) 5 (1.0%)

Smoking status, N (%)

Never 146 (48.7%) 336 (63.0%)

Ever 154 (51.3%) 197 (37.0%)

Alcohol consumption, N (%)

Never 161 (53.7%) 346 (64.9%)

Ever 139 (46.3%) 187 (35.1%)

Salted Fish consumption before age of 10, N (%)

Never 103 (34.3%) 261 (49.0%)

Ever 197 (65.7%) 272 (51.0%)

https://doi.org/10.1371/journal.pone.0187200.t003

Table 4. Allelic and genotypic frequencies of hOGG1 Ser326Cys (rs1052133), ITGA2 C807T (rs1126643) and XPD Lys751Gln (rs13181) polymor-

phism (Hardy-Weinberg Equilibrium test).

Polymorphisms Controls (%) N = 533 X2 value P value

hOGG1

Genotypes Ser/Ser 101 (18.9%) 0.38 0.54

Ser/Cys 270 (50.7%)

Cys/Cys 162 (30.4%)

Alleles Ser 472 (44.3%)

Cys 594 (55.7%)

ITGA2

Genotypes C/C 270 (50.7%) 0.30 0.58

C/T 215 (40.3%)

T/T 48 (9.0%)

Alleles C 755 (70.8%)

T 311 (29.2%)

XPD

Genotypes Lys/Lys 419 (78.6%) 0.19 0.66

Lys/Gln 106 (19.9%)

Gln/Gln 8 (1.5%)

Alleles Lys 944 (88.6%)

Glu 122 (11.4%)

https://doi.org/10.1371/journal.pone.0187200.t004
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assay and the 10% samples sent for DNA sequencing. No significant association was observed

between hOGG1 Ser326Cys and ITGA2 polymorphisms and odds of developing NPC. After

adjusting for age, gender, ethnicity, cigarette smoking, alcohol consumption and salted fish

consumption at age of 10 years, the OR for NPC comparing Ser/Cys and Cys/Cys genotype to

wild type Ser/Ser were 1.21 (0.80–1.83) and 1.16 (0.74–1.81) respectively as shown in Table 5.

For ITGA2, OR for NPC risks comparing between CT and TT genotypes to wildtype CC were

0.75 (0.54–1.03) and 0.85 (0.49–1.45) respectively (Table 5). XPD Lys751Gln polymorphism

was significantly associated with NPC risk. The odds of developing NPC for genotype Lys/Lys

was 1.60 (1.06–2.43) when compared to Lys/Gln and Gln/Gln as reference (Table 5).

Linkage disequilibrium and haplotype analysis of XPD Lys751Gln

(rs13181), hOGG1 Ser326Cys (rs1052133) and ITGA2 C807T

(rs1126643) polymorphisms

As it is shown in Table 6, none of the aforementioned polymorphisms were observed to be

non-randomly co-inherited. Calculated D’ value between polymorphisms was close to 0 which

suggested that these polymorphisms were co-inherited as a random and non-selective event.

Frequencies of different combinations of haplotypes in NPC cases and controls are given in

Table 7. Haplotype CGC was observed to be significantly associated with NPC risk (OR = 2.20,

95% CI = 1.06–4.58) using the most frequent allele combination AGC as reference after

Table 5. Association of polymorphisms with risk of NPC in the study population controlling for smoking, alcohol and salted fish consumption at

the age of 10.

Cases (%)

N = 300

Controls (%)

N = 533

B coefficient Standard error of

B

Adjusteda ORb (95%

CIc)

P value

hOGG1 Genotypes

Ser/Ser 50 (16.7%) 101 (18.9%) 1.00

Ser/Cys 154 (51.3%) 270 (50.7%) 0.193 0.210 1.21 (0.80–1.83) 0.357

Cys/Cys 96 (32.0%) 162 (30.4%) 0.145 0.229 1.16 (0.74–1.81) 0.527

ITGA2 Genotypes

C/C 173 (57.9%) 270 (50.7%) 1.00

C/T 100 (33.4%) 215 (40.3%) -0.292 0.167 0.75 (0.54–1.03) 0.079

T/T 26 (8.7%) 48 (9.0%) -0.166 0.275 0.85 (0.49–1.45) 0.547

XPD Genotypes

Lys/Lys 256 (85.3%) 419 (78.6%) 0.473 0.213 1.60 (1.06–2.43) 0.026

Lys/Gln + Gln/Gln 44 (14.6%) 114 (21.4%) 1

Smoking status

Never 146 (48.7%) 336 (63.0%) 1.00

Ever 154 (51.3%) 197 (37.0%) 0.595 0.184 1.81 (1.26–2.60) 0.001

Alcohol consumption

Never 161 (53.7%) 346 (64.9%) 1.00

Ever 139 (46.3%) 187 (35.1%) 0.347 0.192 1.41 (0.97–2.06) 0.071

Salted Fish consumption before age of

10

Never 103 (34.3%) 261 (49.0%) 1.00

Ever 197 (65.7%) 272 (51.0%) 0.573 0.159 1.77 (1.30–2.42) 0.001

a OR adjusted for age, gender, ethnicity, cigarette smoking, alcohol and salted fish consumption before age of 10.
b OR: odds ratio
c CI: confidence interval

https://doi.org/10.1371/journal.pone.0187200.t005
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adjustment for age, gender, ethnicity, cigarette smoking, alcohol intake and salted fish con-

sumption at age of 10.

Discussion

Cigarette smoking and salted fish consumption at age of 10 were associated with increased

odds of NPC. Other studies reported similar results [43–44] and hence, our results further cor-

roborate the presumptive causal role of these environmental factors in NPC carcinogenesis.

Independently of genetic factors, these habit and environmental factors (cigarette smoking

and salted fish consumption) produced higher odds ratios than the SNPs indicating that the

contribution of these factors to the risk of NPC could be greater than genetic factors; this is

also reflected in the logit model (Table 5). We found no synergistic effect between the geno-

types and environmental factors, only an additive effect. Cigarette smoking-related carcino-

gens including polycyclic aromatic hydrocarbons (PAH) and N-nitrosamines have been

shown to cause bulky DNA adducts [45]. Failure in removing the aforementioned carcinogens

from the body is postulated to increase risk of developing various cancers, namely lung, colo-

rectal and oesophageal cancers [46–48].

The genotype distributions of hOGG1 Ser326Cys polymorphism in our study are similar to

those reported by Wu et al [49]. Ser/Ser, Ser/Cys and Cys/Cys frequencies in our controls were

18.9%, 50.7% and 30.4% respectively compared with 16.0%, 49.0% and 35.0%, respectively

from the Chinese study. For ITGA2, frequency of CC, CT and TT reported by Chen et al [50]

were 50.7%, 40.3% and 9.0% respectively compared to 52.5%, 39.0% and 8.5% in our series.

However, no significant relationship was found between both hOGG1 Ser326Cys and ITGA2

C807T polymorphisms with odds of NPC. A significant association was found between XPD

Table 6. Linkage disequilibrium between hOGG1 Ser326Cys, ITGA2 C807T and XPD Lys751Glu polymorphisms (D’).

hOGG1 Ser326Cys ITGA2 C807T XPD Lys751Glu

hOGG1 Ser326Cys - - -

ITGA2 C807T 0.084 - -

XPD Lys751Glu 0.011 0.081 -

https://doi.org/10.1371/journal.pone.0187200.t006

Table 7. Frequency distribution of haplotypes in NPC cases and controls and association with NPC risk.

Haplotype (XPD Lys751Glu /hOGG1 Ser326Cys /ITGA2 C807T) Case Frequency Control Frequency Adjusteda ORb (95% CIc) p-value

AGC 0.423 0.349 1 -

ACC 0.271 0.279 1.12 (0.83–1.52) 0.460

AGT 0.116 0.145 1.33 (0.88–2.02) 0.180

ACT 0.115 0.114 1.24 (0.83–1.84) 0.290

CGC* 0.030 0.062 2.20 (1.06–4.58) 0.035

CCC 0.022 0.031 1.99 (0.82–4.83) 0.130

CCT 0.015 0.017 0.95 (0.27–3.39) 0.940

CGT 0.009 0.004 1.33 (0.11–16.33) 0.820

a OR adjusted for age, gender, ethnicity, cigarette smoking, alcohol and salted fish consumption before age of 10.
b OR: odds ratio
c CI: confidence interval

*: Significant value (p<0.05)

Global haplotype association p value = 0.15

https://doi.org/10.1371/journal.pone.0187200.t007
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Lys751Gln polymorphism and the odds of NPC. The effect of this individual polymorphism

has been discussed extensively in our previous publication [28].

Haplotype analysis using SNPStats software revealed that allele combination CGC

(XPD-Gln751/hOGG1-Cys326/ITGA2-C807) (OR = 2.20, 95% CI = 1.06–4.58) conferred higher

risk of NPC using haplotype AGC as reference. The main difference between the haplotype

CGC and AGC (reference) is the XPD-Gln751 allele. Previous studies have indicated that

XPD-Gln751 variant was associated with several cancers, namely chronic myeloid leukaemia

(CML) [51], oesophageal squamous cell carcinoma [52], digestive tract cancer [52], and hepa-

tocellular carcinoma [53]. Apart from conferring cancer risk by itself, XPD-Gln751 allele was

also shown in the other studies that it increases cancer risk in combination with other DNA

repair genes. For example, Zhou et al have shown a significantly increased lung cancer risk

in subjects carrying at least 5 variant alleles of XPD Asp312Asn, Lys751Gln and XRCC1

Arg399Gln polymorphisms compared to subjects with no variant allele [54]. In another study,

Chen et al reported that increased lung cancer risk was observed in patients carrying variant

alleles for both XPD Lys751Gln and XRCC1 Arg194Trp compared to patients with only 1

variant allele in the Chinese population [55]. Besides conferring higher cancer risk, XPD

Lys751Gln polymorphism was shown in past studies to be associated with p53 gene mutation

[55–56]. Mechanic et al found an interaction between the XPD variant alleles (Asn312 and

Gln751) and the TP53 Pro72 allele for TP53 mutations [57]. XPD is a component of p53-medi-

ated apoptosis pathway and both proteins interact directly via CTD region of XPD, where

Lys751Gln is located [58]. Fibroblasts from patients with germ-line XPD mutation produce

attenuated p53-mediated apoptosis, further substantiating the role of XPD in mediating cell

death [59]. On the other hand, a higher risk of p53 mutation was observed in subjects with

APE1 Asp/Asp plus hOGG1-Cys326 than in those carrying APE1-Glu plus hOGG1 Ser/Ser

(OR = 3.72; 95% CI = 1.33–10.40) [60]. Given the fact that p53 tumor suppressor gene encodes

for an important protein that induces growth arrest, DNA repair or cell death in response to

DNA damage [61–62], inhibition of the p53 protein via mutation is an important event in

early onset of carcinogenesis. Various DNA tumor viruses encode transforming oncoproteins

that interact with p53 and initiate carcinogenesis through inhibition of p53-dependent pro-

grammed cell death [63]. Cells lacking functional p53 protein showed defective repair of UV

damage [64]. Research using host cell reactivation (HCR) assay reported that cells with wild-

type p53 showed a 3-fold higher reactivation level compared to its mutant counterpart [65].

Expression of α2β1 integrin on the platelet surface is lower in subjects carrying 807C com-

pared to 807T allele of ITGA2 [66]. Results from an in-vitro study reported that α2 null tumor

cells demonstrated enhanced anchorage-independent growth [35]. Re-expression of α2β1 in

tumor cells has been reported to exhibit inhibitory effect on anchorage-independent growth of

these tumor cells [67]. We postulate that the amino acid change from lysine to glutamine in

XPD codon 751 decreases binding between p53 and XPD protein resulting in attenuated

p53-mediated apoptosis, and hence, increasing chances of immortality for DNA damaged cells

[68]. In addition, hOGG1-Cys326 allele tends to increase rate of p53 mutation [60] leading to a

deficiency in p53-dependent apoptosis and DNA repair. Loss of α2 integrin expression due to

the base change from C to T in codon 807 [66] might allow β1 integrin to contribute to cancer

development through its binding with other α integrins, namely α5β1 in particular. Ligation of

α5β1 to fibronectin was shown to constantly suppress apoptosis in an in-vitro study [69] and

increased expression of proto-oncogene Bcl-2 (cell death antagonist) was observed as a result

of integrin α5β1 ligation [70]. Therefore, effect of the interaction among 3 genes namely

XPD-Gln751, hOGG1-Cys326 and ITGA2-C807 (haplotype CGC) could be synergistic. Attenu-

ated p53-dependent apoptosis and upregulation of proto-oncogene Bcl-2 resulting from the

aforementioned interaction could be the key to the increased NPC risk.
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Although the present results may be applicable only to the Malaysian population, Malaysia

—in particular peninsula Malaysia where the study was done—has a representation of 3 major

ethnic groups with Malays forming the majority, comprising 68.6% of the population, followed

by Chinese (23.4%) and Indians (7.0%) [71]. With different genetic pools in the study sample

reflecting some of the major ethnic groups in the Malay Archipelago and the Asian continent,

this study population constitutes an appropriate population for molecular epidemiological

association studies. In addition, Malaysia has a sizeable minority population of Chinese origin.

Given the higher NPC susceptibility of individuals of Chinese origin, and the fact that the

incidence of NPC among male Malaysian Chinese is among the highest globally, results from

the current study constitute a major contribution to the knowledge pool on NPC. Hence, if

hOGG1 Ser326Cys, ITGA2 C807T and XPD Lys751Gln polymorphisms from the current

study are verified to be valid diagnostic markers for NPC patients, the possibility exists for cus-

tomizing screening modalities for high risk individuals, such as those with a family history of

NPC. Since only 3% of NPC patients carry this high risk haplotype block CGC the application

of hOGG1 Ser326Cys, ITGA2 C807T and XPD Lys751Gln as a diagnostic marker in a mass

preventive screening program appears to be unfeasible. However, if other researchers can rep-

licate and validate findings from the present study, the haplotype block CGC could potentially

be clinically useful as a supplementary test for targeted high risk populations.

In conclusion, the allele combination CGC was significantly associated with NPC risk.

Interactions between the 3 polymorphisms need to be further investigated to provide evidence

for a potentiating effect among them. Other genes in the BER and NER mechanisms involved

in cancer initiation should be studied to better understand NPC carcinogenesis.
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