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Abstract

With growing demand and highly variable inter-annual water supplies, California’s water use

future is fraught with uncertainty. Climate change projections, anticipated population growth,

and continued agricultural intensification, will likely stress existing water supplies in coming

decades. Using a state-and-transition simulation modeling approach, we examine a broad

suite of spatially explicit future land use scenarios and their associated county-level water

use demand out to 2062. We examined a range of potential water demand futures sampled

from a 20-year record of historical (1992–2012) data to develop a suite of potential future

land change scenarios, including low/high change scenarios for urbanization and agriculture

as well as “lowest of the low” and “highest of the high” anthropogenic use. Future water

demand decreased 8.3 billion cubic meters (Bm3) in the lowest of the low scenario and

decreased 0.8 Bm3 in the low agriculture scenario. The greatest increased water demand

was projected for the highest of the high land use scenario (+9.4 Bm3), high agricultural

expansion (+4.6 Bm3), and high urbanization (+2.1 Bm3) scenarios. Overall, these scenarios

show agricultural land use decisions will likely drive future demand more than increasing

municipal and industrial uses, yet improved efficiencies across all sectors could lead to

potential water use savings. Results provide water managers with information on diverging

land use and water use futures, based on historical, observed land change trends and water

use histories.

Introduction

California has one of the most highly engineered and complex water supply and delivery sys-

tems in the world. This system must currently support a population of nearly 38 million people

and one of the most productive agricultural regions found anywhere on the globe. Most sur-

face water supplies come in the form of winter precipitation in the mountainous north and

east, which is captured and redistributed to the west, central, and southern parts of the state.

Recent trends show declines in winter precipitation falling as snow and reduced snowpack
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[1–3], decreased snow water equivalents [4], earlier spring snowmelt [5–7], and widespread

changes in surface hydrology [8]. Recent declines in snowpack and shifts in snowmelt runoff

have been attributed to increasing temperatures [3]. Given projected climate change, Califor-

nia’s water future is uncertain. Ensemble analysis of general circulation models shows a con-

tinued warming trend in coming decades while the precipitation story is less clear [9]. Some

research indicates a high probability of longer, more severe droughts this century [10], may

challenge water supply reliability.

The recent drought, which began back in 2012, was the most severe recorded in both the

historical and the paleo-climate record [11], although century scale droughts of lower severity

have been documented in the last 1200 years [12]. Most urban residents were modestly

impacted by the drought, due to the 25 percent reduction in municipal water use mandated by

the state in April, 2015 [13]. Despite continued drought conditions, municipal restrictions

were lifted in May 2016, leaving individual water districts with the task of maintaining sustain-

able water use levels, depending on their unique vulnerability. By July 2016 the entire state was

still gripped by varying degrees of drought severity [14] and by October 2016, officials were

reporting water conservation rates had dropped nearly 10% over the prior year. With rainfall

and snowpack totals in excess of 150% above average this winter (2016/2017) and reservoirs in

the northern part of the state now at or near capacity, water conservation will likely continue

to decline. Yet, despite heavy rains, 23% of California is still classified in some state of drought

(i.e. 23.5% “abnormally dry,” 8.2% “moderate drought,” and 1% “severe drought”) as of April

14, 2017 in an area home to an estimated 10,293,138 people [14].

Municipal water use is relatively small compared to agricultural consumption, estimated at

roughly 80 percent of total water use statewide and predominantly dependent on irrigation.

This leaves farmers particularly vulnerable to drought in a region with a dry growing season.

Satellite imagery analysis showed 626,000 more acres fallow in 2015 than in 2011 [15] resulting

in $2.7 billion in lost agricultural revenue and 21,000 lost jobs [16]. Droughts in California

usually result in decreased surface water rights allocations, offset by dramatic increases in

groundwater pumping at unsustainable rates [17–19]. Groundwater overdraft has become

common in some areas of California’s Central Valley, where many low income farming com-

munities rely solely on local wells for drinking water, which have run dry [16]. Such water

stress can potentially drive regional insecurity which can lead to regional unrest according to

the United States government [20]. With a population expected to reach over 52 million people

by 2060 [21] (+ 38% over 2012 population [22]) and a $54 billion dollar agriculture industry

which has been shifting rapidly towards higher value tree, nut, and vine crops in recent

decades [23–27]–crops less resilient to prolonged dry periods—California’s water needs will

likely continue to rise.

Land use scenario research has seen tremendous growth in the last decade, with global [28],

continental [29,30], national [31–37], and regional [38–41] LULC projections now available.

Land use projections have been used to assess potential impacts of land change on biodiversity

[34,42–47], protected areas [38,48–50], ecosystem services [51,52], wildfire risk [41], watershed

management [53], carbon sequestration [54,55], and water demand [56]. Future LULC projec-

tions enable researchers and managers to visualize a wide range of potential, plausible futures

outcomes for mitigation and resource planning. Scenario projections represent plausible

future conditions based on historical land change trends and should not be considered abso-

lute outcomes.

We used the Land Use and Carbon Scenario Simulator (LUCAS) [39,55,56] state-and-tran-

sition simulation model (STSM) [57,58] to project future land change and water demand sce-

narios from 2012 to 2062 for Mediterranean California. We developed a broad suite of future

land use and land cover (LULC) scenarios based on sampling from historical, empirical land

California’s water use future based on scenarios of land use change
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change data, representing a wide range of potential LULC and water demand futures. These

include scenarios of high and low agriculture, high and low development, and a business-as-

usual scenario as well as combined highest of the high and lowest of the low anthropogenic

land use. We relied on historical land change and water use data for our “baseline” (1992–

2012) period. For each scenario we modeled spatially explicit (1 km2) changes in annual LULC

as well as land-use related water demand across 40 Monte Carlo simulations. This research

builds on previous work which modeled future land use related water demand under a busi-

ness-as-usual (BAU) scenario [56]. Efforts to quantify California’s potential future water

demand are extremely important given increasing population pressures, shifts towards higher

value, more intensive agriculture (i.e. perennial cropland), and the often overlooked ecosystem

services provided by open space and rangelands [51,59]. Results also provide water managers

and policy makers with information on diverging land use and water use futures, helping bet-

ter inform land and resource management decisions.

Materials and methods

The LUCAS model was used to model future land use scenarios and associated land-use

related water demand. The LUCAS model is a form of state-and-transition-simulation model

(STSM) capable of performing stochastic, Markov chain based simulations. The LUCAS

model is of great utility to the land use modeling community for projecting future landscape

conditions based on historical land change [38,39,55]. Its architecture is based on ST-Sim, a

commonly used STSM platform available online [60] and proven model for projected land-

scape level change, testing mitigation strategies, and capturing model uncertainty with Monte

Carlo simulations [58]. Our goal was to examine alternative water demand futures by the year

2062 and how various land use intensities may influence that demand.

Scales and state variables

Our study area encompasses the Mediterranean California region of the state, divided up into

two distinct, but overlapping, spatial strata. These include the California Central Valley (i.e.

‘Central Valley’) and the Central California Foothills and Coastal Mountains (i.e. ‘Oak Wood-

lands) ecoregions [61] and the 46 associated counties contained therein (Fig 1A). Ecoregions

are commonly used in land use and land cover change research [62,63] as they represent areas

with common biotic, abiotic, aquatic, and bio-geophysical attributes. Counties are more com-

monly used spatial units for data collection and dissemination on cropland trends, land use

change, and water use.

The study area was divided into 1-km x 1-km simulation cells covering 146,410 km2 of land

area. Simulations were run for 70 years, from 1992 initialization out to 2062. This allowed for a

20-year historical “spin-up” for model validation and a 50 year projection period. For each sce-

nario, 40 Monte Carlo iterations were simulated.

The LUCAS STSM tracked the following three state variables: 1.) state class type, 2) age,

and 3) time-since-transition (TST). State class type is determined by each cells associated

LULC type, ecoregion, and county. The landscape was classified into 8 primary LULC state

classes (rangeland, forest, annual cropland, perennial cropland, developed, barren, water, wet-

land; Fig 1B) and 2 secondary state classes (protected rangeland and protected forest). Age and

TST were tracked for the perennial agriculture state class, to model orchard/vineyard remov-

als. Fig 1C shows aggregated areas for model output post-processing to report regional water

demand change.

California’s water use future based on scenarios of land use change
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Fig 1. The Mediterranean California study region. (A) The Oak Woodlands and Central Valley ecological

regions and 46 counties. (B) Land use and land cover (LULC) in 1992 at model onset. (C) Aggregated regions for

water demand reporting. Shaded relief map from the U.S. Geological Survey’s National Atlas of the United States

[64].

https://doi.org/10.1371/journal.pone.0187181.g001
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Model formulation

The model was formulated to simulate changes in state variables associated with urbanization,

agricultural expansion and contraction, changes within agricultural classes, and orchard

removal. The ordering of transitions was randomized in each timestep and Monte Carlo

iteration.

Land change data sources. We used historical land change data from Wilson et al. [56]

which was compiled by the Farmland Mapping and Monitoring Program (FMMP) [65,66]

using manual interpretation of aerial photographs bi-annually from 1992–2012 (Fig 2). The

FMMP dataset includes county-based information on transitions between urban/built up

lands, farmland, and grazing land (i.e. rangeland). The FMMP classes were cross-walked into

our 8 primary LULC classes and form the historical baseline (1992–2012) of land change data

sampled in distinct ways for each new LULC scenario. The 1992 baseline areal extent of pro-

tected rangeland and protected forest was defined by the Protected Areas Database for the

United States (PAD-US) [67] and the California Protected Areas Database (CAL-PAD) [68].

Protected area establishment dates from PAD-US and CAL-PAD were used to calculate a 78

km2 annual rate of protection for the historical period. Agricultural statistics data were used to

derive a 100 km2/yr-2 (standard deviation of 50 km2) transition target for the conversion of

annual to perennial cropland across all scenarios. Both protection and annual to perennial

cropland conversions were applied at the ecoregion level.

Transition probabilities

The following rules were held constant across scenarios to account for orchard removal. First,

all initial perennial cropland was assigned a random age, as no data exist for perennial crop-

land age between 1 and 45 years. The model then tracks the time since transition (TST) for

each perennial cropland cell to determine orchard removal and transitions from perennial to

annual cropland. On average, California orchards are removed every 25 years [69] and vine-

yards can remain longer. Therefore, we set the minimum orchard removal age to 20 years. For

each Monte Carlo simulation and timestep, the annual transition probability for perennial

cropland between 20 and 45 years of age was sampled from a cumulative transition probability

of 0.95, representing age-based transition probabilities of 0.0228 and 0.0950 respectively.

Perennial cropland removal is assumed to be followed by replanting of perennial cropland,

therefore the state class remains unchanged and the age is reset to 0. We set the probability of

5% for perennial to annual cropland conversion within 1 year of orchard removal. In addition,

perennial cropland must reach a 20 year maturity before qualifying for conversion to range-

land or annual cropland.

Spatial multipliers. We utilized LULC transition-specific spatial multipliers to guide the

placement of projected future land change. Spatial multipliers use a probabilistic raster surface

to either allow or prevent the occurrence of specified LULC conversions. Transitions into

development were set to 0 for lands identified by the U.S. Geological Survey’s Protected Areas

Database [67] classified as GAP Status 1, 2, and 3 and all agricultural conservation lands

[70,71]. Land conversion into agricultural was set to zero probability on GAP Status 1 and 2.

California Rangeland Conservation critical and priority conservation areas [72] were used to

guide placement of future protected lands at the continued historical rate of 78 km2/yr.

Spatial adjacency rules were also defined for transitions into urbanization as well as agricul-

tural change, expansion, and contraction. For each transition type, the probability of a cell

changing into a different state class was a calculated as a function of the proportion of neigh-

boring cells also classified as the “transitioning to” state class. For example, if none of the

neighboring cells are developed the probability of a cell experiencing urbanization is zero,

California’s water use future based on scenarios of land use change
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whereas the probability of urbanization increases with the higher the amount of neighboring

developed cells.

State attributes

Water use values were calculated for each county following Wilson et al. [56] and are summa-

rized below. For the developed class, average water use was calculated from the U.S. Geological

Surveys Water Use data for the year 2010 [73]. County-level values for ‘public supply-freshwa-

ter’ and ‘industrial self-supplied’ were summed and divided by total developed land area, cal-

culated using the aggregated developed land use classes in the 2011 NLCD [74]. This resulted

in a developed water use value in m3/km2. Applied water use for the annual and perennial

cropland classes were derived from the California Department of Water Resources (CDWR)

[56]. The U.S. Department of Agriculture’s 2010 Cropland Data Layer [75] was used and logi-

cally reclassified into CDWR cropland classes, which were then collapsed into annual and

perennial cropland types to get an area-weighted average applied water use for each county

and cropland type. Resulting water use values for each land use class were held constant and

do not assume future conservation, improved efficiencies, or technological advancements. All

future water demand projections were driven by varying scenarios of land use change, as our

approach ties water demand to unit area.

Model initialization

The LUCAS model runs begin with an initial state class map (i.e. LULC) and spatial strata

maps (i.e. ecoregions and counties), which allows for reporting across LULC type and spatial

scale. For each LULC type, transition pathways are defined which control how, where, and

when (e.g. age) a LULC state class can experience an allowable transition. For example, in our

model, areas designated as developed, cannot transition out of developed. Losses of developed

land have not been documented in late 21st century land change analyses from the region

[76,77].

Fig 2. Model validation results over the historical period (1992–2012). Comparison of historical rates (1992–2012) of urbanization, agricultural

expansion, and agricultural contraction (bars) in Mediterranean California derived from the Farmland Mapping and Monitoring Program data [24]

with LUCAS model estimates across the 40 Monte Carlo simulations of the model (whiskers with mean, min, and max) modified from Wilson, et. al

[56]. High and low rates for of each LULC transition type are indicated by red and blue bars, respectively. For agricultural expansion and

contraction, high and low years are interdependent (e.g. high agriculture years defined where agriculture expansion exceeds agricultural

contraction).

https://doi.org/10.1371/journal.pone.0187181.g002
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Our model initial conditions were based on a modified 1992 National Land Cover Dataset

(NLCD) 30-meter product [78], resampled to 1 kilometer. The original 20 LULC classes were

aggregated and re-classified into the following 10 LULC classes: 1) water, 2) developed, 3) bar-

ren, 4) rangeland, 5) protected rangeland, 6) forest, 7) protected forest, 8) annual cropland, 9)

perennial cropland, 10) wetland (Fig 1). The protected forest and grassland classes from the

1992 NLCD were identified using the Protected Areas Database of the U.S [67] and the Cali-

fornia Protected Areas Database [68].

Scenario simulations

We developed a broad range of potential LULC scenarios using the baseline FMMP land

change information, building on previous work which modeled a business-as-usual (BAU)

scenario [56] across 40 Monte Carlo simulations (Fig 2). Scenarios include a newly run BAU

scenario, high agriculture (HA), low agriculture (LA), high urban (HU) and low urban (LU),

highest of the high (HH), and a lowest of the low (LL) scenarios. All scenarios model historical

land change using direct transition target data for the years 1992–2012. For the projected years

(2013–2062), the historical dataset was sampled from in variety of ways to generate 7 LULC

scenarios described in Table 1. For the BAU scenario, in each timestep and Monte Carlo a sin-

gle historical year was sampled including all transition across every county, preserving the spa-

tial and temporal change drivers. Sampling for the HA and LA scenarios used the historically

low and high years (Fig 2; Table 1) for agricultural expansion and agricultural contraction,

while sampling randomly for urbanization transitions across the full historical record. This

approach preserves covariance between both agricultural transition groups across space and

time for a given sample year. Conversely, the HU and LU scenarios also preserve temporal and

spatial variability in the historical sample year selected for urbanization rates only, sampling

independently for agricultural change (i.e. 1 sample year selected and all agricultural transi-

tions utilized) for each projected year and Monte Carlo. The LL and HH scenarios sampled

independently between transition type, year, and county. For each county, transition rates for

each transition type were ranked from highest to lowest and sampled accordingly (Table 1).

For example in the HH scenario, the highest 20% of values for urbanization and agricultural

contraction were used along with the lowest 20% of values for agricultural contraction.

This suite of scenarios was developed to best capture divergent potential LULC futures

while representing a broad range of water use outcomes. LULC change variability among

counties is maintained across both space and time in all but the HH and LL scenarios, where

high and low values were ranked for each county, to reveal outcomes disaggregated in space

and time. Historical annual land protection rates (78 km2/yr) were applied in each scenario

projection as well as preservation of existing conservation farmland [71]. The specifics of each

scenario are outlined in Table 1. Full model components and processes are outlined below and

shown conceptually in the schematic diagram in Fig 3.

Model validation

Fig 2 shows model validation results for each state class transition group with LUCAS model

mean closely tracking the empirical transition data with model estimates ranging slightly

higher or lower the observed data across the 40 Monte Carlo simulations. This validates that

the LUCAS model was structurally capable of reproducing the historical transition area for

each transition group. As in previous work, a pixel by pixel validation of the model was not

possible due to the lack of spatially explicit reference condition data. Our 1992 NLCD initial

conditions cannot be compared to later NLCD versions given mapping and classification dif-

ferences. Trends in agricultural change compare favorably with estimates from the National

California’s water use future based on scenarios of land use change
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Agricultural Statistical Service data for the 1992–2009 period [23–27]. Given collapsing of

cropland types into the annual and perennial classes, a true cropland validation is not plausi-

ble, however overall modeled trends were consistent with statistical estimates. For additional

model validation results, see Wilson et al. [56].

Results

Land-use change

This broad suite of scenarios for future urbanization, agricultural expansion, and agricultural

contraction captured a wide range of potential futures as well as the inherent uncertainty in

scenario projections. For each of the 7 scenarios, annual cropland declined from 2012 to 2062,

while perennial cropland and developed land expanded (Fig 4A). The LL scenario had the

greatest average drop in total cropland area (-12,033 km2), largest increase in rangelands

(+8,952 km2) and lowest amount of new development (+3,081 km2). Conversely, the HH sce-

nario had the greatest increase in developed land (+14,720 km2), highest perennial cropland

Table 1. Land use and land cover scenario groups and associated sampling options for each transition type from the historical (1992–2012) record

for Mediterranean California.

Scenario Description Urbanization Agricultural

Expansion

Agricultural

Contraction

Covariance

Business-As-

Usual(BAU)

Random sampling from historical

data. One historical year is selected

and all transitions, for each county,

are selected for that year.

1992–2012 Preserved across county

and transition.

Low

Agriculture

(LA)

All agriculture transition rates

randomly sampled from historical

years where low agricultural

contraction was greater than

agricultural expansion. Urbanization

rates randomly sampled from full

historical record.

1992–2012 Random sampling from 2007–2012 Preserved across county

and transition.

High

Agriculture

(HA)

All transition rates randomly sampled

from historical years where

agricultural expansion was greater

than agricultural contraction.

1992–2012 Random sampling from 1997–2002 Preserved across county

and transition.

Low

Urbanization

(LU)

All transition rates randomly sampled

from historical years with low

urbanization.

Random sampling

from 1993–1996 and

2009–2012

1992–2012 Preserved across county

and transition.

High

Urbanization

(HU)

All transition rates randomly sampled

from historical years with high

urbanization rates.

Random sampling

from the years 1999–

2002 and 2005–2006

1992–2012 Preserved across county

and transition.

Lowest of the

Low (LL)

Historical transition data values

ranked by county and sampled from

the lowest 20% of values for

urbanization and agricultural

expansion and highest 20% of

values for agricultural contraction for

each projected time step and

iteration.

Random sampling

from lowest 20% of

values for each

county

Random sampling

from lowest 20% of

values for each

county

Random sampling

from highest 20% of

values for each

county

Only for each transition

type at a given iteration

and time step. No spatial

or temporal covariance.

Highest of the

High(HH)

Historical transition data ranked by

county and sampled from the highest

20% of values for urbanization and

agricultural expansion and lowest

20% of values for agricultural

contraction for each projected time

step and iteration.

Random sampling

from highest 20% of

values for each

county

Random sampling

from highest 20% of

values for each

county

Random sampling

from lowest 20% of

values for each

county

Only for each transition

type at a given iteration

and time step. No spatial

or temporal covariance.

https://doi.org/10.1371/journal.pone.0187181.t001
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expansion (+6,826 km2), and was the only scenario to show overall expansion of total cropland

area (+1,815 km2). Rangelands decline dramatically in all of the “high” scenarios (-6,114 <>

-16,536 km2) and in the BAU (-4,712 km2), increasing only in the LL scenario (+8,952 km2;

Fig 4B). Overall, the LL and HH scenarios represent the outer bounds of all scenarios in terms

of land use extremes, with the remaining 5 scenarios falling somewhere between their range.

Combining the spatial LULC change results across all seven scenarios provides a clear visu-

alization of the most probable future change areas. The model produced average annual transi-

tion probability maps over the 70 year (1992–2062) simulations for each scenario. The annual

transition probability maps from all seven scenarios were then averaged for development (Fig

5A) and agricultural expansion (Fig 5B) to highlight areas most likely to undergo these transi-

tions over the simulation period and across scenarios. Most new development was projected

around existing developed areas near Sacramento and in southern California, while agricul-

tural expansion was most likely near existing agricultural land. Fig 5C is the summed cumula-

tive average transition probability of both urbanization and agricultural expansion highlighted

areas likely to undergo some form of land use intensification over the model period.

State-wide water use

Water demand by 2062 was projected to increase over 2012 values in the BAU and all but the

LA and the LL scenarios (Fig 6). The LU scenario showed the lowest overall increase at ~ 1.3

Fig 3. Schematic diagram of the Land Use and Carbon Scenario Simulator (LUCAS) model. Diagram shows model inputs and

outputs, including the spatial initial conditions, the county and ecoregion spatial strata, Farmland Mapping and Monitoring Program

(FMMP) derived scenarios spatial multipliers, state attributes (i.e. water), and model outputs.

https://doi.org/10.1371/journal.pone.0187181.g003
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billion cubic meters (Bm3), followed by the BAU (+1.8 Bm3), HU (+2.1 Bm3), HA (+4.6 Bm3),

and HH (+9.4 Bm3). Between 2012 and 2062, this equates to an average 3.0–5.0% overall

increase for the LU, BAU, and HU scenarios and 10.4% (HA) and 21.2% (HH). Water demand

dropped 18.8% in the LL scenario (- 8.3 Bm3) and a modest 2.2% in the LA scenario (-0.9

Bm3).

Water demand change by land use type (Fig 7) shows water use for annual cropland declin-

ing across all scenarios and increasing for both perennial cropland and development. Across

scenarios, annual cropland was projected to use between -4.3 and 12.0 Bm3 less water by 2062,

while perennial cropland increased between 1.9 and 5.5 Bm3 and developed water demand

increased between 1.7 and 7.9 Bm3. Overall, annual cropland water demand decreased 17.8%

in the HH scenario and from ~ 40 to 50% in the LA and LL scenarios, respectively. Perennial

cropland water demand increased from 32.8% in the LA scenario to 43.0% in the LU, and

approximately 45% in both the HA and HH scenarios. In the LL and LA scenarios, water

demand for perennial cropland was projected to surpass annual cropland water use by 2062 by

1.6 Bm3 and 1.2 Bm3 respectively. Developed water use increased across all scenarios, more

than doubling in the HH scenario (+8.2 Bm3) and increasing over 85.5% (+6.7 Bm3) in the

HU scenario. Cropland total use by 2062 ranged from 26.1 to 37.3 Bm3 while developed land

uses account for between 9.6 and 16.1 Bm3 total water demand.

Fig 4. Projected land use and land cover (LULC) in Mediterranean California by 2062. (A) Change in LULC from 2012

under business-as-usual (BAU) and in 2062 for the BAU, high agriculture (HA), highest of the high (HH), high urban (HU) low

agriculture (LA), lowest of the low (LL), and low urban (LU) scenarios. Bars represent the mean LULC and maximum and

minimum values across 40 Monte Carlo simulations. (B) Net change in land use and land cover (LULC) from 2012–2062 with the

mean (bar) and maximum and minimum values across 40 Monte Carlo simulations.

https://doi.org/10.1371/journal.pone.0187181.g004
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Fig 5. Annual transition probabilities across all seven scenarios for urbanization and agricultural expansion

from 2012–2062. (A) Average annual transition probability for urbanization across all scenarios. (B) Average annual

transition probability for agricultural expansion across all scenarios. (C) Cumulative average annual transition probability

for conversion to anthropogenic land uses (urbanization and agricultural expansion). Shaded relief map from the U.S.

Geological Survey’s National Atlas of the United States [64].

https://doi.org/10.1371/journal.pone.0187181.g005
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County-level and regional water use

Overall projected water demand in many counties increased across all scenarios by 2062, with

the greatest increases in Los Angeles, Sacramento, and San Diego Counties. Counties in south-

ern California showed the largest increased demand for developed water use (i.e. Los Angeles,

Orange, Riverside, San Bernardino, and San Diego Counties) along with Sacramento County,

with modest increases in the San Francisco Bay Area (i.e. Alameda, Contra Costa, and Santa

Clara, and Ventura Counties) (Fig 8). In all cases, annual cropland water demand declined,

with the greatest declines occurring in Kern, Fresno, Kings, and Riverside Counties. Expansion

Fig 6. Average net change in water use demand across scenarios from 1992–2062 across scenarios.

Net water use demand values expressed in billions of cubic meters (109 m3) across seven future land use and

land cover (LULC) scenarios for Mediterranean California. Shaded area shows the maximum and minimum

value ranges across 40 Monte Carlo simulations for the BAU scenario only.

https://doi.org/10.1371/journal.pone.0187181.g006

Fig 7. Average net change in water demand (2012–2062) for each scenario by land use type. Values for

annual cropland (red) perennial cropland (blue) and developed (green) with black line indicating average net

change summarized for all land use types across 40 Monte Carlo simulations.

https://doi.org/10.1371/journal.pone.0187181.g007
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Fig 8. Projected net change in water demand by county and scenario. Net change in water use demand (1992–2062) in

billions of cubic meters (Bm3) for each county for annual cropland (red), perennial cropland (blue), and developed (green) land

uses. The black dot indicates average net change value.

https://doi.org/10.1371/journal.pone.0187181.g008
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of perennial cropland led to increased water use in Fresno, Kern, Merced, Stanislaus, and

Tulare Counties. Shifting cropland demands drive overall change in water demand with the

greatest declines in Kern and King Counties. Tulare, Merced, San Joaquin, Stanislaus, and

Fresno Counties each show increased water demand driving primarily by perennial cropland

expansion.

At the regional level, counties in the Central Valley South showed the greatest variability to

future water demand and also have lower resilience to drought and decreased supply (Fig 9).

The region is characterized by low annual runoff coupled, high rainfall variability, and non-

local water deliveries [79], as well as high rates of fallowing in dry years [15]. Perennial crop-

land expansion drives increased water demand here, coupled with smaller increases in water

demand for development and significant declines in annual cropland. A similar, yet smaller

magnitude pattern emerged for the Central Valley North region. The Coastal North, Mountain

North, and Mountain South regions show limited change across scenarios, as land use demand

in these areas is comparatively low. The Bay Area and Southern California Coastal region

show increased demand for expanding development.

Discussion

This research demonstrates a methodology for creating land use scenarios based on historical

land change and water use information and varying assumptions of future land use. Land use

scenarios are powerful tools for analyzing potential future landscapes and resource use out-

comes and visualizing the consequences of future potential policy/land use decisions. While

these scenarios are in no way predictions nor should they be considered absolute outcomes,

Fig 9. Projected net change in water demand by geographic region. Net change in water use from 1992–2062 for each land use category by

geographic region (colored bars) and total (black points) under each scenario.

https://doi.org/10.1371/journal.pone.0187181.g009
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they do represent a wide range of plausible future outcomes in terms of land-use related water

demand, based on historical trends. The seven scenarios also enable examination of how alter-

native future land use intensities and potential land use policies might influencer future water

demand.

The findings presented here reveal several key issues for California land and resource man-

agers. First and foremost, future agricultural land use will continue to be the single largest

driver of water demand, continuing its present trend as California’s dominant consumer.

Despite all scenarios demonstrating some degree of annual cropland decline, continued expan-

sion of perennial cropland and development makes up of for these losses. It is unclear how

new regulations or future policy may alter this outcome, yet passage of the 2014 Sustainable

Groundwater Management Act may further test the agriculture’s resiliency to drought, as the

regulation will place limits on groundwater over-drafting, a common occurrence during dry

years. Expansion of developed lands does lead to overall changes in the proportion of agricul-

tural water demand, dropping from ~82% of all demand in 2012 to between 68–77% by 2062

across scenarios. Only in the low agriculture (LA) and the lowest of the low (LL) scenario did

future water demand decline over time. In all but the lowest of the low (LL) scenario, range-

lands (i.e. grasslands and shrublands) see consistent losses, dominated primarily by new devel-

oped land uses and to a lesser extent by agricultural expansion. This has important

implications for future groundwater recharge, changes in surface drainage, carbon sequestra-

tion, ecosystem connectivity, habitat, grazing, open space and recreation [51].

Our new business-as-usual (BAU) average water demand change findings of 1.814 Bm3

compare favorably with the 1.817 Bm3 results previously published [56]. This demonstrates

the reproducibility of model results and helps further validate model performance. The previ-

ous BAU scenario used transition targets randomly sampled from the historical distribution

outside of the model for each year and Monte Carlo, while the new BAU scenario randomly

sampled from the historical distribution iteratively and directly within the LUCAS model

framework—a new and improved model function. The low agriculture scenario (LA) scenario

samples from years where agricultural contraction exceeded agricultural expansion and over-

laps an extended, near state-wide drought period (2007–2010) and thus represents a multi-

decadal drought scenario. Both the HH and LL scenarios represent extremes in terms of land

use outcomes. Given the spatial and temporal dis-aggregation of these two scenarios (i.e. sam-

pling from different years for low and high values for each county) the relative land change

drivers which might lead to the HH and LL outcomes cannot be determined as they are inde-

pendent in both space and time. They do, however, effectively create upper and lower bounds

of all possible futures based on county level historical extremes.

Several improvements can be made in future work modeling water use demand. An

improved representation of cropland types, such as vineyards and orchards, would better rep-

resent regional variability in water use. These crops have different water use requirements and

irrigation strategies. Such refinement would be an improvement on the spatially weighted

average water use approach used in the current analysis. Our work also assumes the trend in

high value cash crops will continue indefinitely. Making predictions about changes in diet,

market factors, and social preferences were beyond the scope of the current work. The scenar-

ios presented here also do not account for future changes in water availability and individual

water use, improved efficiencies, or changes in urban density over time. Incorporating popula-

tion data and per capita water use would greatly improve water demand estimates for munici-

pal developed land uses.

We did not incorporate future climate in our scenarios which would provide a more

informed look at land use options and changes in available water supply. Future climate will

likely be an important driver of individual land use decisions, especially in the farming sector,
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as water allocations often drive cropland choice. Our low agriculture scenario does follow

trends seen in historical years where drought necessitated extensive fallowing of otherwise pro-

ductive land and agricultural contraction, mirroring a prolonged drought future. Farmers

often turn to groundwater in times of drought as well. Nearly 9% of all watersheds in the

drought year 2013 were water stressed, mostly driven by agricultural demand except for in

Southern California where development-related water use dominated demand [80]. New man-

agement of previously unmonitored groundwater use may trigger use restrictions during

drought which could impact cropland choice, water pricing, and cropland expansion rates.

Analysis of future climate driven changes in surface water shows the entire state of California

having a 5–25% increase in climate-induced water stress (i.e. where demand outpaces natural

supply) by mid-century over 1900–1970 levels [80]. Persistent drought may also impede

hydroelectric power generation in years with low reservoir storage as thermoelectric power

generation drops as much as 16% in summer due to water shortages [81].

Long-term water management planning should take into consideration highly variable

annual rainfall, drought periodicity, and future projected climate change when factoring water

availability and deliveries across multiple years. A single wet winter should not become the

basis for relaxed conservation, given the recent extreme drought and long-term drought pro-

jections this century [12]. In fact, as Governor Brown’s Executive Order B-37-16 makes clear,

water conservation should be a way of life in California [82]. Any expanded need for water will

also bring with it increased energy use for storage, transport, and delivery. The water sector in

California currently uses nearly 20% of all the electricity in the state and 30% of the natural gas

[83]. Therefore, future water-related energy consumption and energy related water consump-

tion (i.e. water-energy nexus) should also be a cause for concern. The majority of the rainfall

in California is received and stored in the north and transported southward to users. Southern

California also depends on water delivered from the Colorado River which may be further

depleted in coming decades as rising municipal demand outpaces average supply [84]. Given

most of our modeled increases in water demand occurred in the southern part of the state, any

increased water demand will increase greenhouse gas emissions from power usage, a negative

feedback for climate change.

Water use in California will inevitably rise in coming decades. Given the historic variability

in annual precipitation, future projected climate warming, population growth in the state and

globally, and increased demand for agricultural products, any additional demand for water

will likely stress existing supplies. With the 7th largest economy in the world, global shifts in

demand for food, fiber, and energy will continue to place pressure on California’s landscape.

Nearly every new resource demand relies, to some extent, on water availability, from hydro-

electric power generation and irrigation to industrial and municipal consumption. The recent

almond boom, for example, resulted in an estimated 27% increase in irrigation demand

between 2007 and 2014 alone [85]. Our research demonstrates that under current water use

efficiencies and rates of anthropogenic land use, water demand in California will likely con-

tinue to increase. California’s resiliency to increased water demand during water limited peri-

ods will likely depend on the type and intensity of agriculture, per capita and industrial

consumption, water use efficiency and conservation, as well as improved management of all

water resources.
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81. van Vliet MTH, Yearsley JR, Ludwig F, Vögele S, Lettenmaier DP, Kabat P. Vulnerability of US and

European electricity supply to climate change. Nat Clim Change. 2012 Sep; 2(9):676–81.

82. Brown EG. Executive Order B-37-16—Making Water Conservation a California Way Of Life. Imple-

menting [Internet]. Executive Department, State of California; 2016. https://www.gov.ca.gov/docs/5.9.

16_Attested_Drought_Order.pdf

83. Klein G. California’s Water-Energy Relationship [Internet]. California Energy Commission; 2015 p. 1–

180. Report No.: CEC-700-2005-001-SF. http://www.energy.ca.gov/2005publications/CEC-700-2005-

011/CEC-700-2005-011-SF.PDF

84. Yigzaw W, Hossain F. Water sustainability of large cities in the United States from the perspectives of

population increase, anthropogenic activities, and climate change. Earths Future. 2016 Dec 1;n/a–n/a.

85. Geological Society of America. California’s almond boom has ramped up water use, consumed wet-

lands and stressed pollinators. 2016 Sep 27; https://www.sciencedaily.com/releases/2016/09/

160927135017.htm

California’s water use future based on scenarios of land use change

PLOS ONE | https://doi.org/10.1371/journal.pone.0187181 October 31, 2017 21 / 21

http://www.nass.usda.gov/research/Cropland/metadata/metadata_ca10.htm
http://www.nass.usda.gov/research/Cropland/metadata/metadata_ca10.htm
https://doi.org/10.1007/s10661-010-1385-8
https://doi.org/10.1007/s10661-010-1385-8
http://www.ncbi.nlm.nih.gov/pubmed/20217217
https://www.gov.ca.gov/docs/5.9.16_Attested_Drought_Order.pdf
https://www.gov.ca.gov/docs/5.9.16_Attested_Drought_Order.pdf
http://www.energy.ca.gov/2005publications/CEC-700-2005-011/CEC-700-2005-011-SF.PDF
http://www.energy.ca.gov/2005publications/CEC-700-2005-011/CEC-700-2005-011-SF.PDF
https://www.sciencedaily.com/releases/2016/09/160927135017.htm
https://www.sciencedaily.com/releases/2016/09/160927135017.htm
https://doi.org/10.1371/journal.pone.0187181

