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Abstract

Purpose

Mapping brain hypoxia is a major goal for stroke diagnosis, pathophysiology and treatment

monitoring. 18F-fluoro-misonidazole (FMISO) positron emission tomography (PET) is the

gold standard hypoxia imaging method. Normobaric hyperoxia (NBO) is a promising therapy

in acute stroke. In this pilot study, we tested the straightforward hypothesis that NBO would

markedly reduce FMISO uptake in ischemic brain in Wistar and spontaneously hypertensive

rats (SHRs), two rat strains with distinct vulnerability to brain ischemia, mimicking clinical

heterogeneity.

Methods

Thirteen adult male rats were randomized to distal middle cerebral artery occlusion under

either 30% O2 or 100% O2. FMISO was administered intravenously and PET data acquired

dynamically for 3hrs, after which magnetic resonance imaging (MRI) and tetrazolium chlo-

ride (TTC) staining were carried out to map the ischemic lesion. Both FMISO tissue uptake

at 2-3hrs and FMISO kinetic rate constants, determined based on previously published

kinetic modelling, were obtained for the hypoxic area. In a separate group (n = 9), tissue oxy-

gen partial pressure (PtO2) was measured in the ischemic tissue during both control and

NBO conditions.

Results

As expected, the FMISO PET, MRI and TTC lesion volumes were much larger in SHRs than

Wistar rats in both the control and NBO conditions. NBO did not appear to substantially
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reduce FMISO lesion size, nor affect the FMISO kinetic rate constants in either strain. Like-

wise, MRI and TTC lesion volumes were unaffected. The parallel study showed the

expected increases in ischemic cortex PtO2 under NBO, although these were small in some

SHRs with very low baseline PtO2.

Conclusions

Despite small samples, the apparent lack of marked effects of NBO on FMISO uptake sug-

gests that in permanent ischemia the cellular mechanisms underlying FMISO trapping in

hypoxic cells may be disjointed from PtO2. Better understanding of FMISO trapping pro-

cesses will be important for future applications of FMISO imaging.

Introduction

Ischemic stroke is characterized by focal severe brain hypoxia. In turn, tissue hypoxia triggers

the cellular and molecular events that lead to infarction of the ‘ischemic penumbra’ unless per-

fusion—and hence oxygen delivery—is rapidly restored [1–4]. Accordingly, mapping brain

hypoxia is a major goal for stroke diagnosis but also to investigate stroke pathophysiology and

to monitor the effects of therapeutic interventions. 18F-fluoro-misonidazole (FMISO) positron

emission tomography (PET) is the gold standard in vivo hypoxia imaging method [5] and has

been extensively used for stroke research in the last two decades both in rodents [6–14] and

acute/subacute stroke patients [15–24]. Following IV bolus administration, plasma FMISO

passively diffuses into tissues (including the brain) and washes out over time from normoxic

tissues where no retention process occurs; however, in severely hypoxic tissues, FMISO is

reduced to a free radical form by reductases active only in viable cells, and the reduced form is

irreversibly trapped by covalent binding to intracellular macromolecules (probably large, com-

plex proteins or DNA) according to an incompletely understood mechanism [5]. In other

words, the uptake of FMISO and other misonidazole derivatives depends on the presence of

both severe tissue hypoxia and cell viability. Importantly, FMISO retention in various tissues

has been shown to be highly sensitive to tissue oxygen tension in a non-linear way, mildly

increasing with moderate degrees of hypoxia and markedly so at severe hypoxia [25] [26].

With respect to the brain, it is also highly sensitive to perfusion, and hence oxygen delivery, in

rodent models of cerebral ischemia [14, 27, 28] as well as in human stroke [15].

Consistent with these notions, rodent studies [10] have documented that while marked

tracer retention occurs in hypoxic tissue when FMISO is administered early after permanent

middle cerebral artery occlusion (MCAo), no tracer retention occurs if it is administered after

release of the occlusion—interpreted as due to disappearance of hypoxia after reperfusion -, or

48hrs after permanent occlusion—as FMISO uptake can only occur in viable cells.

Normobaric hyperoxia (NBO, to be referred to as ‘hyperoxia’ in what follows) has been

shown to improve tissue oxygenation in acute stroke. Hyperoxia indeed increases tissue oxy-

gen partial pressure (PtO2) in the setting of acute MCAo in rodents, and reduces infarct size

when administered early after temporary MCAo (see [29–31] for review).

In the present pilot study, we carried out a series of experiments to test, for the first time to

our knowledge, the effects of normobaric hyperoxia on FMISO brain uptake and pharmacoki-

netics in a rodent MCAo model. Given that FMISO gets irreversibly trapped in hypoxic but

viable tissue [5], we predicted that hyperoxia started simultaneously with FMISO administra-

tion would markedly reduce FMISO brain uptake. To test this hypothesis, we assessed not only

brain tracer retention at the standard 2-3hrs post-administration time, but also FMISO kinetic
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rate constants, specifically the irreversible trapping constant thought to reflect tissue hypoxia,

by dynamically acquiring FMISO brain data since administration time and applying our previ-

ously reported quantitative kinetic model [32]. In addition, to assess the effects of hyperoxia

on FMISO uptake in distinct tissue situations, we used both Wistar rats and their spontane-

ously hypertensive counterparts (SHRs), whose tissue vulnerability to focal cerebral ischemia,

namely rate of demise of the severely hypoxic but viable tissue (i.e., the penumbra) [33–35]

and final infarct volume [33, 36–40], widely differ as a result of underlying differences in func-

tionality and structure of the pial vascular tree [39, 41–45], in turn mimicking clinical hetero-

geneity. In parallel to testing the effects of hyperoxia on FMISO uptake, and to inform the

findings thereof, we also assessed its effects on tissue oxygen tension in both ischemic and

non-ischemic cortex in a different group of animals. Given the pilot nature of this study and

the straightforward hypothesis based on indirect but strong evidence, only small subject sam-

ples were used throughout, amenable to descriptive statistics only.

Materials and methods

Overview

All procedures were in accordance with the ethical standards of the institution at which the

studies were conducted. The study was approved by the University of Cambridge Ethical

Review Panel. In accordance with the legislation of UK Animals Scientific Procedures Act

1986, the Ethical Review Board required that the study be designed to keep the number of ani-

mals used to a minimum, yet sufficient to obtain meaningful results. All subjects that partici-

pated in the study will be reported below.

The main aim of our study was to assess the effects of hyperoxia, as compared to the control

condition, on FMISO trapping in the affected hemisphere. Secondary objectives were to assess

the effects of hyperoxia on i) FMISO kinetic constants, determined using kinetic modelling; and

ii) MR and TTC lesion volume, obtained after completion of the FMISO PET study, around 3hrs

after MCAo. Based on the literature, we did not expect major effects of hyperoxia on the MR

and TTC lesion volumes after permanent MCAo of>3hrs duration [31]. As already mentioned,

we also carried out a parallel study on the effects of hyperoxia on brain tissue PtO2 to inform the

FMISO findings, expecting a significant improvement in ischemic tissue PtO2 based on the liter-

ature (see above); these experiments were carried out on different rats from the FMISO study

because it was not feasible to scan the subjects while the PO2 probe was inserted in the brain.

Anesthesia

Experiments were performed in freely breathing animals. Anesthesia was induced with 4% iso-

flurane administered via a nose cone in a 0.3 l/min O2 and 0.7 l/min N2O mix and maintained

with 2% isoflurane during surgical procedures, as per previously published protocols [31, 46].

Body temperature of the animals was monitored with a rectal probe and maintained at

37.0 ± 0.5˚C using a heated pad throughout all surgical procedures. Blood oxygen saturation

and heart beat were continuously monitored using a pulse-oximeter and remained within nor-

mal ranges throughout. In the hyperoxia group, rats were switched to pure oxygen (1L/min)

within 5mins following MCAo (see below). This hyperoxia regimen is standard for testing the

effects of normobaric oxygen therapy in rodents (see [30])

MCAo

Distal left permanent MCAo was performed as detailed previously [47–49]. In brief, the left

common carotid artery (CCA) was isolated through a ventral midline incision on the neck and

Effects of hyperoxia on FMISO uptake in experimental stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0187087 November 1, 2017 3 / 21

https://doi.org/10.1371/journal.pone.0187087


a loose ligature of 4–0 silk suture was placed around it. With the rat positioned onto its right

flank, a 2.5cm skin incision perpendicular to and bisecting a line between the lateral canthus of

the right eye and the external auditory canal was made, and the underlying temporalis muscle

excised to reveal the base of the skull. Under direct visualization, the underlying temporalis mus-

cle was excised and craniectomy was performed under saline irrigation to expose the left MCA

through a 2-mm burr hole drilled 2 to 3 mm rostral to the fusion of the zygomatic arch with the

squamosal bone. The dura was retracted to visualize the MCA at a position where it crosses the

inferior cerebral vein, which lies within the rhinal fissure. A micro-aneurysm clip (#1 Sundt

AVM, Codman, Raynham, USA) was placed on the MCA proximal to the point where it crosses

the inferior cerebral vein in the rhinal fissure, and then the left CCA was permanently ligated. To

avoid additional procedural complications that may impact tissue outcome, including blood loss

from femoral cannulation, arterial blood pressure was not measured here as it is known to be

already significantly elevated (>170mmHg) by 3 months of age in SHRs [50].

PET

Six Wistar rats and seven SHRs were randomized to undergo MCAo under either control

(n = 3 and 4 per strain, respectively) or hyperoxia (n = 3 per strain) conditions. These sample

sizes were not based on a power calculation given the absence of literature data on expected

effect size (i.e., % reduction in FMISO uptake from hyperoxia). They were considered large

enough to test our straightforward hypothesis that hyperoxia would markedly reduce FMISO

uptake in ischemic regions (see Introduction), also taking into consideration the aforemen-

tioned ethical requirements.

Immediately after clip placement on the MCA, the animal was positioned in the PET scan-

ner (microPET P4, Concorde Microsystems, Knoxville, USA) with the brain located centrally

in the field of view. Under the oxygen condition of the scan (control or hyperoxia), within

5mins of MCAo FMISO (77 ± 9 MBq) was administered in the tail vein over 30secs [10], with

FMISO PET acquisition starting simultaneously with the injection. Dynamic PET data were

acquired for 3 hours. The energy and coincidence windows were 350-650keV and 6nsec,

respectively, and the voxel size 0.5x0.5x0.5mm. Venous blood samples were taken at 120, 150

and 180 mins post-injection, and plasma radioactivity concentration measured in a well

counter to provide values for least squares scaling of a pre-existing arterial plasma input func-

tion [32]. Transmission scanning with a rotating 68Ge/68Ga point source was conducted at the

end of the FMISO scan, with geometrically-windowed coincidence mode used to provide

accurate attenuation information in the presence of the residual FMISO radioactivity.

The list-mode data were binned into sinograms for the following time frames: 8 × 15s,

6 × 30s, 15 × 1min, 5 × 2min, 30 × 5min. For each sinogram, an image was reconstructed

using the PROMIS 3D filtered backprojection algorithm [51], with a Hann window applied to

result in a reconstructed image resolution of 2.3mm full width at half maximum (FWHM).

Image reconstruction incorporated corrections for randoms, dead time, normalisation, attenu-

ation, decay and sensitivity.

MRI

Immediately on completion of PET scanning the animal was transported to the nearby room

for magnetic resonance imaging (MRI) (4.7T Bruker BioSpec 47/40 system; Bruker BioSpin,

Ettlingen, Germany). Diffusion weighted images (DWI) were acquired using an echo-planar

sequence (TR/TE 3000/35ms, 35 directions b = 1000s/mm2, slice thickness 1.5mm, in plane

resolution 0.312mm). T2-weighted MRI was then acquired using the following parameters:

Effects of hyperoxia on FMISO uptake in experimental stroke
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TR/TEeff 15078/36ms, ETL 8, NEX 1, 256 × 256 × 128 FOV 64.0 × 64.0 × 32.0 mm3, isotropic

resolution 250 μm3.

Histology

Immediately after completion of the MRI, the animal was killed with an overdose of phenobar-

bital and decapitated. Tetrazolium chloride (TTC) staining was then performed according to

the previously described methodology [10]. The brains were isolated and cut into 2mm thick

sections, which were incubated in 0.5% TTC bath at room temperature, and then scanned on a

flatbed scanner.

Image analysis

All image analyses were carried out blind to group allocation.

FMISO SUV images. For each animal, an FMISO standardised uptake value (SUV) map

was created by averaging the images 120-180min post-injection, and multiplying this by the

ratio of animal weight (kg) to injected activity (MBq). This SUV map was manually rigidly co-

registered to the MR image of the same animal. For comparison of SUV maps, each individual

MR image was affine-registered to a MRI brain template of a normal rat, and this transforma-

tion was applied to the co-registered SUV map to bring it to template space.

FMISO hypoxic ROI. Based on our hypothesis, hyperoxia should reduce the volume with

significantly increased FMISO. Accordingly, the analysis followed our previously published

methodology [11]. First, a region-of-interest (ROI) was defined on the MR image that encom-

passed the cerebral hemisphere contralateral to the MCAo, within which the mean and stan-

dard deviation (SD) of the voxel SUV values were determined. Under the assumption of

normally distributed values, a statistical threshold of p<0.001 was calculated from mean

+ 4.26×SD. This threshold was applied to the MCAo hemisphere to delineate the hypoxic vol-

ume [11]. The mean SUV within the FMISO hypoxic ROI was also obtained in each rat.

FMISO kinetic rate constants. FMISO kinetic rate constants were determined within the

FMISO hypoxic and contralateral hemisphere ROIs using our previously published kinetic

modelling methodology [32]. To this end, a plasma-input two-compartment irreversible

kinetic model was applied to the mean hypoxic volume time-activity curve (TAC) and the cor-

responding TAC from the contralateral hemisphere ROI [32], resulting in the estimation of

two measures of FMISO trapping per region: trapping rate (k3) and influx rate (Ki).

MRI. DWI images displayed the expected ischemic lesions in all rats (see Results), but the

metallic clip for MCAo resulted in significant artefacts. Ischemic lesion volumes were therefore

delineated on the T2-weighted MRI by an experimental neuroscientist with experience in

stroke imaging (SE) and blinded to subject group, by manually contouring using MRIcro

(www.cabiatl.com/mricro/mricro/) the volume of increased signal across the coronal slices

displaying a lesion in the left MCA territory cortex.

TTC lesion. Two observers blinded to subject group independently determined the TTC

lesion volume from the scanned TTC sections using ImageJ (https://imagej.nih.gov/ij/). As the

agreement between these observers was high (R2 = 0.944, p<0.001), the average TTC volumes

across the two observers was used henceforth.

MCA cortex PtO2

The experimental protocol, including methodology for distal microclip MCAo, anesthetic regi-

men and physiological monitoring, was identical to that used in the PET studies above. PtO2

was measured using an O2 probe (Tissue Oxygenation Monitor, Oxy lab pO2, Oxford Optinix,

Abingdon, UK) in adult male ~3 months old SHRs (n = 5; weight: ~300g) and Wistar rats (n = 4;
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weight: ~300g). Based on the literature and our previously published findings [48], we elected to

measure PtO2 in the barrel field of the primary somatosensory cortex (S1-BF), because it is con-

sistently part of the cortical MCA territory [52, 53] and is among the areas most severely and con-

sistently affected after distal MCAo in SHRs [48]. To this end, under 1.5% continuous isoflurane

delivery, the O2 probe was inserted in the S1-BF under stereotaxic conditions, using coordinates

from the Paxinos atlas (bregma -2mm, lateral 6mm, depth 1mm) [54]. PtO2 was measured first in

the right hemisphere starting 30mins after probe insertion to allow for resolution of acute tissue

trauma as recommended. PtO2 values were then obtained every 10 mins during one 30-min con-

trol and hyperoxia cycle, allowing 10mins to elapse between the two conditions for equilibrium.

Once these measurements completed, the oxygen probe was removed and left-sided distal MCAo

was carried out as described above. The probe was inserted in the S1-BF of the ischemic hemi-

sphere and measurements started 30mins after MCAo. In total, 18 measurements of PtO2 were

obtained for the ischemic hemisphere, i.e., every 10 mins during three 30-min control and hyper-

oxia cycles, allowing 10mins to elapse between the two conditions for equilibrium, for an overall

180mins recording. The experimental design is shown in Fig 1. The PtO2 values were subse-

quently averaged to generate a single value for each condition and each hemisphere.

Statistical analysis

The Anderson-Darling test [55] was used to test for normality in data distributions and differ-

ences in data (for paired data). Consequently, FMISO hypoxic lesion, MRI lesion and TTC

lesion volumes were compared between-strain within-condition and within-strain between-

condition using two-sample, two-tailed unequal variance t-tests. FMISO values (SUV, k3 and

Ki) were compared within-strain between-condition using two-sample, two-tailed unequal

variance t-tests, with k3 and Ki also compared within-strain within-condition between the hyp-

oxic and contralateral ROIs using paired, two-tailed t-tests. Note that the SUV values were not

compared between hemispheres given that the hypoxic ROI was defined statistically based on

contralateral hemisphere SUV (mean and SD), i.e., by definition the FMISO lesion ROI only

encompassed voxels with significantly higher SUV than the mean contralateral hemisphere

SUV. Correlations between FMISO hypoxic lesion, MRI lesion and TTC lesion volumes were

assessed using the Pearson correlation coefficient.

PtO2 data were compared within-strain between-condition using paired, two-tailed t-tests,

and between-strain for the control condition using a two-sample, two-tailed unequal variance

t-test for the contralateral hemisphere and Wilcoxon rank sum for the MCAo cortex given

that the SHR MCAo cortex PtO2 distribution failed the Anderson-Darling normality test

(p = 0.008). Differences in PtO2 within-strain between-condition satisfied the normality test

and hence these difference data were compared between-strain using two-sample, two-tailed

unequal variance t-tests. Pooled PtO2 data for the MCAo cortex (i.e., by combining SHR and

Wistar rats) failed normality (p = 0.008) for the difference between conditions and hence were

tested between-condition using the Wilcoxon signed rank test.

Given the small samples used in the present study, statistical trends, i.e., two-tailed p values

between 0.10 and 0.05, will be reported as potentially meaningful.

Results

No animal died before the end of the experiment, and all studied animals are reported below.

Fig 2 shows representative coregistered FMISO SUV, DWI and T2-weighted MRI coronal

sections from an SHR and a Wistar rat, illustrating conspicuous FMISO and DWI lesions,

somewhat faint T2-weighted lesions, as well as the TTC lesion from approximately the same

coronal section.
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Effects of hyperoxia on FMISO hypoxic ROI volumes

During MCAo, FMISO hypoxic volumes were markedly and significantly larger in SHRs than

Wistar rats in both the control (t = 3.57; p = 0.038) and hyperoxia (t = 13.34; p = 0.006) condi-

tions; Table 1 and Fig 3. As Table 1 shows, the FMISO lesion volumes were not significantly

Fig 1. Graph showing PtO2 data from one subject to illustrate the experimental protocol. First, following an equilibration period of 30mins

after probe insertion (not shown), six PtO2 measurements were obtained in the non-ischemic (right) hemisphere (3 control, 3 under hyperoxia), then

MCAo and PO2 probe insertion were carried out on the ischemic (left) hemisphere and PtO2 was measured every 10mins (again following a 30-min

equilibration period after probe insertion) across three 30min control-hyperoxia cycles (18 measurements in total). Note the rapid equilibration in

PtO2 after each change of oxygen condition, i.e., within the 10mins between measurements.

https://doi.org/10.1371/journal.pone.0187087.g001
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smaller in the hyperoxia condition as compared to control in either strain, and in SHRs tended

in fact to be larger (p = 0.08). Fig 4 illustrates these findings in two typical rats per strain.

Effects of hyperoxia on MRI and TTC lesion volumes

All rats exhibited an acute hyperintense lesion on DWI, but the metallic clip placed onto the

MCA consistently induced susceptibility artefacts, which precluded determination of DWI

lesion volumes. Accordingly, lesion volumes were determined on the T2-weighted scans. As

with the FMISO hypoxic ROI, larger MRI and TTC lesion volumes were present in SHRs as

compared to Wistar rats in both control (MRI: t = 4.27, p = 0.024; TTC: t = 2.67, p = 0.08) and

hyperoxia (MRI: t = 2.91, p = 0.10; TTC: t = 11.68, p = 0.001) conditions (Table 1, Fig 3).

Within-strain analyses, however, revealed no significant difference between the control and

hyperoxia conditions in both SHRs and Wistar rats (Table 1). Across conditions, there were

robust (R2 = 0.55–0.74; all p<0.001) correlations among lesion volumes from FMISO PET,

MRI and TTC (Fig 5).

Fig 2. Illustrative coregistered FMISO SUV, DWI and T2-weighted MRI images for the same coronal

cut in one spontaneously hypertensive rat and one Wistar rat, and approximately matched TTC

coronal slice. These data illustrate the topographic congruence of the ischemic lesions (arrows) among the

four imaging modalities. As TTC sections are not amenable to coregistration with PET and MR images due to

differences in slice angle and thickness and potential post-mortem geometrical distortion, approximately

same coronal level TTC sections as for the in vivo images are shown for illustrative purposes only.

https://doi.org/10.1371/journal.pone.0187087.g002

Table 1. Mean (± SD) FMISO PET hypoxic volume and MRI and TTC lesion volumes for both rat strains and oxygen supply conditions, together

with corresponding t and p values from two-sample, two-tailed, unequal variance t-tests between control and hyperoxia oxygen conditions.

Strain Modality Condition Volume [mm3] t (p-value)

SHR FMISO Control 207 ± 110 2.34 (p = 0.08)

Hyperoxia 349 ± 44

MRI Control 91 ± 38 0.31 (p = 0.78)

Hyperoxia 103 ± 59

TTC Control 136 ± 87 0.96 (p = 0.41)

Hyperoxia 179 ± 22

Wistar FMISO Control 11 ± 6 -0.35 (p = 0.74)

Hyperoxia 9 ± 6

MRI Control 7 ± 9 -0.64 (p = 0.57)

Hyperoxia 3 ± 5

TTC Control 18 ± 15 -0.66 (p = 0.54)

Hyperoxia 11 ± 13

FMISO, 18F-fluoro-misonidazole; PET, positron emission tomography; MRI, magnetic resonance imaging; TTC, tetrazolium chloride; SHR, spontaneously

hypertensive rat

https://doi.org/10.1371/journal.pone.0187087.t001
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Effects of hyperoxia on SUV within the FMISO lesion ROI

Fig 6 shows individual and mean SUV values across both conditions and strains. FMISO lesion

ROI SUV did not differ between the two conditions, either in SHRs (mean ± SD: 1.17 ± 0.20 g/

ml control vs 1.33 ± 0.14 g/ml hyperoxia; t = 1.22, p = 0.28) or in Wistar rats (1.24 ± 0.15 vs

1.04 ± 0.16 g/ml; t = -1.62, p = 0.18). Also, there was no effect of hyperoxia on contralateral

hemisphere SUV values in either SHR (0.62 ± 0.06 vs 0.67 ± 0.08 g/ml; t = 0.94, p = 0.40) or

Wistar rats (0.65 ± 0.03 vs 0.64 ± 0.06 g/ml; t = -0.13, p = 0.91).

Effects of hyperoxia on FMISO kinetic rate constants within the FMISO

lesion ROI

Fig 7 shows typical examples of the compartmental model fits to the FMISO time-activity

curves (TACs) for the FMISO hypoxic lesion ROI and contralateral ROI of both strains under

the control and hyperoxia conditions.

Fig 3. Individual and mean FMISO hypoxia, T2-weighted MRI and TTC lesion volumes for SHRs (left) and Wistar rats (right) under control

and hyperoxia conditions. Horizontal lines denote the mean of each group. FMISO, MRI and TTC lesion volumes were significantly larger in

SHRs than Wistar rats in both conditions (see Results section for further details), but there was no significant effect of hyperoxia in either strain.

Sample sizes are n = 3–4 per group.

https://doi.org/10.1371/journal.pone.0187087.g003
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As also depicted in Fig 6, FMISO influx rate (Ki) was significantly higher in the hypoxic

lesion compared to the contralateral ROI for SHR rats under both conditions (control

mean ± SD: 0.0045 ± 0.0005 vs 0.0010 ± 0.0003 ml/min/ml; t = 20.41, p = 0.031; hyperoxia:

0.0047 ± 0.0011 vs 0.0011 ± 0.0003 ml/min/ml; t = 7.37, p = 0.018) and for Wistar rats under

the control condition (0.0038 ± 0.0011 vs 0.0007 ± 0.0003 ml/min/ml; t = 6.44, p = 0.023), with

a near significant result for Wistar rats under hyperoxia (0.0027 ± 0.0006 vs 0.0009 ± 0.0002

ml/min/ml; t = 4.19, p = 0.052). The FMISO trapping rate (k3) was also significantly higher

in the FMISO lesion relative to its mirror ROI in SHRs under hyperoxia (0.0170 ± 0.0037 vs

0.0027 ± 0.0003 min-1; t = 7.14, p = 0.019) and Wistar rats in the control condition (0.0085 ±
0.0032 vs 0.0014 ± 0.0005 min-1; t = 4.60, p = 0.044), with similar trends in SHRs in the control

condition (0.0157 ± 0.0024 vs 0.0027 ± 0.0004 min-1; t = 6.56, p = 0.10) and Wistar rats under

hyperoxia (0.0071 ± 0.0035 vs 0.0024 ± 0.0007 min-1; t = 2.09, p = 0.17). However, as for SUV,

hypoxic lesion Ki and k3 did not significantly differ between control and hyperoxia in either

strain (|t|�1.46, p�0.24 in all cases).

Effects of hyperoxia on cortical PtO2

Fig 8 illustrates the PtO2 values in the non-ischemic and ischemic cortex in both strains and

both conditions. In the non-ischemic cortex, PtO2 was significantly lower in SHRs than Wistar

Fig 4. Representative FMISO SUV images overlaid on the same coronal slice of the co-registered MRI

template for representative SHR (top row) and Wistar (bottom row) rats scanned under either the

control (left column) or hyperoxia (right column) conditions. The pseudocolor scale on the right

represents SUV units (see text for details). This illustrates the much smaller FMISO lesion induced by distal

MCA occlusion in Wistar rats than SHRs, and the lack of clear effect of hyperoxia on FMISO brain uptake in

either strain (see Results for further details).

https://doi.org/10.1371/journal.pone.0187087.g004

Fig 5. Relationships between FMISO hypoxic lesion volume, MRI lesion volume and TTC lesion

volume. Each plot uses data from both SHR and Wistar rats under both the control and hyperoxia conditions

(n = 13). All Pearson correlations are statistically significant (p < 0.001; R2 values shown next to each

scatterplot).

https://doi.org/10.1371/journal.pone.0187087.g005
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rats in the control condition (mean ± SD: 24.3 ± 8.6 vs 45.9 ± 12.2 mmHg; t = -3.00, p = 0.030),

with significant increases in PtO2 during hyperoxia found for both the SHRs (mean increase:

15.9 mmHg; t = 3.39, p = 0.028) and Wistar rats (mean increase: 32.1 mmHg; t = 14.30, p =

0.001). The increase in PtO2 for Wistar rats was significantly greater than for SHRs (t = 3.11,

p = 0.021). Increases in PtO2 had a positive correlation trend with initial PtO2 for Wistar rats

(R2 = 0.84, p = 0.08)—i.e., the higher the baseline PtO2, the larger the increase -, but not for

SHRs (R2 = 0.02, p = 0.84).

Ischemic cortex PtO2 was also significantly lower in SHRs than in Wistar rats in the control

condition (median 0.6 vs 16.8 mmHg; p = 0.032; Wilcoxon rank sum). As shown in Fig 8, ische-

mic cortex PtO2 increased during hyperoxia in all 9 rats although to highly variable degrees. The

increase in PtO2 was statistically significant when pooling the two strains (p = 0.004; n = 9; Wil-

coxon signed rank). Due to the small samples for each strain, increases in ischemic cortex PtO2

only showed a weak trend when tested separately for SHRs (mean increase: 6.2 mmHg; t = 1.72,

p = 0.16; n = 5) and Wistar rats (mean increase: 26.4 mmHg, t = 1.95, p = 0.15; n = 4). The

increases in PtO2 for SHRs and Wistar rats were not significantly different (t = 1.44, p = 0.25).

Fig 6. Individual and mean FMISO SUV (left column), influx rate (Ki; middle) and trapping rate (k3; right) in the FMISO lesion ROI and

contralateral ROI for SHR (top row) and Wistar (bottom row) rats under the control and hyperoxia conditions. Horizontal bars denote mean

values. The Ki and k3 values were higher (significantly or with a strong trend) in the affected (‘lesion’) as compared to the non-ischemic

(contralateral) hemisphere in both strains and both conditions (see Results section for details). However, there was no significant effect of

hyperoxia on SUV, Ki or k3 in either strain.

https://doi.org/10.1371/journal.pone.0187087.g006
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Increases in PtO2 were found to positively correlate with initial PtO2 for SHRs (R2 = 0.97,

p = 0.003), but not for Wistar rats (R2 = 0.15, p = 0.62).

Discussion

This pilot study is the first to assess the effects of hyperoxia on FMISO uptake during cerebral

ischemia. Our experiments were designed to test a straightforward hypothesis, namely that

hyperoxia initiated within minutes of onset of focal cerebral ischemia would markedly reduce

FMISO uptake in the occluded MCA territory. Accordingly, only small samples and descriptive

statistics were thought adequate to demonstrate this. Contrary to our expectations, however,

neither the FMISO hypoxic lesion volume nor the FMISO SUVs and kinetic rate constants

within this region were clearly affected in either rat strain. This included k3 which represents

unidirectional FMISO cell trapping assumed to directly reflect tissue hypoxia [26, 32].

To test our hypothesis, we elected to use a 3hr MCA occlusion paradigm. This was neces-

sary because 3hrs of tracer uptake are recommended to obtain reliable data from FMISO

studies, due to its slow tissue kinetics and trapping in hypoxic tissue [5] (see Fig 7 for an illus-

tration). In addition, with any radiotracer study steady-state physiological conditions are

required throughout data acquisition, precluding the use of temporary MCAo with reperfu-

sion before the 3hr time-point. Unfortunately, as of today there is no alternative brain-pene-

trant in vivo hypoxia tracer with faster kinetics or reversible trapping [5, 56].

Our hypothesis was underpinned by earlier reports that FMISO trapping strongly depends

on the degree of hypoxia, be it for the liver [57] or tumors [26]. How can these unexpected

results be explained? First, small samples could have caused Type 2 error, i.e., lack of statistical

Fig 7. Representative FMISO time-activity curves for the FMISO hypoxic lesion ROI and contralateral

ROI for the 3-hr PET scan, together with compartmental fits for SHR (top row) and Wistar (bottom row)

rats under the control (left column) and hyperoxia conditions (right column).

https://doi.org/10.1371/journal.pone.0187087.g007
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significance despite the presence of a difference. However–again contrary to our expectations—

no discernible or consistent effect on FMISO lesion volume, SUV or kinetic rate constants was

observed in either strain, and, if anything, a trend for enlarged FMISO lesion was present in

SHRs (Table 1).

Second, the hyperoxia regimen implemented here was perhaps insufficient to substantially

improve ischemic tissue oxygenation and in turn reduce FMISO uptake. However, it increased

arterial PO2 4-fold (from mean 121.5mmHg to mean 478.5mmHg; corresponding SaO2 values:

98.7% and 100%, respectively) [31]. Despite such marked PaO2 rises, normobaric hyperoxia is

known not to result in major increases in arterial oxygen content, and hence in oxygen deliv-

ery to tissues. However, hyperbaric hyperoxia is a cumbersome procedure that would not be

compatible with PET and MRI scanning. Consistent with the literature [46, 58–60], the NBO

regimen applied here did however result in significant increases in ischemic cortex PtO2 across

Fig 8. Individual cortical PO2 (PtO2) measured in the MCA territory in the non-ischemic hemisphere (left) and ischemic hemisphere

(right) under the control and hyperoxia conditions in SHR (top) and Wistar rats (bottom; n = 5 and 4, respectively). Each line joins PtO2

values obtained under both conditions for a single rat; different colors are used for ease of illustration. The inset on the top right zooms on the four

SHRs with lowest baseline PtO2 values, which are difficult to discriminate on the main graph due to the common scale used across graphs. This

figure shows lower PtO2 under ischemic vs control condition in both strains, and increases in PtO2 under hyperoxia in all 9 rats (although of very

small amplitude in one SHR), which was highly statistically significant with pooled data. However, due to small samples and highly variable PtO2

increases, only trends were found when strains were assessed separately. The increase in PtO2 by hyperoxia was not significantly different

between the two strains in the ischemic cortex, although was significantly higher for Wistar rats in the contralateral hemisphere. Statistical tests

also showed significantly higher PtO2 in the control condition in Wistar rats as compared to SHRs in both hemispheres (see Results for further

details).

https://doi.org/10.1371/journal.pone.0187087.g008
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the two strains (i.e., pooled data)—although within strain these increases did not quite reach

statistical significance, probably due to small samples and variable changes.

Third, PtO2 was measured in a small volume whereas we assessed FMISO uptake through-

out the brain, which might account for our results. However, we purposely elected the S1-BF

area for PtO2 assessments because this cortical region is well within the MCA territory [52, 53],

and was previously shown to exhibit very low perfusion values after distal MCAo in SHRs

[48]. Secondly, we performed a post-hoc analysis of FMISO SUV within the S1-BF ROI, as per

our previously published methodology [31, 61]. To this end, the Paxinos stereotaxic atlas [54]

was co-registered onto MRI brain templates from normal adult SHR and Wistar rats, and the

S1-BF ROI from this atlas was projected onto co-registered FMISO PET images. As for the

FMISO lesion ROI, these results showed no significant effect of hyperoxia on SUV values (data

not shown).

Fourth, ischemic cortex PtO2 was very low in some SHRs at baseline, and increased only

slightly in some rats, which could in part explain the negative findings in SHRs. Liu et al [60]

have reported that in rodent MCAo, NBO resulted in marked increases in PtO2 in the penum-

bra but not in the ischemic ‘core’, which exhibited very low baseline PtO2 values similar to that

found in some of our SHRs. However, larger increases in PtO2 might have occurred in other

cortical areas that we did not assess, and although it would have been of interest to assess PtO2

in additional brain areas, this was not feasible given the available facilities. Furthermore, inter-

pretation of the Liu et al finding [60] is not straightforward, as in severely ischemic conditions

the oxygen extraction fraction is near-maximal [4], so that increasing oxygen delivery to viable

tissue would result in increased oxygen use and therefore not necessarily in marked increases

in PtO2, despite overall improved oxygenation. One might also argue that such very low PtO2

values indicate that the affected tissue is already irreversibly damaged (i.e., the ‘core’), and

hence that NBO might not have enhanced PtO2 in such conditions, resulting in unchanged

FMISO lesion volumes. However, even though SHRs have worse hypoperfusion [33–35] and

hypoxia after MCAo than Wistar rats (as shown here), they do have an extensive penumbra

initially [33–35, 62], and early interventions such as reperfusion and hyperoxia but also drugs

do salvage the penumbra and reduce final infarct in SHRs [31, 47, 63–66], indicating that NBO

should have affected FMISO uptake and retention, albeit probably less so than in Wistar rats.

Fifth, and linked with the point just discussed, although the PtO2 measurements purposely

overlapped most of the FMISO tissue uptake period, allowing their comparison, they began

30mins after MCAo in the ischemic cortex, again to comply with technical constraints (see

Methods). We therefore cannot exclude that larger initial increases in PtO2 (i.e., the first 30

minutes) occurred, and then reduced over time, explaining the lack of changes in the 2-3hrs

SUV images used to determine the FMISO lesion volumes. However, our PtO2 data showed

steady increases after hyperoxia until the end of measurement (see Fig 1). Furthermore,

because of its trapping process, FMISO SUV measured 2-3hrs after tracer injection reflects

uptake from all time points, including early ones [5].

Sixth, again linked with the above two points, FMISO trapping might be sensitive to hyper-

oxia only for a short duration, while cells are still fully viable. However, in this event inspection

of the TACs should have revealed changes in their initial phase, which were not observed (Fig

7), and the kinetic modelling results would also have been affected, including poor fits, which

again was not seen.

Seventh, FMISO trapping in hypoxic brain tissue might occur as an all-or-nothing phe-

nomenon, below a PtO2 higher than that achieved during hyperoxia; however, the previously

published relationships between PtO2 and FMISO trapping in other organs [26, 57], although

strongly non-linear, do not support this idea.
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Overall, therefore, although the use of small samples precludes us from reaching any defini-

tive conclusion, there are no clear method-related explanations for our unexpected findings.

Importantly, however, they are in fact consistent with two previous studies using other nitro-

midazole derivatives in rodent stroke models, and ex vivo instead of in vivo imaging here. One

2-hr MCAo study in mice reported no effect of NBO on hypoxic volumes determined ex vivo
135min after IV administration of non-radioactive EF-5 [67]; a finding not addressed by the

authors. In another 2-hr MCAo study performed in Sprague-Dawley rats, NBO administered

together with perfluorocarbons early after MCAo resulted in major (2 to 4-fold) reductions in

core volume (assessed using Silver staining) but only minor (15–20%) reductions in hypoxia

volume, assessed using the ex vivo pimonidazole method 8 or 24hr later [68]. These earlier

findings are entirely consistent with our observations. Note that in our study FMISO lesion

volumes also slightly decreased under NBO in Wistar rats by ~15% on average (Table 1),

although this showed not even a trend for significance due to major individual values overlap

(Fig 3).

Thus, an alternative, biochemical hypothesis to explain our negative results is worth consid-

ering. For instance, despite higher PtO2, actual intracellular oxygenation might rapidly decline

after a brief initial improvement, due for instance to mitochondrial dysfunction. In favor of

this hypothesis, in their report [67] Sun et al found that, 2-hr after start of MCAo, hyperoxia

did not significantly affect tissue levels and expression of HIF-1α —a cell protein increased by

hypoxia. Effectively, it is known that rather than tissue PtO2, what nitromidazole derivatives

assess is some downstream cell process triggered by hypoxia and involving irreversible trap-

ping into cell organelles, whose intimate mechanisms are still unclear [5, 69].

In our study, practical factors (see Methods) precluded measuring PtO2 in the same rats

that underwent FMISO scans. Assuming these technical issues can be resolved, future FMISO

studies should directly compare tracer uptake to brain PtO2. For similar reasons, laser Doppler

blood flow measurements to confirm effective ischemia following MCAo could not be carried

out in conjunction with PET. However, we have previously published perfusion values after

distal MCAo in SHRs [48], and in addition, all rats in our study had both FMISO and DWI

lesions, indicating effective ischemia. To further clarify the relationships between brain PtO2

and FMISO uptake after MCAo in animal stroke models in both control and NBO conditions,

future studies should not only involve at least twice larger samples, but could also map other

MR-based tissue markers of ischemia severity, such as ADC and possibly lactate and NAA.

These would need to be monitored simultaneously with FMISO PET, which is now feasible

using PET/MR hybrid scanners [70]. Likewise, FMISO PET acquisition could run in parallel

with pimonidazole brain uptake, allowing hypoxia mapping directly in brain slices collected at

the end of PET acquisition; this could also be combined with HIF-1α immunoblotting. Finally,

and more generally, biochemistry studies addressing the intricate cellular mechanisms of

FMISO trapping in conditions of focal ischemia are warranted.

Turning to the lack of effect of hyperoxia on MRI and TTC lesion volumes in either rat

strain, this was not unexpected as it is consistent with the literature mostly indicating no or

only marginal reductions in infarct volumes with MCAo durations >2hrs [71–75], including

in SHRs [76], in contrast with shorter MCAo [46, 59, 77–83], again including SHRs [31].

Although rodent and clinical studies have documented effective ‘freezing’ of DWI lesion

growth during hyperoxia [74, 84, 85], this benefit is lost if reperfusion does not occur soon

enough, even despite improved tissue oxygenation. This dependence on early reperfusion is

akin that of the penumbra, whereby at some point in time—determined by the severity of

hypoperfusion—the penumbra tilts towards irreversible damage [4, 86]. However, why

FMISO uptake was not affected by hyperoxia is a different matter, and remains unexplained.
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In Wistar rats, MCAo resulted in ~3-fold reductions in ischemic cortex PtO2 relative to

control conditions. Though we could not identify previous similar studies in this strain, this

low PtO2 is broadly consistent with an extensive literature in other rat strains [58–60, 73], mice

[46] and non-human primates [87, 88] as well as in man [89–91]. Quite strikingly, ischemic

cortex PtO2 was considerably lower in SHRs than in Wistar rats. We are not aware of previous

studies of PtO2 in SHRs during MCAo. This probably reflects this strain’s poor leptomeningeal

collaterals and impaired cerebrovascular autoregulation, resulting from increased vessel stiff-

ness, thicker wall and reduced lumen [39, 41–45].

Normobaric hyperoxia increased ischemic cortex PtO2 ~2-fold in both strains, consistent

with previous literature in Sprague Dawley rats [58, 59] and mice [46]. Thus, the marked

(~4-fold) increase in arterial PO2 achieved during hyperoxia did improve ischemic tissue oxy-

genation. Given that persistent tissue hypoxia is the main trigger of the ischemic cascade that

eventually leads to irreversible cell death and tissue necrosis [1, 2], these effects of hyperoxia

are promising and should foster clinical trials. However, the present study again documents

that hyperoxia does not reduce ischemic lesion size if arterial occlusion persists beyond a cer-

tain time point.

Another interesting finding from the present study is that baseline cortical PtO2 was much

lower in SHRs as compared to Wistar rats. We are not aware of any previous study of cortical

PtO2 in SHRs. Only Weaver et al [92] reported brain PtO2 values in adult SHRs, but this was

for white matter only, and no data from Wistar rats were presented as control. Interestingly,

one study found reduced global cerebral blood flow in stroke-prone SHRs even before the

development of infarcts or behavioral impairment [93], thought to indicate the presence of tis-

sue hypoxia. This chronic relative brain hypoxia in SHRs likely relates to the above-mentioned

poorer cerebrovascular tree, and likely underlies the much larger effects of MCAo in SHRs dis-

cussed above. By extension, chronic brain hypoxia might contribute to the larger ischemic

lesions seen in hypertensive patients in the clinical setting [94]. In this respect, it would be

interesting to test whether chronic anti-hypertensive therapy increases baseline brain PtO2 in

SHR rats.

In conclusion, the unexpected apparent lack of marked effect of hyperoxia on FMISO brain

uptake and kinetic rate constants despite partially improved tissue oxygenation observed in

this pilot study suggests that in circumstances such as prolonged ischemia, the cellular mecha-

nisms underlying FMISO trapping in hypoxic tissue may be disjointed from interstitial oxygen

pressure. A better understanding of FMISO trapping processes will be important for further

applications of FMISO PET imaging.
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