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Abstract

In this study, we used 454-pyrosequencing to report the highly diverse diazotroph communi-

ties in the Kuroshio and its adjacent waters along a transect across the Tokara Strait,

Japan. Terrestrial input from the islands resulted in a highly heterogeneous diazotroph com-

munity within a relatively small geographic region, which was presumably caused by the

remarkably different responses of UCYN-A2, UCYN-C and Trichodesmium to the steep

environmental gradient. On the other hand, most major cyanobacterial OTUs found in this

study were also detected in an unpublished dataset from the upstream Kuroshio, which sug-

gests transportation of diazotrophs by the Kuroshio in large geographic scale. A significant

amount of UCYN-C was found in the Kuroshio and offshore stations, suggesting the impor-

tance of this potentially overlooked group in the western North Pacific Ocean (WNPO).

Moreover, a novel sublineage of UCYN-B was defined, which was predominant in an oligo-

trophic water sample; and it was also found to be widely distributed in oceanic waters. In

addition, the apparent increase in relative abundance of UCYN-A2 from offshore to near-

shore water provides evidence for the earlier and under-debating view that UCYN-A2 pre-

fers coastal conditions. Our report provides new knowledge for understanding the phylog-

eny and ecology of unicellular cyanobacterial diazotrophs in WNPO.

Introduction

Biological nitrogen fixation is an important source of new nitrogen input in the subtropical

and tropical oceans [1–3], where bioavailable nitrogen is usually a major limiting factor for pri-

mary production. Biological nitrogen fixation is carried out by a group of prokaryotes, called

diazotrophs. Trichodesmium was initially believed to be the major diazotroph in the oceans

[4]. However, with the development of molecular techniques, and the nifH gene (which

encodes a nitrogenase subunit), becoming a commonly-used phylogenetic biomarker of the

diazotrophs [5], a diverse range of microbes has since been discovered. Thus, more recent
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studies indicate that the contribution of unicellular cyanobacterial diazotrophs to nitrogen fix-

ation could be equal to (or even higher than) that of Trichodesmium [6, 7].

The marine unicellular cyanobacterial diazotrophs are divided into 3 distinct lineages

namely, UCYN-A, UCYN-B and UCYN-C, and these have been detected in diverse environ-

ments [8]. Several strains of UCYN-B, including the widely-distributed strain Crocosphaera
watsonii WH8501 [9], have been isolated and relatively well studied. In contrast, UCYN-A and

UCYN-C are less well understood; likely due to the fact that UCYN-A is still uncultivated and

there is just one cultured strain of UCYN-C (Cyanothece sp. TW3) [10]. However, when com-

paring UCYN-A with UCYN-C, the former has been studied in more detail because it can be

detected in high abundance at higher latitudes and in deeper water than other cyanobacterial

diazotrophs [11]. Indeed, it has been shown that the UCYN-A group lacks both the CO2-fixing

enzyme, RubisCO, and the oxygen-evolving photosystem II [12]. It is also known to form a

symbiotic relationship with picoeukaryotic prymnesiophtyes [13]. In addition, different subli-

neages of UCYN-A have been identified in the oceans, and so additional physiological infor-

mation about this linage is now available [14, 15].

Kuroshio is a western boundary current in the North Pacific Ocean. It originates from the

North Equatorial Current, enters the East China Sea and flows out through the Tokara Strait

to the Pacific Ocean [16]. The Kuroshio Current (KC) is also generally characterized as having

oligotrophic conditions and a deep nitracline. It was suggested that such conditions are advan-

tageous for the survival of diazotrophs over non-diazotrophs [17]. In the oligotrophic surface

water of the KC, biological nitrogen fixation was reported to be strong (232 ± 54.8 μmol N m−2

d−1) [18] and was estimated to contribute up to 25% of the new production [19]. Early studies

reported that the abundance of Trichodesmium was higher in the KC than in the neighboring

East China Sea, and they were recognized as being an important diazotroph in this area [20].

However, a more recent study conducted in the upstream region of the KC reported that the

filamental portion of nitrogen fixation was dominant during the warm season, whereas the

unicellular portion contributed to ~70% of the nitrogen fixation that occurs during the cold

season [21]. Thus far, however, the major unicellular diazotrophs in the KC have not been

identified. Although the gene copy numbers of UCYN-A1 and UCYN-B have been quantified

in the upstream region of KC, these two clades cannot represent the entire community of uni-

cellular diazotrophs. This is because the unicellular diazotrophs are a big family, comprising

different clades of UCYN-A, B, and C, as well as some proteobacterial phylotypes, which have

all been suggested to be significant diazotrophs in the marine ecosystem [8, 14, 22]. Further-

more, the 18S rRNA gene sequence of Braarudosphaera sp., a symbiotic host of UCYN-A2, has

also been detected in the coastal waters of Japan [14, 23], which implies that diverse unicellular

diazotrophs might inhabit the KC and the adjacent waters of the Tokara Strait. Nevertheless,

since the discovery of the sublineages of the UCYN-A, the detailed distributional information

about these sublineages has been missing in the oceanic water of the western North Pacific

Oceans [24, 25].

Therefore, in this study we used 454-pyrosequecing, deep sequencing technique to analyze

the diazotroph community and active diazotrophs in the KC (oligotrophic water in western

North Pacific Ocean). Besides that, we choose to study the KC in a transect along the Tokara

Strait south of Kyushu Island, Japan, where steep environmental gradients are expected. This

can provide more understandings about the responses of different diazotrophic phylotypes to

the highly variable environmental conditions of the Ocean.

Genetic diversity of diazotrophs in the Kuroshio
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Methods

Environmental conditions and sample collection

This study was conducted at 5 stations (ST.1, 3, 4, 5 and 6) in the Tokara Strait (29˚0΄N—31˚

0΄N, 129˚0΄E—130˚0΄E) on board the R/V Tansei Maru (JAMSTEC; Table 1, Fig 1 and S1

Fig) during November, 2012. Basic hydrographic data (i.e., salinity, temperature, depth and

dissolved oxygen concentration) and water samples were collected using a conductivity-tem-

perature-depth (CTD) rosette system, with Sea Bird oxygen sensors (Sea Bird Electronics Inc.,

Bellevue, WA, USA) and attached Niskin bottles. In addition to the basic hydrographic data,

concentrations of ammonium (NH4
+), nitrite (NO2

-), nitrate (NO3
-), phosphate (PO4

3-), and

silicate (SiO2) were determined with a segmented flow auto-analyzer; and chlorophyll-a (Chl
a) was measured by fluorometry [26]. For the stable isotope analysis of N of suspended materi-

als, water samples were filtered through pre-combusted GF/F filters, and the filters were kept

frozen at -30˚C until analysis. To remove carbonates, the filters were exposed to HCl fumes for

24 hours, and then dried. The N isotopic compositions (δ15N) were determined by means of

an elemental analyzer (ANCA-GSL) interfaced with an isotope ratio mass spectrometer

(Hydra 20–20, Sercon Ltd., Crewe, Cheshire, UK). The surface current data were collected

using a ship-mounted acoustic Doppler current profiler (ADCP) (Ocean Surveyor, Teledyne

RD Instruments) during the expedition. For molecular analysis, 6–8 L seawater samples were

collected from the surface layer (i.e., a depth of 5 m) and the deep chlorophyll maximum

(DCM) layer at each station (Table 1), after which they were filtered onto 0.2 μm Supor1 PES

filter membranes (47 mm, Pall Corp., Port Washington, NY, USA) under low vacuum pres-

sure. All the molecular samples were then flash frozen and stored at -80˚C until they were

required for DNA and RNA extraction.

DNA and RNA extraction, and cDNA synthesis

Genomic DNA and RNA was extracted from the 0.2 μm membrane filters using the TRIzol

plus Genomic DNA mini kit and RNA Purification mini kit (Invitrogen, Thermo Fisher Scien-

tific Corp., Carlsbad, CA, USA). All the DNA samples were eluted in 60 μL ultrapure water

(Invitrogen, Thermo Fisher Scientific Corp.), and stored at -20˚C until further analysis. The

RNA samples were eluted in 60 μL RNase-free water (Invitrogen, Thermo Fisher Scientific

Corp.) and stored at -80˚C until further analysis.

For cDNA synthesis, the extracted RNA was first treated with DNase I to remove any con-

taminating DNA, after which it was reverse-transcribed with the SuperScript III First Strand

cDNA Synthesis kit (Invitrogen, Thermo Fisher Scientific Corp.). Each reaction contained

8 μL DNase treated RNA, 0.5 μM random hexamers, 1×RT buffer, 5 mM magnesium chloride

(MgCl2), 0.5 mM deoxynucleotide triphosphate (dNTPs), 10 mM dithiothreitol, 1 unit RNase-

OUT™ and 0.5 unit SuperScript III reverse-transcriptase. The reaction conditions were 25˚C

for 10 min; 50˚C for 50 min and 85˚C for 5 min. The cDNA synthesized was then incubated

with 1 unit RNase H at 37˚C for 20 min, after which the cDNA samples were stored at -20˚C

until required for further analysis.

Nested PCR and 454-pyrosequencing of DNA samples

The nifH gene fragments were amplified from the cDNA samples acquired from ST.3, and

from the genomic DNA samples acquired from all the Tokara Strait Stations (Table 2), follow-

ing the nested polymerase chain reaction (PCR) protocol [5]. The nested PCR reaction was

done in triplicate with the Platinum Taq DNA polymerase PCR system (Invitrogen, Thermo

Fisher Scientific Corp.) in a volume of 12.5 μl containing 1 × rxn PCR buffer containing 4 mM
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MgCl2, 400 μM dNTPs, 1 μM primers (nifH 3 and nifH 4 for the first round, and nifH 1 and

nifH 2 for the second round) [27], 1 unit Platinum Taq polymerase and 1 μL of total genomic

DNA. Each round of the nested PCR was performed with 30 cycles of 94˚C (1 minutes), 57˚C

(1 minutes) and 72˚C (1 minutes). After the second round of the nested PCR, 1 μL of the PCR

products was used to run 10 cycles of PCR with sample-specific multiplex identifiers (MIDs)

and adaptor-attached primers [28]. The PCR conditions were identical to those of the nested

PCR. The duplicates of the PCR products were mixed and then gel purified with a Quick Gel

Purification kit (Invitrogen, Thermo Fisher Scientific Corp.). Negative controls, in which no

template DNA was added, were also prepared for all the nested PCR of the genomic DNA

Table 1. Basic information about the DNA samples used in this study.

Station Lat.

(˚N)

Long.

(˚E)

Depth

(m)

Sample Name No. of sequences Coverage

ST.1 29.00 129.00 5 ST.1-S 3,598 0.999

60 ST.1-C 3,661 0.998

ST.3 30.00 129.50 5 ST.3-S 3,629 0.996

5 ST.3-SR 3,844 0.997

60 ST.3-C 3,597 0.997

60 ST.3-CR 3,833 0.997

ST.4 30.33 129.67 5 ST.4-S 3,744 0.998

70 ST.4-C 3,758 0.997

ST.5 30.67 129.83 5 ST.5-S 3,641 0.999

20 ST.5-C 3,780 0.998

ST.6 31.00 130.00 5 ST.6-S 427 0.998

75 ST.6-C 3,772 0.999

The sequence numbers, and coverage are also listed. DCM means that samples were collected from the deep chlorophyll maximum layer. The samples

collected from the surface water were labeled with “S” in their sample names, while those collected from deep chlorophyll maximum layer were labeled with

“C” and the cDNA samples were labeled with “R”.

https://doi.org/10.1371/journal.pone.0186875.t001

Fig 1. Map and surface hydrographic features of the stations. The yellow arrow represents the location and direction of the Kuroshio

mainstream.

https://doi.org/10.1371/journal.pone.0186875.g001

Genetic diversity of diazotrophs in the Kuroshio

PLOS ONE | https://doi.org/10.1371/journal.pone.0186875 October 23, 2017 4 / 19

https://doi.org/10.1371/journal.pone.0186875.t001
https://doi.org/10.1371/journal.pone.0186875.g001
https://doi.org/10.1371/journal.pone.0186875


samples. For the cDNA samples, the DNase-treated RNA samples were also added to the nega-

tive controls. According to the results of the DNA gel electrophoresis, no visible DNA bands

were observed in the negative control lanes. For 454-pyrosequencing, MID-adaptor labeled

nifH gene amplicons of different samples were mixed with the same concentration for con-

structing an amplicon library, according to the Rapid Library preparation protocol (Roche,

454 Life Sciences Corp., Branford, CT, USA). The DNA library attached beads were then

loaded into a picotiter plate and sequenced with a GS Junior System (Roche, 454 Life Sciences

Corp.).

Quality control and analysis of sequences

The quality control of raw sequence data was conducted with the open source software pack-

age, Mothur [29]. Low quality sequences (with an average quality score < 25), short sequences

(< 300 bases in length), ambiguous base containing sequences, homopolymer-containing

sequences (i.e., homoploymers > 8 bases), and chimeric sequences were removed. Also, the

multiplex identifier (MID) sequences were trimmed. The remaining sequences were de-noised

with a sigma value of 0.01 to reduce the effect of PCR bias, after which they were aligned with

reference sequences from the online nifH gene database of Ribosomal Database Project [30].

Based on 97% DNA similarity clustering of the high quality sequences, the operational taxo-

nomic units (OTUs), representative sequences for each OTU, rarefaction curves, Good’s cov-

erage indices, Shannon diversity indices and Chao richness estimators, were generated or

calculated with Mothur [29]. The similarity among the samples was determined by clustering

the samples with Braycurtis calculator using the Unweighted Pair Group Method with the

Arithmetic Mean (UPGMA) algorithm in Mothur. The OTUs containing ≧ 20 sequences indi-

vidually, were selected for the subsequent phylogenetic analysis.

In order to identify the OTUs, representative sequences were firstly translated into amino

acid (aa) sequences using the FRAMEBOT online pipeline [31]. The aa sequences were used to

search the protein sequences database on NCBI via the protein BLAST (Blastp) webpage [32].

The OTU representative sequences and the selected reference sequences from the NCBI pro-

tein sequences database were then aligned with ClustalW in MEGA 6.0 [33]. They were then

used to construct a maximum likelihood (ML) phylogenetic tree based on the Poisson model

in MEGA 6.0 [33]. The phylogenetic tree was further edited using iTOL [34].

Because new sublineages of UCYN-A have recently been discovered, and different subli-

neages can only be distinguished by their DNA sequences [14], higher resolution phylogenetic

information regarding the cyanobacteria-like OTUs is needed. The DNA sequences of

Table 2. Environmental parameters of the various sampling locations.

Sample Temp.

(˚C)

Salinity NH4
+

(nmol/L)

NO2
-

(nmol/L)

PO4
3-

(nmol/L)

SiO2

(μmol/L)

NO3
-

(nmol/L)

Chl a

(μg/L)

N/P

ST.1-S 24.15 34.51 45 55 19 2.23 57 0.37 7.66

ST.1-C 24.18 34.51 82 52 21.5 2.28 101 0.37 10.88

ST.3-S 24.34 34.42 72 130 36 2.30 64 0.55 7.47

ST.3-C 24.29 34.39 115 117 48 2.28 6 0.50 5.01

ST.4-S 23.30 34.23 75 341 70 2.67 178 0.58 8.54

ST.4-C 23.01 34.18 86 439 98 3.13 415 0.58 9.60

ST.5-S 22.40 34.14 105 302 98 3.38 409 1.07 8.36

ST.5-C 22.32 34.15 142 321 85 3.42 491 1.13 11.21

ST.6-S 21.74 34.29 31 156 117 3.39 580 0.95 6.58

ST.6-C 21.08 34.42 81 629 212 3.82 1370 1.33 9.83

https://doi.org/10.1371/journal.pone.0186875.t002
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UCYN-A-like OTUs and of different sublineages of UCYN-A [14, 24] were aligned based on

the respective amino acid translation using TranslatorX [35]. Then, the DNA alignment was

used to construct a ML phylogenetic tree based on the Kimura 2-parameter model. Moreover,

a similar phylogenetic tree was also constructed with the other cyanobacteria-like OTUs and

their corresponding reference sequences. Based on these phylogenetic trees, the OTUs were

grouped into different specific genera or clades. The relative abundances of the different gen-

era or clades in different samples were calculated. All the data of 454-pyrosequencing of nifH
amplicons obtained in this study have been deposited in the National Center for Biotechnology

Information (NCBI) Sequence Read Archive (SRA) under the BioProject ID PRJNA356489.

Statistical analysis

The correlations between the hydrographic variables were calculated with the Pearson test

using Excel 2010. In order to reveal the relationships between the distribution of different cya-

nobacterial phylotypes and the environmental variables, the relative abundances of the cyano-

bacterial phylotypes in each sample were analyzed with detrended correspondence analysis

(DCA) using Canoco 4.5 [36]. The environmental variables (Table 2) and the relative abun-

dances of the cyanobacterial phylotypes were square-root transformed. Based on the DCA

results, the longest length of gradient value among the 4 axes was between 3 and 4. Therefore,

a redundancy analysis (RDA) was used to analyze the relationships among the relative abun-

dances of cyanobacterial phylotypes and environmental variables in Canoco 4.5 [36]. The envi-

ronmental variables with significant relationships (p-value< 0.05) were selected for explaining

the diazotroph community variances, which were assessed in permutation tests with 499 unre-

stricted Monte Carlo permutations.

Data analysis of an unpublished dataset collected in upstream of the

Kuroshio Current

In the nucleotide database of the NCBI, there is a dataset of a clone library-based study con-

ducted in the upstream of the KC, called “Seasonal variation in cyanobacterial diazotroph phy-

lotypes in the northern South China Sea and the upstream Kuroshio”, which contained 294

sequences and has never been published in any literatures. The nifH sequences of species col-

lected at a station in KC (~ 21.55˚N, 122.10˚E) during the spring, summer and winter, were

analyzed using the same methods as the data of this study. The nifH sequences of different sea-

sons were analyzed separately, and OTUs were calculated with Mothur [28], based on 97%

similarity of the DNA sequences. Because there were approximately 5 sequences per sample in

this dataset, which is insufficient to reconstruct the diazotroph community structure. There-

fore, the objective of analyzing this dataset is to find the common OTUs of the KC in the

Tokara Strait and the upstream of KC, instead of comparing the diazotroph community struc-

tures of the two regions.

Results

Hydrography and nutrients

According to the surface current data from the ship-mounted ADCP and the path of KC from

the “Quick Bulletin of Ocean Conditions” provided by the Japan Coast Guards (S1 Fig), ST.3

was located in the core of KC, and ST.4 was located in the boundary of KC. Along the ST.1 to

ST.6 transect, apparent gradients of temperature and nutrients were observed. The highest sea

surface temperature occurred at ST.3, which was at the core (flow axis) of the KC, and the low-

est temperature was observed at ST.6 (Fig 1, Table 2). Concentrations of macro-nutrients

Genetic diversity of diazotrophs in the Kuroshio

PLOS ONE | https://doi.org/10.1371/journal.pone.0186875 October 23, 2017 6 / 19

https://doi.org/10.1371/journal.pone.0186875


(NO2
-, NO3

-, SiO2 and PO4
3-) increased from ST.1 and ST.3 to ST.6. The physico-chemical

parameters suggest the possible influence of nutrient input from Kuroshima Island and Kyu-

shu Island to the studied transect. A higher salinity was also observed at ST.6, suggesting that

the nutrients might also be replenished with the islands induced upwelling. The Chl a concen-

tration showed positive and strong correlation with the nutrients (S1 Table). The lowest nitrate

concentration (10 nmol/L) and N/P ratio (5.01) were detected at ST.3. This N/P ratio is clearly

lower than the Redfield ratio (i.e., N/P ratio = 16) [37]. In addition, at ST.3, the stable isotope

ratios of nitrogen (δ15N) in particulate organic matter (POM) were generally lower than that at

the other stations (Fig 2). With regards to the DCM samples, the δ15N values at ST.1 (1.42‰)

and ST.3 (2.62‰) were lower than those at ST.4 -6 (3.42‰ - 4.92‰).

Diazotroph community diversity and phylogeny along the studied

transect

In total, 41,284 high quality sequences were included in this study. For all the samples, the

Good’s coverage values were between 0.996–0.999 (Table 1) and the rarefaction curves nearly

plateaued (S2 Fig), which means that the sequencing depth of this study is enough to represent

the community structure of the diazotrophs. For the similarity of the diazotroph community

among the samples (Fig 3A), ST.3-S and ST.3-C clustered to each other. The diazotroph

Fig 2. The stable isotope ratio of nitrogen (δ15N) in particular organic matter (POM) at the different

stations. The samples collected from the deep chlorophyll maximum (DCM) layer are indicated with circles.

https://doi.org/10.1371/journal.pone.0186875.g002
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Fig 3. (A). A UPGMA dendrogram showing the relationship between samples, at 0.03 cutoff. (B). Shannon

diversity indices and Chao richness estimators of the diazotroph community in the samples, at 0.03 cutoff.

https://doi.org/10.1371/journal.pone.0186875.g003
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community structure at ST.3 also clustered with that of the nearby stations (i.e., ST.1, 4 and 5),

with different degrees of similarity. Both the diversity and richness indices reached peaks in

the ST.3-S and ST.3-C, and decreased from ST.3 to the nearby stations (Fig 3B).

After removal of the OTUs containing < 20 sequences, there were 24 OTUs (accounting

for 96.7% of the original 41,284 sequences) remaining for further analysis. Nearly half of the

OTUs fell into the cyanobacterial cluster (i.e., 10 / 24 OTUs), followed by Gammaproteobac-
teria (7 / 24 OTUs), Alphaproteobacteria (4 / 24 OTUs), Firmicutes (1 / 24), and cluster-III

anaerobes (2 / 24 OTUs) (Fig 4).

Within the group of cyanobacteria, a number of different clades could be distinguished via

DNA-based ML phylogenetic trees (Fig 5). Among UCYN-A, UCYN-A1, UCYN-A2 and

UCYN-A (other) were detected (Fig 5A), based on the classification of the previous definition

[14]. For UCYN-B, an OTU (OTU 5) which has 94% similarity in DNA with Crocosphaera
watsonii (accession no.: AF 300829) was discovered. The result of phylogenetic analysis

showed that the OTU 5 belongs to the cluster of UCYN-B; and there are two clades within this

cluster (Fig 5b). We named OTU 5 containing clade UCYN-B2, and we renamed the clade

(OTU 15 containing) that closely affiliates to Crocosphaera watsonii (previously named

UCYN-B) UCYN-B1 (Fig 5B). For UCYN-C, OTU 04 showed a 92% genetic (DNA) similarity

with that of Cyanothece sp. TW3 isolated from the upstream KC (Fig 5B). By searching the

NCBI nucleotide database (Blastn), the Cyanothece-affiliated environmental clones showed

Fig 4. A maximum likelihood phylogenetic tree constructed with amino acid sequences of the nifH

gene. Representative sequences of the top 24 OTUs and the affiliated reference sequences were used to

construct this tree. The accession numbers of each reference sequence are shown in front of the sequence

description. Bootstrap resampling was performed 1,000 times; and the values that are higher than 50% are

labeled with grey circular symbols on the branches.

https://doi.org/10.1371/journal.pone.0186875.g004
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high similarity with OTU 04 (i.e., 99–97% similarity in DNA), which in turn showed ≦ 92%

similarity in DNA with all the nifH sequences of the Cyanothece species (Fig 5B). The OTU 02

found in the KC was affiliated to Trichodesmium spiralis.

Diazotroph community and activity in the core of KC

Apart from the cluster-III diazotrophs and UCYN-B2, almost all the phylotypes of diazotroph

discovered in this study were detected at ST.3, which was the core of the KC (Fig 6). The uni-

cellular diazotrophs contributed 71% and 85% of the diazotroph community at ST.3-S and

Fig 5. Maximum likelihood phylogenetic trees constructed with nifH DNA sequences of (A) UCYN-A

sublineages and (B) the other cyanobacterial diazotrophic phylotypes. The corresponding accession

numbers are displayed in front of the description of the reference sequences. The sequences labeled with

“UCYN-A4”, “UCYN-A5” and “UCYN-A6” represent the OTUs of corresponding phylotypes in the NGS based

study of Turk-Kubo et al [24], which do not have accession numbers. Bootstrap resampling was performed

1,000 times; and the values that are higher than 50% are labeled with blue circles on the branches. The OTUs

identified in the Tokara Strait are in bold, and the OTUs identified from the unpublished data in the upstream

region of the KC, are labeled with “upstream KC” and highlighted in blue, green, or red for winter, spring, and

summer respectively.

https://doi.org/10.1371/journal.pone.0186875.g005
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ST.3-C, respectively. UCYN-A was the most dominant diazotroph at ST. 3, contributing 35%

and 44% of the communities at ST.3-S and ST.3-C, respectively. Trichodesmium contributed

27% and 13% of the diazotroph communities at ST.3-S and ST.3-C, respectively, while the

remaining ~40% of the communities were contributed equally by UCYN-C and γ-24774A11.

Within the UCYN-A group, UCYN-A1 was the most abundant sublineage (making up 22%–

33% of the whole community), whereas UCYN-A2 also contributed a significant proportion of

the group (i.e., ~12% of the diazotroph community). A small amount of UCYN-A (other) was

also detected at ST.3 (Fig 6). The OTUs of UCYN-A1, UCYN-A2, UCYN-B1, UCYN-C and

Trichodesmium sp. detected in both the upstream and Tokara Strait regions showed >99%

similarity in DNA (Fig 5).

For the cDNA results, UCYN-A1 was not detected among the top 24 OTUs (Fig 6). How-

ever, both UCYN-A2 and UCYN-A (other) contributed to significant portions of the tran-

script. The UCYN-A2 group contributed 27% and 32% of the nifH transcripts at ST.3-S and

ST.3-C, respectively, while UCYN-A (other) contributed 22% and 12% of the nifH transcripts

at ST.3-S and ST.3-C, respectively. Significant contributions of UCYN-C (44% at ST.3-S) and

Trichodesmium (26% at ST.3-C) to the nifH transcripts were also detected. In addition, γ-

24774A11 contributed 18% of the nifH transcripts in the DCM water at ST.3 (Fig 6).

Spatial variations of the diazotroph community along the Tokara Strait

Along the Tokara Strait, UCYN-A was in most cases the most dominant group, contributing

36% to 90% of the total diazotroph community. However, at ST.1-C, ST.6-S and ST.6-C, either

UCYN-B2 or Trichodesmium dominated (Fig 6). Within the UCYN-A group, the relative

abundance of UCYN-A1 was in general higher (accounting for 16–69% in different samples)

than that of UCYN-A2 and UCYN-A (other). The relative abundance of UCYN-A2 increased

Fig 6. The relative abundance of the various diazotroph clades. The cyanobacteria are labeled in shades of green, the

Gammaproteobacteria are in blue, the Alphaproteobacteria are in red, the cluster-III diazotrophs are in yellow, and the Firmicutes are in

purple. The abundance of the diazotroph clades are shown in (A) the surface and (B) DCM waters of all the stations, as well as (C) for two

cDNA samples collected in the surface and DCM layers of ST.3.

https://doi.org/10.1371/journal.pone.0186875.g006

Genetic diversity of diazotrophs in the Kuroshio

PLOS ONE | https://doi.org/10.1371/journal.pone.0186875 October 23, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0186875.g006
https://doi.org/10.1371/journal.pone.0186875


from ST.3 (12%) to ST.5 (73%) in the surface water, and its relative abundance was lower in

the DCM water. UCYN-A (other) was detected at ST.3-S, ST.3-C and ST.4-S, and it reached

the highest relative abundance (15%) at ST.4-S. The second most dominant group along the

transect was Trichodesmium, which was detected at ST.3, 4 and 6. However, while there was a

predominance of Trichodesmium (71–93% of the community) at ST.6 (which was close to the

islands of Kyushu and Kuroshima), its relative abundance at both ST.3 and ST.4 was lower

than that of UCYN-A.

The UCYN-C group was only detected at ST.1 - ST.4, and the relative abundance of this

group decreased in both the surface (from 42% to 0.4%) and DCM (from 26% to 10%) waters

from ST.1 to ST.4 (Fig 6). The UCYN-B1 group as well as the diatom-associated Richelia were

detected as rare species in some samples. The Gammaproteobacteria diazotrophs (including γ-

24774A11) and Bradyrhizobium reached ~20% of the whole community in some of the oligo-

trophic samples (i.e., ST.1-S, ST.3-S and ST.3-C), whereas they remained just a small propor-

tion (i.e.,< 10%) of the community in the remaining samples. The cluster-III diazotrophs

were only found at ST.4 and ST.5.

Environmental variables and cyanobacterial diazotrophs

Among all the environmental parameters measured (Table 2), the salinity and phosphate levels

showed significant correlations with the relative abundance of the cyanobacterial diazotrophs,

and together they explain 46.3% of the variances (Fig 7). UCYN-A2 and UCYN-A (other)

Fig 7. Correlation biplot based on a redundancy analysis (RDA), depicting the relationship between

the relative abundances of the cyanobacterial clades and the environmental factors. The percentage of

variance explained by the environmental variables are shown in the brackets.

https://doi.org/10.1371/journal.pone.0186875.g007

Genetic diversity of diazotrophs in the Kuroshio

PLOS ONE | https://doi.org/10.1371/journal.pone.0186875 October 23, 2017 12 / 19

https://doi.org/10.1371/journal.pone.0186875.g007
https://doi.org/10.1371/journal.pone.0186875


showed negative correlations with the salinity; UCYN-C showed a positive correlation with

the salinity and a negative correlation with phosphate levels; and Trichodesmium showed a

positive correlation with the phosphate levels.

Discussion

Diazotrophy and diverse unicellular diazotrophs in the KC

With the lowest nitrate concentration and N/P ratio among all sampled stations (Table 2),

ST.3 showed the highest diversity of diazotrophs, which suggests that diazotrophs might take

advantage of the N-limited condition at the core of the KC [21]. It has been reported that the

δ15N value of oceanic nitrate is ~ +5‰ [38], while that of fixed nitrogen is close to 0‰ [39,

40]. Therefore, a lower δ15N value in the POM might indicate that nitrogen fixation is an

important contributor of the new production [41]. Thus, the lower δ15N values in POM at

ST.3 (Fig 2) indicate higher activity of nitrogen fixation in the core of the KC. Although the
15N signature is just an indirect indicator of nitrogen fixation, our interpretation agrees with

the previous reports that nitrogen fixation is an important nitrogen source of new production

in KC [18, 19].

Although UCYN-A1 and UCYN-B1 were reported as the major diazotrophs in KC in a pre-

vious qPCR-based study [42], our data showed that the summation of UCYN-A2, UCYN-C

and γ-24774A11 comprised over half of the diazotroph community in this area. Since diverse

unicellular diazotrophs and Trichodesmium were detected in KC at both DNA and cDNA sam-

ples, the contribution of different phylotypes to the potentially strong nitrogen fixation in the

core of KC is worthy for future studies.

Sublineages of UCYN-A in studied area and the coastal preference of

UCYN-A2

The group UCYN-A was the most predominant group of the diazotrophs identified in the

core of the KC (i.e., at ST.3) and the adjacent waters (Fig 6), where the UCYN-A1, UCYN-A2

and UCYN-A (other) were all detected. According to previous reports, UCYN-A1 can be

detected in regions with a temperature range of 15˚C– 30˚C [43–45], and the highest abun-

dance is detected at 24˚C [8]. The sea surface temperature from ST.1 to ST.5 ranged from

22.32˚C to 24.34˚C, which might explain why the UCYN-A group was predominant along the

Tokara Strait. By comparing with the reference sequences of UCYN-A sublineages of the most

recent study [24], OTU 10 (UCYN-A other) affiliates to the newly defined UCYN-A5 (Fig 5A).

Our findings agree with previous reports suggesting that some of the UCYN-A sublineages

might have an overlapping distribution [14, 24, 25]. The differences in the relative abundance

of the various UCYN-A sublineages in our cDNA results (Fig 6) might be caused by different

diel patterns of nifH gene expression. Although UCYN-A2 and UCYN-A1 were reported to

have similar diel patterns of nifH gene expression [14], different nifH gene expression patterns

of spatially separated UCYN-A1 have also been reported [46]. Therefore, the diel patterns of

nifH gene expression of the different UCYN-A sublineages are still waiting to be clarified. Nev-

ertheless, the significant contribution of UCYN-A2 and UCYN-A (other) at the level of cDNA

(Fig 6), suggests that these 2 sublineages should also be considered as functionally important

diazotrophs in the KC.

It was suggested that UCYN-A2 may prefer coastal conditions [14, 47]. However, later stud-

ies based on qPCR data and distributional pattern of ribosomal RNA gene sequences of

UCYN-A and the host of UCYN-A suggested that both UCYN-A1 and UCYN-A2 are globally

distributed [48, 49]. A more recent study reported that the qPCR primers targeting UCYN-A2
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were not specific, which may be able to hybridize with the nifH gene of UCYN-A3 [25].

Besides that, deep sequencing data of samples from different regions of the ocean showed that

UCYN-A3 is more abundant than UCYN-A2 in oceanic samples, while high relative abun-

dance of UCYN-A2 was only detected in the coastally-influenced samples [24]. In our study,

the relative abundance of UCYN-A2 increased gradually in the surface water from offshore

station to the near-shore station (Fig 6), which implies the preference and the importance of

UCYN-A2 in coastal water.

Moreover, the relative abundance of UCYN-A2 and UCYN-A (other) were higher in the

surface water (Fig 6) than in the DCM, which suggests that they prefer the hydrographic con-

ditions in surface water. It has been reported that the relative abundance of UCYN-A3 was

higher in mid depths in the Northeast Pacific Ocean [24], however, UCYN-A3 was absent in

our samples. Therefore, the factors that affect the global distribution of UCYN-A sublineages

are still waiting to be unraveled.

Unexpected high relative abundance of UCYN-C in the KC and offshore

stations

Besides UCYN-A, UCYN-C was also the key unicellular cyanobacterial diazotroph in the KC

and the offshore stations, and it was also detected in the upstream region of the KC in both

summer and winter (Fig 5B). It is unexpected, because UCYN-C was not reported being a

major diazotroph phylotype in the Pacific Ocean and the adjacent South China Sea [43, 44, 50,

51]. Based on the distributional pattern of UCYN-C (Fig 6) and the RDA result (Fig 7), it is

suggested that UCYN-C prefers low phosphate and high salinity oceanic waters in the KC and

western North Pacific. Together with the recent result of a phosphate enrichment mesocosm

experiment that UCYN-C was more competitive when dissolved inorganic phosphate (DIP)

was depleted [52], it provides further evidence on the relationship between phosphate and

UCYN-C.

Moreover, a recent study has reported the evidence that UCYN-C derived nitrogen was

directly ingested and assimilated by zooplanktons [53], while those derived from diatom dia-

zotroph association and Trichodesmium was not detected in the same study. Although

UCYN-C was less well-studied than other cyanobacterial diazotrophs in previous studies [54],

a recent study has shown that low concentration of UCYN-C was detected throughout the sur-

face waters of tropical North Atlantic basins [49]. Considering that it could bloom and has the

highest growth rate among the reported data of other diazotrophs when the favored conditions

are fulfilled [52], the importance of UCYN-C in the marine biogeochemical cycling and micro-

bial food web may be overlooked in the past. Because of the high relative abundance of

UCYN-C detected in this study, the West Pacific Ocean and KC is an ideal region to study the

importance of UCYN-C.

Cyanothece sp. TW3, which was isolated from the upstream region of the KC near Taiwan,

was proposed as the only one culture of UCYN-C [10]. However, like other species of Cya-
nothece, the nifH sequence of Cyanothece sp. TW3 is phylogenetically distant (i.e., with 92%

similarity in DNA) from the cluster of the previously reported UCYN-C-affiliated environ-

mental clones (Fig 5B). Therefore, the phylogeny of UCYN-C and the representativeness of

the current culture of UCYN-C (Cyanothece sp. TW3) are worthy to be studied in future.

Genetic diversity of UCYN-B sublineages

The genetic diversity of UCYN-B was reported to be low, in which different strains of Croco-
sphaera watsonii and environmental clones of UCYN-B from the global oceans shared highly

conserved nifH and 16S rRNA gene (> 98% similarity in DNA) [55]. On the top of the view
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that the nifH sequences and other gene makers of UCYN-B were highly conserved [55, 56],

two phenotypes (sub-populations) of UCYN-B were identified with different cell size, which

have differences in genome, physiological characteristics and distributional pattern [9, 56, 57].

Therefore, the identification of the two sublineages of UCYN-B in this study provides new

insight to the micro-diversity of UCYN-B. The UCYN-B1 has> 98% similarity in DNA with

different strains of Crocosphaera Watsonii (including the previously mentioned two pheno-

types), which was widely detected in the global oceans [55]. For the UCYN-B2, the affiliated

sequences (≧ 97% similarity in DNA) were also detected in different regions, including the

North and South Pacific Ocean [7, 22, 58], North Atlantic Ocean [48] and the Baltic Sea [31]

(Fig 5b). Moreover, the predominance of UCYN-B2 at ST.1-C (Fig 6) implies its potential sig-

nificance in the western North Pacific Ocean, which is worthy of further studies. With further

works on deep sequencing of nifH gene fragment, more sublineages of UCYN-B might be dis-

covered, similar to the case of UCYN-A [24, 25].

Predominance of Trichodesmium near the islands

A predominance of Trichodesmium was observed at ST.6, a station close to the islands of Kur-

oshima and Kyushu, where the highest concentration of macro-nutrients indicates the pres-

ences of terrestrial input (Table 2) [59]. On top of that, the obvious elevation of salinity and

decrease in temperature at ST.6 (Table 2) can be an indicator of upwelled subsurface water

[60]. The nitrate rich upwelled water was thought to inhibit nitrogen fixation, however,

enhanced nitrogen fixation was observed in the equatorial upwelling region of Atlantic Ocean

where N/P ratio was low [61]. It was suggested that the high concentration of phosphate and

iron in the upwelled water could be advantageous to diazotrophs, as long as the N/P ratio is

low [61]. The N/P ratios at ST. 6 ranged from 6.58 to 9.83 (Table 2), which are lower than the

value of the Redfield’s ratio (i.e., N/P = 16) [37], thus was suitable for the proliferation of Tri-
chodesmium. Indeed, a number of studies have reported that Trichodesmium can bloom or be

abundant in the waters close to islands [17, 62, 63], and the input of iron and phosphate from

the islands were suggested to be the reasons of this phenomenon. Our data suggested that

island induced upwelling of subsurface water, which is rich in P and Fe relative to N, could be

another reason for the high abundance of Trichodesmium at this station.

Highly heterogeneous diazotroph community and the role of KC in

transportation of diazotrophs

With the passage of the KC from the East China Sea to the Pacific Ocean and the interaction of

KC and islands, the Tokara Strait displays a steep environmental gradients (Table 2). Concur-

rently, highly variable diazotroph communities were also observed along the transect. Such

variations can be explained by the differential responses of UCYN-A2, UCYN-C and Tricho-
desmium to the environmental gradients, as discussed in the previous parts. On the top of that,

the remarkable changes of the relative abundances of UCYN-A2 (12–73%) and UCYN-C (42%

- 0.4%) within a small geographic scale (29˚N—31˚N 129˚E—130˚E) suggested that diazo-

trophs are highly sensitive to changing environmental conditions. In an earlier study con-

ducted in the Northeast Pacific Ocean, high-resolution sampling has revealed that the

abundance of diazotrophs can change with nearly 3 orders of magnitude within less than 2

days and 30 km, which was correlated to the changing environmental conditions associated

with mesoscale eddies [64]. Our results reiterate the importance to carry out high-resolution

sampling for understanding the high variability of diazotroph community in the highly

dynamic oceans [64].
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The majority of cyanobacterial OTUs that were detected in this study have also been

detected in the upstream region of the KC near Taiwan (Fig 5). This suggests that the diazo-

trophs are transported by the KC from the southeastern waters of Taiwan to the Tokara Strait,

and it was also proposed that phytoplankton might be transported in the KC from tropical to

temperate regions [65]. On the other hand, UCYN-A3 was detected with the clone library

analysis in the upstream KC, but it was not detected with the deep sequencing of this study

(Fig 5A), highlighting the dynamics of the diazotroph community structure in different

regions along the path of KC. Therefore, studies aiming to understand the dynamics of diazo-

trophs in this fast moving water mass over a large geographic scale is also needed for better

understanding of the factors and mechanisms that control the distribution of the diazotrophs

and hence nitrogen fixation in the global oceans.

Summary

We described the comprehensive structure of the diazotroph community at both the DNA and

cDNA levels in the KC and its adjacent waters. Highly heterogeneous diazotroph composition

and distribution observed in this relatively small study area was mainly due to the different

responses of diazotrophic phylotypes in response to the steep environmental gradient resulted

from the interaction of KC and the adjacent islands. Moreover, our findings highlight the

importance to study the dynamics of diazotroph composition and activities in both mesoscale

features with strong hydrographic gradients and large geographic region, such as the whole

KC from upstream to extension, in order to better understand the factors that control the dis-

tribution of different diazotrophs and their nitrogen fixation in global oceans. In addition, our

results about the phylogeny of UCYN-A, UCYN-B and UCYN-C provide new information for

understanding the sublineages of the unicellular cyanobacteria diazotrophs.
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