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Abstract

It has been proposed that some non-retroviral RNA virus genes are integrated into verte-

brate genomes. Endogenous filovirus-like elements (EFLs) have been discovered in some

mammalian genomes. However, their potential roles in ebolavirus infection are unclear. A

filovirus VP35-like element (mlEFL35) is found in the little brown bat (Myotis lucifugus)

genome. Putative mlEFL35-derived protein (mlEFL35p) contains nearly full-length amino

acid sequences corresponding to ebolavirus VP35. Ebola virus VP35 has been shown to

bind double-stranded RNA, leading to inhibition of type I interferon (IFN) production, and is

also known as a viral polymerase cofactor that is essential for viral RNA transcription/repli-

cation. In this study, we transiently expressed mlEFL35p in human kidney cells and investi-

gated its biological functions. We first found that mlEFL35p was coimmunoprecipitated with

itself and ebolavirus VP35s but not with the viral nucleoprotein. Then the biological functions

of mlEFL35p were analyzed by comparing it to ebolavirus VP35s. We found that the expres-

sion of mlEFL35p significantly inhibited human IFN-β promoter activity as well as VP35s. By

contrast, expression of mlEFL35p did not support viral RNA transcription/replication and

indeed slightly decrease the reporter gene expression in a minigenome assay. These

results suggest that mlEFL35p potentially acts as an IFN antagonist but not a polymerase

cofactor.

Introduction

Ebolaviruses are members of the family Filoviridae and cause severe hemorrhagic fever in

humans and nonhuman primates. Five distinct species are known in the genus Ebolavirus:
Zaire ebolavirus, Sudan ebolavirus, Taï Forest ebolavirus, Bundibugyo ebolavirus, and Reston
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ebolavirus, represented by Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV),

Bundibugyo virus (BDBV), and Reston virus (RESTV), respectively. RESTV has never caused

lethal infection in humans. Filoviruses infect a variety of cell types in vitro [1–6], and several

cellular factors have been shown to be involved in filovirus replication in host cells [7, 8]. How-

ever, the details of the mechanisms underlying the cell tropism and pathogenicity of filoviruses

have not been fully elucidated yet.

It has been reported that some non-retroviral RNA virus gene sequences are found in verte-

brate genomes [9, 10]. Although the biological significance of these genomic sequences is

largely unknown, it was particularly noted that expression of an endogenous bornavirus-like

nucleoprotein element (EBLN) found in the ground squirrel genome, which is one of such

host genomic sequences, conferred resistance of oligodendroglia cells to the virus infection

[11]. Recent studies have further reported that transcription of human EBLN-1 is responsible

for regulating gene expression of host cells [12–14]. These observations suggest that the expres-

sion of EBLNs has some beneficial roles like endogenous retroviruses in animal genomes (e.g.,

syncytin-1 and -2, syncytin-A, -B) [15–17]. On the other hand, hyperexpression of an endoge-

nous retrovirus, multiple sclerosis-associated retrovirus (MSRV) whose envelope gene shares

>93% similarity with syncytin-1, is thought to be involved in multiple sclerosis [18, 19]. It has

also been reported that the expression of syncytin-1 or the MSRV envelope protein in astro-

cytes or peripheral blood mononuclear cells is associated with a proinflammatory and autoim-

mune cascade [20, 21]. These observations suggest that endogenous retroviruses have a variety

of effects on cell physiology.

Endogenous filovirus-like elements (EFLs) have also been discovered in several mammalian

(e.g., tarsier, opossum, mouse, rat, and bat) genomes [10, 22–24], however, the potential roles

of EFLs in the ebolavirus replication have not been elucidated. It is speculated that some of the

EFLs (mlEFLN, mlEFL35, saEFLN, and meEFLN) have been present in the host genome for

over 20 million years [10] and the presence of EFLs in host genomes may suggest a correlation

with cellular susceptibility to ebolavirus infection [10, 22]. Of these EFLs, an endogenous filovi-

rus VP35-like element found in the little brown bat (Myotis lucifugus), mlEFL35, has a nearly

full-length open reading frame (ORF) corresponding to the VP35 gene [10]. EBOV VP35 has

been shown to bind double-stranded RNA (dsRNA) and inhibit type I interferon (IFN) produc-

tion [25]. IFNs are a group of signaling proteins released from host cells in response to the pres-

ence of several pathogens. Viral infections commonly induce production of type I IFNs, which

interfere with viral replication in infected cells, resulting in the restriction of virus propagation.

EBOV replication was also shown to be inhibited by the IFN response induced by the retinoic

acid-inducible gene-I (RIG-I) activation in cell culture [26]. It has been shown that ebolavirus

VP35s impair human IFN-β promoter activation by inhibiting the function of RIG-I, IFN-β
promoter stimulator 1 (IPS-1), and TANK-binding kinase 1 (TBK1) [27]. Furthermore, EBOV

possessing VP35 with reduced ability to bind dsRNA is significantly attenuated in mice [28].

Thus, VP35s have been thought to be an important factor in the pathogenesis of ebolavirus

infection. In addition to its function as an IFN inhibitor, VP35 is known as an essential cofactor

in the viral polymerase complex of ebolaviruses [29]. Four viral proteins: nucleoprotein (NP),

VP35, VP30, and RNA-dependent RNA polymerase (L) are major structural components of the

nucleocapsid complex and are involved in viral replication and transcription [29, 30]. VP35

interacts with NP and L in this complex and both VP35-NP and VP35-L interactions are

believed to be essential for viral RNA synthesis [29, 31–34].

To investigate potential functions of mlEFL35, we constructed plasmids expressing putative

mlEFL35-derived protein (mlEFL35p) in cultured cells and performed functional analyses to

evaluate the potential of mlEFL35p as an IFN antagonist and/or polymerase cofactor. Here we

show that mlEFL35p, as is the case with EBOV VP35, inhibits the RIG-I-mediated signaling
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pathway and the production of IFN-β but does not act as a polymerase cofactor or dominant

negative inhibitor.

Results

mlEFL35p and ebolavirus VP35s partially share the primary structure

We first confirmed that mlEFL35p showed sequence similarities to ebolavirus VP35s with low

expectation values with the highest score given by RESTV VP35 (Table 1). We then compared

amino acid residues involved in three subdomains mapped on the EBOV and RESTV VP35

sequences [31, 33–36]: the N-terminal domain containing the NP binding peptide (NPBP) at

amino acid positions 20–48, the middle oligomerization domain at amino acid positions 82–

118 which is required for VP35 homo-oligomerization, and the C-terminal domain, which is

called the IFN inhibitory domain (IID), at amino acid positions 220–340 (Fig 1). We found

that mlEFL35p completely lacked NPBP in the N-terminal domain. Basic amino acid residues

at positions 222, 225, 248, and 251 (EBOV numbering) consisting of the first basic patch (FBP)

region which is important for the polymerase cofactor activity [31] were not conserved. Fur-

thermore, of the nine amino acids (i.e., positions 225, 235, 239, 248, 251, 282, 283, 298, and

300) which have been shown to play a critical role in the polymerase cofactor activity [31, 36],

only two residues at position 239 and 283 (EBOV numbering) were conserved. Cysteine resi-

dues are frequently conserved among evolutionary related proteins that have similar structures

[37]. Interestingly, despite the fact that BLASTP hit the Ebola virus VP35 (Table 1), four of the

five cysteine residues at positions 135, 247, 275, and 326 (EBOV numbering), were not con-

served. On the other hand, leucine residues at positions 93 and 107 (EBOV numbering), both

of which are important for VP35 homo-oligomerization [35], were conserved among these

proteins. Four (i.e., positions 312, 319, 322, and 339) of the six amino acid residues forming

the dsRNA binding site of the IID (e.g., the central basic patch (CBP)) were conserved. These

findings suggested that mlEFL35p might lack the ability to interact with NP and might limit

the ability to work as a polymerase cofactor, but have a similar biological function to VP35 as

an IFN antagonist.

mlEFL35p and VP35s have homo- and hetero-oligomerization potential

We transfected human embryonic kidney (HEK) 293T cells with the plasmids expressing

mlEFL35p and VP35s of EBOV and RESTV and investigated the expression of these proteins

by western blotting and immunofluorescence assays (Fig 2A and 2B). A 30 kDa protein,

corresponding to the expected molecular weight of mlEFL35p, was detected by western blot-

ting. In transfected cells, mlEFL35p was detected in the cytoplasm like VP35s and their intra-

cellular localization appeared to be similar. Next, HEK 293T cells were cotransfected with the

Table 1. BLAST search data of mlEFL35.

Program Query Database Subject (Accession Number) Score Query cover E-value† Identity

NCBI BLASTX mlEFL35 Non-redundant protein sequences RESTV VP35 (ACT22800) 125 93% 3e-30 32%

NCBI BLASTX mlEFL35 Non-redundant protein sequences TAFV VP35 (YP_003815424) 104 92% 3e-22 30%

NCBI BLASTX mlEFL35 Non-redundant protein sequences SUDV VP35 (ACR33188) 102 93% 7e-22 31%

NCBI BLASTX mlEFL35 Non-redundant protein sequences BDBV VP35 (AGL73451) 102 91% 1e-21 33%

NCBI BLASTX mlEFL35 Non-redundant protein sequences EBOV VP35 (AKC36417) 102 79% 1e-21 33%

NCBI BLASTP mlEFL35p PDB EBOV VP35 (3FKE_A) 84.3 40% 4e-20 38%

†E-value: Expectation-value

https://doi.org/10.1371/journal.pone.0186450.t001
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expression plasmids for HA- or FLAG-tagged mlEFL35, VP35s and/or NP and solubilized pro-

teins were immunoprecipitated with each HA-tagged protein. Consistent with previous

reports [31, 33], we found that FLAG-tagged VP35s were coimmunoprecipitated with HA-

Fig 1. Comparison of primary structures of mlEFL35p and ebolavirus VP35s. The same amino acid residues that are found in VP35s and mlEFL35p

are highlighted in orange. Residues highlighted in green represent amino acids that are grouped together in the same classes, based on their physical/

chemical properties. The blue rectangles show sequence gaps found between mlEFL35 and VP35s. The NP binding domain consisting of the residues 20–

48 (EBOV numbering), termed NPBP, is highlighted in yellow. Amino acid residues indicated by red dots have been identified to be important for VP35 homo-

oligomerization as well as viral replication and transcription [35]. Amino acid residues indicated by blue dots and green dots have been shown to be critical for

the dsRNA binding and polymerase cofactor activities, respectively [31, 36]. The VP35 homo-oligomerization domain and IFN inhibitory domain are indicated

by arrows and arrowheads, respectively. Asterisks indicate cysteine residues in VP35s. Black and red stars indicate the amino acids that form the FBP and

the CBP regions on 3-dimensional structure of the VP35 IID, respectively.

https://doi.org/10.1371/journal.pone.0186450.g001
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tagged VP35s irrespective of the ebolavirus species, confirming their homo-oligomerization

potential (Fig 3A). Interestingly, FLAG-tagged mlEFL35p was coimmunoprecipitated with not

only HA-tagged mlEFL35p but also the HA-tagged VP35s of EBOV and RESTV (Fig 3A). We

further analyzed the interactions of mlEFL35p with ebolavirus NPs and found that EBOV and

RESTV NPs were coimmunoprecipitated with the HA-tagged VP35s of the respective viruses

but not with HA-tagged mlEFL35p (Fig 3B). Taken together, these results indicated that

mlEFL35p, like VP35s, had the ability of homo-oligomerization, which might be required for

fundamental functions of VP35. However, consistent with its primary structure, mlEFL35p

lacked the ability to interact with NP.

mlEFL35p functions as an antagonist that inhibits the RIG-I-mediated

signaling pathway

The human IFN-β promoter is known to be activated through RIG-I, IPS-1, and TBK1 (Fig

4A) [27]. Using a reporter assay with these activators, the anti-IFN activity of mlEFL35p was

evaluated by comparing it to influenza A virus NS1 (IAV NS1), EBOV VP35 and RESTV

VP35, all of which are known to act as IFN antagonists (Fig 4B and 4C) [25, 38]. When the

human IFN-β promoter activation was induced by RIG-I, mlEFL35p suppressed the IFN-β
promoter activity as efficiently as EBOV VP35, but not as well as NS1. IPS-1-triggered IFN-β
promoter activation was also inhibited by mlEFL35p at a similar extent to EBOV VP35.

Ebolavirus VP35s and mlEFL35p showed similar effects on TBK1-induced IFN-β promoter

activity. We then quantified IFN-β in supernatants of transfected cells (Fig 4B and 4D). Con-

sistent with the results of the reporter assay, the concentrations of IFN-β released into the cul-

ture supernatant were also decreased in the presence of mlEFL35p. Although a statistically

significant difference was observed only between IPS-1-triggered and control cells in the mul-

tiple comparison analysis, the expression of mlEFL35p reduced the production of IFN-β

Fig 2. Expression of the mlEFL35p and VP35s in HEK 293T cells. (A) Expression of each protein was

confirmed by western blotting. HA-tagged mlEFL35p (HA-mlEFL35p), HA-tagged EBOV VP35 (HA-ZVP35)

and HA-tagged RESTV VP35 (HA-RVP35) were detected as 30, 37, and 40 kDa proteins, respectively. (B)

Distribution of each protein is visualized by an immunofluorescence assay with anti-HA antibodies. Cells were

counterstained with DAPI.

https://doi.org/10.1371/journal.pone.0186450.g002
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significantly or nearly significantly (IPS-1 or TBK1, respectively) when comparisons were

made individually between mlEFL35a-expressing cells and negative control cells (Empty). It

was noted that the difference in the suppression efficiency between mlEFL35p and VP35s was

correlated with that seen in the reporter assay. These results suggested that mlEFL35p could

have a potential function as an IFN antagonist.

Fig 3. Immunoprecipitation assay of mlEFL35p, VP35s and NP. (A) To examine whether mlEFL35p interacted with

mlEFL35p itself, EBOV and RESTV VP35s, FLAG-tagged mlEFL35p, EBOV and RESTV VP35s (FLAG-ZVP35 and

FLAG-RVP35, respectively) expressed in HEK 293T cells were immunoprecipitated (IP) with HA-tagged mlEFL35p and

VP35s of EBOV and RESTV (HA-ZVP35 and HA-RVP35, respectively). Precipitated proteins were detected by western

blotting with anti-FLAG tag antibodies. (B) EBOV NP (ZNP) and RESTV NP (RNP) were expressed in HEK 293T cells

and immunoprecipitated with HA-tagged VP35 of EBOV and RESTV (HA-ZVP35 and HA-RVP35) or HA-tagged

mlEFL35p. HA-tagged proteins were detected by western blotting with an anti HA-tag antibody. ZNP and RNP were

similarly detected with rabbit antisera specific to NPs.

https://doi.org/10.1371/journal.pone.0186450.g003
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mlEFL35p plays a limited role in EBOV genome transcription/replication

We used the EBOV minigenome system [29] to analyze effects of the mlEFL35p expression on

EBOV genome transcription/replication (Fig 5). We first confirmed that EBOV VP35 was

required for luciferase expression in this system and then found that the expression of

mlEFL35p, in place of EBOV VP35, induced only background levels of luciferase activity given

Fig 4. Inhibition of the RIG-I-mediated signaling pathway by mlEFL35 and VP35s. (A) The RIG-I-mediated signaling pathway is shown. The human

IFN-β promoter is activated through RIG-I, IPS-1 and TBK1. The IFN-β promotor activity was measured by luciferase reporter assays. (B) HEK 293 cells

were transfected with each plasmid expressing HA-tagged influenza A virus NS1 (IAVs-NS1-HA), EBOV VP35 (HA-ZVP35), RESTV VP35 (HA-RVP35) or

mlEFL35p (HA-mlEFL35p) and the plasmids for the reporter gene expression along with the RIG-I CARD domain vector, IPS-1 or TBK1 expression vector.

NS1 and VP35 are known as IFN antagonists. Western blotting was performed to examine the expression of NS1, VP35s, and mlEFL35p. Each HA-tagged

protein (IAVs-NS1-HA, HA-ZVP35, HA-RVP35, and HA-mlEFL35p) was detected with an anti-HA-tag antibody. (C) Transfected cells were solubilized and

luciferase assays were performed. Relative luciferase activities were calculated by setting the values given by the cells transfected with a control empty

plasmid expressing the HA tag alone. Significantly lower values compared to control cells (Empty) are indicated by asterisks (*p < 0.05, **p < 0.01). (D)

Concentrations of IFN-β in the supernatants of cells transfected with the indicated plasmids (1000 ng) were measured by ELISA. Means and standard

deviations of five independent experiments are shown. Significantly lower values compared to control cells (Empty) are indicated by asterisks (*p < 0.05,

**p < 0.01).

https://doi.org/10.1371/journal.pone.0186450.g004
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Fig 5. Luciferase expression from the Ebola virus minigenome with mlEFL35p. (A) HEK 293T cells

were transfected with the indicated amounts of plasmids for the expression of the HA tag alone, HA-tagged

mlEFL35p (HA-mlEFL35p), or EBOV VP35 (HA-ZVP35) along with plasmids for the expression of NP, VP30,

L, the T7 polymerase and p3E5E-luc. Relative luciferase activities were determined by setting the values of

control cells transfected with the HA-ZVP35-expressing plasmid to 100%. Means and standard deviations of

three independent experiments are shown. Significant differences from control cells (HA ZVP35) are indicated

by asterisks (*p < 0.05). Between the empty control and mlEFL35p, there was no significant difference. (B)

HEK 293T cells were transfected with the indicated amounts of plasmids for the expression of the HA tag

alone, HA-tagged mlEFL35p (HA-mlEFL35p), or EBOV VP24 (ZVP24) along with plasmids for the expression

of NP, VP35, VP30, L, the T7 polymerase and p3E5E-luc. ZVP24 was used as a positive control. Means and

standard deviations of three independent experiments are shown. Significantly lower values compared to

control cells (Empty) are indicated by asterisks (**p < 0.01). (C) Expression of each protein was detected by

western blotting. HA-tagged proteins (HA-ZVP35 and HA-mlEFL35p) were detected with an anti-HA tag

antibody. ZVP24 were detected with a VP24-specific mouse antiserum produced with the synthetic peptide
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by the empty plasmid (Fig 5A). We further examined the dominant negative effects by overex-

pression of mlEFL35p (Fig 5B). We found that the expression of EBOV VP24 caused a signifi-

cant decrease in luciferase activity as shown previously [39]. By contrast, the expression of

mlEFL35p only slightly reduced the luciferase activity. Expression levels of the HA-tagged pro-

teins in the transfected cell lysates were analyzed by western blotting (Fig 5C). These results

suggested that mlEFL35p might not function as a polymerase cofactor or dominant negative

inhibitor in this human cell line.

Discussion

In this study, we determined the mlEFL35-encoding ORF sequence in the genome of the little

brown bat, and biologically analyzed the potential functions of the putative protein, mlEFL35p.

Comparison of the amino acid sequences between mlEFL35p and VP35s revealed that the pri-

mary structure of mlEFL35p showed high similarity to ebolavirus VP35s. We found that

mlEFL35p lacked the NPBP in the N-terminal domain, whereas several amino acid residues

important for VP35 homo-oligomerization and the IFN antagonist function were conserved

between mlEFL35p and VP35s. Accordingly, we demonstrated that mlEFL35p had the poten-

tial to act as an IFN antagonist but not a polymerase cofactor.

As expected from the primary structure (i.e., conserved leucine residues at positions 93

and 107, 4 conserved residues in the CBP), mlEFL35p was coimmunoprecipitated with ho-

mologous (mlEFL35p) and heterologous (VP35) molecules, suggesting its homo- and hetero-

oligomerization potential. It has been shown that homo-oligomerization of EBOV VP35 is

important for its IFN antagonist activity [35]. Our data may also suggest a link between homo-

oligomerization of mlEFL35p and its function as an IFN antagonist. In addition, the ability of

mlEFL35p to interact with both EBOV and RESTV VP35s strongly suggested that mlEFL35p and

VP35s have structural similarity and share some functions. Interestingly, mlEFL35p inhibited the

RIG-I-mediated IFN-β production more efficiently than RESTV VP35 and its inhibitory potential

was indeed similar to that of EBOV VP35. Although the expression level of RVP35 seemed to be

lower than those of ZVP35 and mlEFL35p, since TBK1-triggered IFN-β promoter activation was

inhibited as efficiently as ZVP35, it is not highly likely that the low expression of RVP35 was a

major cause of less inhibitory potential. However, there is no difference between EBOV and

RESTV VP35s in the amino acid residues that are critical for VP35 homo-oligomerization and

the dsRNA binding site, both of which are required for the IFN antagonist activity of VP35s [35,

40]. Leung et al. [41] reported that RESTV VP35 contained an additional helical structure in its

IFN inhibitory domain and proposed that the helical structure might increase the stability and

decrease the flexibility of the RESTV VP35 molecule. Such a structural difference might influence

the IFN antagonist activity. On the other hand, Guito et al. [42] demonstrated that both EBOV

and RESTV VP35s were similarly potent IFN antagonist proteins. Since differences in experimen-

tal conditions (e.g., use of a human codon-optimized ORF of VP35 and different procedures for

IFN induction) might cause different effects, further studies are required to clarify whether anti-

IFN potential is involved in the differential pathogenicity of EBOV and RESTV.

It has been demonstrated that VP35 interacts with IRF kinases such as TBK1 and inhibitor

of κB kinase epsilon (IKKε) and the physical interaction between IKKε and either IPS-1, IRF-

3, or IRF-7 was impaired by EBOV VP35 overexpression [43]. As shown in Fig 4, our reporter

assay showed that TBK1-induced human IFN-β promoter activity was most significantly

inhibited by mlEFL35p, suggesting that mlEFL35p also targets these IRF kinases. EBOV VP35

corresponding to amino acid positions 3–15 (KATGRYNLISPKK) of EBOV VP24. β actin were detected with

an anti-β actin antibody.

https://doi.org/10.1371/journal.pone.0186450.g005

Functional analyses of endogenous filovirus-like element

PLOS ONE | https://doi.org/10.1371/journal.pone.0186450 October 17, 2017 9 / 17

https://doi.org/10.1371/journal.pone.0186450.g005
https://doi.org/10.1371/journal.pone.0186450


binds not only dsRNA but also PKR activator (PACT), both of which are recognized by RIG-I.

The ability of VP35 to block the PACT activation requires the CBP structure [44]. Comparison

of primary structure between mlEFL35p and ebolavirus VP35s (Fig 1) indicates that majority

of amino acids forming the CBP structure are conserved in mlEFL35p. This suggests that

mlEFL35p may also inhibit the PACT activation like EBOV P35.

It was noted that four of the five cysteine residues in VP35s were not conserved in

mlEFL35p. Cysteine residues often form a disulphide bond that plays an important role in pro-

tein folding and stability. Thus, cysteine residues important for protein structures are generally

conserved among related proteins [37]. Crystal structure analysis has shown that the cysteine

residues at positions 247 and 275 of EBOV VP35 do not form a disulfide bond [45]. Although

the structural impacts of the other cysteine residues of VP35 remain unknown, our data sug-

gest that cysteine residues of mlEFL35p and VP35s are not important for the fundamental

function as an IFN antagonist.

As suggested by the comparison of the amino acid sequences between mlEFL35p and

VP35s (e.g., lack of the NPBP region), NP was not coimmunoprecipitated with mlEFL35p.

The NP-VP35 interaction has been shown to be essential for viral transcription/replication

[29]. Accordingly, our EBOV minigenome reporter assay demonstrated that mlEFL35p could

not be substituted for EBOV VP35 in the viral transcription/replication cycle. It was also spec-

ulated that overexpression of mlEFL35p might show dominant negative effects by forming het-

ero-oligomers between mlEFL35p and VP35 molecules. However, mlEFL35p only slightly

interfered with the VP35 function. These results suggested that mlEFL35p might not have crit-

ical functions involved in viral transcription/replication. Further studies with chimeric pro-

teins between mlEFL35p and VP35 might provide more detailed information on specific

regions required for the VP35 function as a polymerase cofactor.

It has been proposed that endogenous retroviruses in animal genomes provide some benefi-

cial effects to host animals and might play important roles in their coevolution [46–48]. It has

also been demonstrated that non-retroviral elements, EBLNs, are involved in antiviral effects

and regulation of neighboring gene expression [11–13]. However, in this study, we demon-

strated that mlEFL35p potentially acted as an IFN antagonist like EBOV VP35, suggesting a

suppressive effect on host immunity. While mlEFL35 was found in an insectivorous bat (Myo-
tis lucifugus), there is no information on susceptibility of this bat species to ebolaviruses. In

addition, cell lines of this bat species are also unavailable. Interestingly, however, some species

of fruit bats are suspected to be natural hosts [49–52]. It should also be noted that EBOV is

able to replicate and lead to seroconversion without any symptoms in some insectivorous bat

species [53]. Overall, previous studies have indicated that many species of bats are susceptible

to ebolaviruses. To better understand the potential roles of EFLs in ebolavirus infection, it

would be of interest to screen various bat cell lines for the presence of genomic EFLs and to

analyze their biological effects by knockdown/knockout experiments using cell lines naturally

expressing EFLs. It is reported that transcription of human EBLN-1 is responsible for regulat-

ing gene transcription [12–14]. Thus, it is also important to focus on the function of not only

EFL-derived proteins but also noncoding RNA transcripts. Once cell lines naturally expressing

EFLs are in hand, loss-of-function experiments are needed for further understanding of the

biological significance of EFLs in the ebolavirus ecology.

Materials and methods

Bioinformatics

The nucleotide sequences of mlEFL35 shown in NCBI (Accession numbers: JN847697 and

JN847701) were partial ORFs. To get its full-length ORF, we obtained the genomic sequence
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between the 5’-target site duplication (TSD) and 3’-TSD from the Ensemble database (http://

www.ensembl.org/index.html) since the full-length mlEFL35 ORF was reported to be located

between these TSDs [9, 10]. The obtained sequence (1944 nucleotides) was analyzed using the

NCBI BLASTX program in the non-redundant protein sequences database and found to con-

tain the mlEFL35 full-length ORF (S1 Text) encoding a putative mlEFL35-derived protein

(mlEFL35p) that showed high sequence similarities to ebolavirus VP35s with low expectation

values (Table 1). Next, we used the NCBI BLASTP program in the Protein Data Bank to con-

firm that the amino acid sequence of mlEFL35p matched with the structure of EBOV VP35

(Table 1). Amino acid sequences were aligned using Clustal W [54], and then amino acids hav-

ing similar physical-chemical properties were grouped.

Cell culture and construction of plasmids

HEK 293 cells (ATCC1 CRL-1573™) and 293T cells (ATCC1 CRL-3216™) were grown in Dul-

becco’s modified Eagle’s medium with 10% fetal calf serum (FCS). Cells were incubated in a

humidified 5% CO2 incubator at 37˚C. The cDNA encoding the mlEFL35 ORF was synthe-

sized and cloned into a pUCFa vector (FASMAC). The cDNA encoding mlEFL35p fused to

an HA or FLAG tag at the N terminus was cloned into the mammalian expression vector

pCAGGS [55] using an In-Fusion cloning kit (BD Clontech). In a similar way, the expression

plasmids for N-terminally HA- or FLAG-tagged VP35 and NP of an EBOV isolate, Mayinga

(species Zaire ebolavirus) or a RESTV isolate, Pennsylvania (species Reston ebolavirus) were

constructed. The ORF of the NS1 protein of influenza A virus (strain PR8) with a splice accep-

tor site mutation [56] was C-terminally fused with an HA tag and cloned into pCAGGS. The

EBOV minigenome plasmid containing the firefly luciferase gene, p3E5E-luc [39], was also

synthesized and cloned into a pUCFa vector (FASMAC). The NP, VP35, VP30, VP24, and L

genes of EBOV (Mayinga) were similarly cloned into pCAGGS. Expression vectors used to

provide human IPS-1 have been described previously [57]. The human TBK1 gene was also

cloned into pCAGGS.

Western blotting for the detection of expressed proteins

Each cell lysate was mixed with 2 × sample buffer (Bio Rad) and incubated at 65˚C for 15 min.

Expressed proteins were separated in sodium dodecyl sulfate (SDS)-polyacrylamide gels

(SuperSep Ace 5–20%, Wako) and transferred to polyvinylidene fluoride (PVDF) membranes

(Merck). PBS containing 3% (wt/vol) skim milk (Becton Dickinson) and PBS containing

0.05% (vol/vol) Tween 20 (PBST) were used as blocking and wash buffers, respectively. PVDF

membranes were incubated with an anti-HA monoclonal antibody (abcam, ab1424, 1:5000),

anti-β actin monoclonal antibody (abcam, ab6276, 1:5000), or VP24-specific mouse antiserum

for 60 min, washed with PBST, and then incubated with horseradish peroxidase-conjugated

goat anti-mouse IgG (Jackson ImmunoResearch, 115-035-062, 1:10000) for 60 min. After

washing with PBST, the bound antibodies were visualized with Immobilon Western

(Millipore).

Indirect immunofluorescence assay

HEK 293T cells were seeded on 8-well chamber slides (Watson Co., Ltd) precoated with poly-

L-lysine (Cultrex). One day after seeding, the cells were transfected with the plasmids encoding

mlEFL35p using TransIT LT1 reagent (Mirus) according to the manufacturer’s instructions.

At 24 hours post-transfection, the cells were fixed in 4% (wt/vol) paraformaldehyde for 15

min, and permeabilized by incubation for 5 min in PBS containing 0.4% (vol/vol) Triton X-

100. The following procedures were performed at room temperature. The cells were incubated
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with PBS containing 1% (wt/vol) BSA followed by incubation with the anti-HA antibody

(abcam, ab1424, 1:500) for 60 min. After washing with PBST, the cells were incubated with

Alexa Fluor 488-conjugated goat anti-mouse IgG (Molecular Probes, A11001) for 30 min in

the dark. Nuclei were stained using 1 μg/ml 40,6-diamidino-2-phenylindole, dihydrochloride

(DAPI) (Molecular Probes) for 10 min in the dark. Images were acquired with a 63 × oil objec-

tive lens on a Zeiss LSM700 inverted microscope and ZEN 2009 software (Carl Zeiss).

Immunoprecipitation assay

HEK 293T cells were transfected with the plasmids encoding HA- and/or FLAG-tagged VP35

and mlEFL35p using TransIT LT1 reagent (Mirus) according to the manufacturer’s instruc-

tions. For the NP expression, pCAGGS plasmids encoding untagged NPs were used. Two days

after transfection, the cells were lysed with cold lysate buffer (50 mM Tris-HCl pH 8.0, 150

mM NaCl, 2 mM EDTA, 10% glycerol and 0.05% NP-40) containing EDTA-free protease

inhibitor (Roche). To facilitate disruption of the cells, cell suspensions were frozen at -20˚C.

Samples were centrifuged at 10000 × g at 4˚C for 10 min. Supernatants were mixed with

EZview Red Anti-HA Affinity Gel beads (Sigma) and incubated at 4˚C overnight with gentle

rocking. After washing the beads with the lysis buffer, HA-peptides (Sigma, 100 μg /ml) were

mixed with them and incubated at 4˚C for 15 min with gentle rocking to elute the HA-tagged

protein. The beads were centrifuged at 500 × g at 4˚C for 1 min and the supernatant was

mixed with 2 × sample buffer (Bio Rad) and incubated at 65˚C for 15 min. Precipitated pro-

teins were separated in SDS-polyacrylamide gels (SuperSep Ace 5–20%, Wako) and transferred

to PVDF membranes (Merck). HA- or FLAG-tagged mlEFL35p and VP35s were detected with

the anti-HA tag antibody (abcam, ab1424, 1:5000) or anti-FLAG tag antibody (Sigma, F1804,

1:5000). NPs were detected with a mixture of rabbit antiserum to EBOV NP (FS0169, 1:2000)

and RESTV NP (FS0170, 1:2000) [58]. The bound antibodies were visualized with Immobilon

Western (Millipore).

Reporter assay for human IFN-β promoter activity

HEK 293 cells (1 × 105) on 12-well plates were transfected with 250, 500, or 1000 ng of each

plasmid expressing C-terminally HA-tagged influenza A virus NS1 (IAVs-NS1-HA), N-termi-

nally HA-tagged EBOV VP35 (HA-ZVP35), RESTV VP35 (HA-RVP35) or mlEFL35p (HA-

mlEFL35p) and the plasmids for the human IFN-β promoter-driven firefly luciferase reporter

gene (pIFNβ-luc, 250 ng, a kind gift from Sonja Best, NIH/NIAID), the Renilla luciferase-

based pRL-TK vector (50 ng, Promega), along with the RIG-I caspase activation and recruit-

ment domain (CARD) domain vector (50 ng/well, a kind gift of Sonja Best), IPS-1 expression

vector (50 ng/well), or TBK1 expression vector (100 ng/well) using FuGENE HD transfection

reagent (Promega) according to the manufacturer’s recommendations. Twenty-four hours

after transfection, cell culture supernatants were collected and centrifuged at 300 × g, and then

the supernatants were stored at -80˚C until use. These cell supernatants were subjected to

Enzyme-linked immunosorbent assay (ELISA) to measure the concentrations of human IFN-

β. The cells were harvested and lysed in Passive Lysis Buffer (Promega), and then luciferase

assays were performed using the Dual-Luciferase Reporter Assay System (Promega) according

to the manufacturer’s directions. These cell lysates were subjected to SDS- polyacrylamide gels,

followed by western blotting, to examine the expression of each protein. Firefly lucifearse val-

ues were normalized to Renilla luciferase values. Normalized values were then compared to

negative control (no induction) to obtain fold induction values. The results are presented as

percent induction in comparison to the positive control (with only the HA-tag expression vec-

tor), the value for which was set to 100%.
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Human IFN-β ELISA

The quantitation of IFN-β was examined with a VeriKine-HS Human Interferon Beta Serum

ELISA Kit (PBL Assay Science). All procedures were performed according to protocol A of the

manufacturer’s instructions. The optical density at 450 nm (OD450) was measured using Soft-

Max1 Pro 6.2.1 software (Molecular Devices). The standard curve was obtained by plotting

the OD450, and then the concentrations of IFN-β (pg/ml) in the samples were calculated.

Minigenome reporter assay

HEK 293T cells (5 × 104) on 24-well plates were transfected with 50, 100, or 200 ng of plasmids

encoding the HA tag alone, HA-ZVP35, or HA-mlEFL35p, along with expression plasmids for

the production of EBOV NP (50 ng), VP30 (30 ng), L (400 ng), p3E5E-luc (100 ng), and the T7

polymerase (100 ng) using the TransIT LT1 reagent (Mirus). In another experiment, HEK

293T cells (5 × 104) on 24-well plates were transfected with 50, 100, or 200 ng of plasmids

encoding the HA tag alone, HA-mlEFL35p, or VP24, along with expression plasmids for the

production of EBOV NP (50 ng), VP35 (50 ng), VP30 (30 ng), L (400 ng), p3E5E-luc (100 ng),

and the T7 polymerase (100 ng) using the TransIT LT1 reagent (Mirus). At 36 hours after

transfection, the cells were lysed with Passive Lysis Buffer (Promega), and the luciferase activity

was measured using the Bright-Glo luciferase assay system (Promega) according to the manu-

facturer’s instructions. These cell lysates were also subjected to SDS- polyacrylamide gels, fol-

lowed by western blot analysis to examine the expression of each protein. The firefly luciferase

activity was compared to the negative control (without EBOV L expression vector) values to

obtain fold luciferase activity values and relative luciferase activities were determined by set-

ting the values of control cells to 100%.

Statistical analysis

All analyses were performed with R (version 3.2.3) [59]. One-way analysis of variance

(ANOVA) was performed, followed by a post hoc paired Student’s t-test with Bonferroni

adjustment for multiple comparisons.
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