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Abstract

Musical rhythms performed by humans typically show temporal fluctuations. While they

have been characterized in simple rhythmic tasks, it is an open question what is the nature

of temporal fluctuations, when several musicians perform music jointly in all its natural com-

plexity. To study such fluctuations in over 100 original jazz and rock/pop recordings played

with and without metronome we developed a semi-automated workflow allowing the extrac-

tion of cymbal beat onsets with millisecond precision. Analyzing the inter-beat interval (IBI)

time series revealed evidence for two long-range correlated processes characterized by

power laws in the IBI power spectral densities. One process dominates on short timescales

(t < 8 beats) and reflects microtiming variability in the generation of single beats. The other

dominates on longer timescales and reflects slow tempo variations. Whereas the latter did

not show differences between musical genres (jazz vs. rock/pop), the process on short time-

scales showed higher variability for jazz recordings, indicating that jazz makes stronger use

of microtiming fluctuations within a measure than rock/pop. Our results elucidate principles

of rhythmic performance and can inspire algorithms for artificial music generation. By study-

ing microtiming fluctuations in original music recordings, we bridge the gap between minima-

listic tapping paradigms and expressive rhythmic performances.

Introduction

The art of creating music involves a balance of surprise and predictability. This balance needs

to be achieved on many scales, and for many musical components like melody, dynamics, and

rhythm. Such a balance is believed to be essential for making music interesting and appealing

[1–5]. While musicians achieve this balance intuitively, the principles generating it remain

unknown. A core hypothesis conjectures that this balance manifests itself in long-range corre-

lations (LRCs) and self-similar structure of melody, dynamics, and rhythm. In fact, a first evi-

dence for this hypothesis was provided by Voss and Clarke [6], who identified LRCs in pitch

and loudness fluctuations. More recently, LRCs were found in the rhythmic structure of West-

ern classical music compositions [2], i.e. in written notations, where the rhythm is represented

in a metrically organized precise fashion. Such compositions may be played back in this precise
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fashion, e.g., by computers, but are often perceived to sound mechanical and unnatural [7]. In

performed music, in contrast, musicians introduce subtle deviations from the metrically pre-

cise temporal location, which make the performance sound human.

Such microtiming deviations on the one hand are inevitable in human performances as

human abilities to produce precisely timed temporal intervals are limited [8, 9]. On the other

hand, they can be introduced on purpose and contribute to a musician’s individual expression.

It is thus worthwhile elucidating the nature of temporal fluctuations and factors contributing

to them in various musical contexts. Inferring such microtiming deviations from ready-made

musical recordings is a challenge, however, because beat onsets must be determined with milli-

second precision. In past studies this precision was achieved using fairly reduced settings, e.g.

simple finger-tapping tasks [7, 10–20]. For those performed with metronome, LRCs were iden-

tified for microtiming deviations (ei) from metronome clicks [7, 10–12]. Here, LRCs manifest

themselves as power-laws P(f)/ f−β, with 0.5 ≲ β≲ 1.5 in the power spectral density (PSD) of

the ei. In contrast, if the deviations ei were independent, one would expect β = 0. For unpaced

tapping, i.e. tasks performed without a metronome, LRCs were recovered for tempo fluctua-
tions, i.e. the PSD of the inter-beat interval (IBI) time series showed power-laws P(f) with 0.5 ≲
β≲ 1.5 [7, 11, 15–20]. Hennig and colleagues extended this framework to more complex

rhythms (with metronome), but still in a laboratory setting, They provided evidence for LRCs

of microtiming deviations, consistently with those of simple finger tapping [7]. More recently,

LRCs were identified for drumming in a single pop song [5]. Together, these results may sug-

gest that both, microtiming deviations from beats, as well as tempo fluctuations show LRCs.

Detailed analyses are required to investigate this hypothesis, in particular with respect to the

precise scaling properties (i.e. β), and their dependence on genres. Differences in scaling may

occur, as the cognitive involvement clearly differs between simple tapping tasks versus the flow

experienced when making music together.

In our present study, we carry the analysis of human beat performance from the laboratory

to real-world conditions of musical performances with all its complexity. To this end, we com-

piled beat onset time series from over 100 music recordings. To estimate the beat onset for

each recording with millisecond precision, we devised a semi-automated beat extraction work-

flow. The resulting IBI time series allowed us to investigate both, unpaced and paced record-

ings, and to compare their scaling properties to those from finger tapping. Making use of our

large dataset, we extended our analysis to investigate different genres, jazz and rock/pop, to

elucidate how genre-dependence manifests itself in the beat structure.

Based on the millisecond precise beat time series, we could identify signatures of two pro-

cesses, a clock and a motor process. Both processes influence the beat microtiming and showed

similar long-range correlations. However, the motor process revealed stronger timing fluctua-

tions within a measure for jazz compared to rock/pop. On the one hand our results point to

general dynamics of microtiming fluctuations across musical genres on long time scales,

reflecting the temporal organization of musical pieces. On the other hand the stronger fluctua-

tions on fast time scales in jazz music might be attributed to the higher degree of freedom as

compared to rock/pop.

Results

Millisecond-precise beat extraction

Human rhythmic performance can be precise down to the scale of several milliseconds [8, 9].

Therefore, our analyses required a millisecond-precise, consistent estimation of beat onsets.

As this precision is not reached by any of the currently available methods, we developed a spe-

cialized semi-automated workflow.

Microtiming in music
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A conceptual challenge in beat detection of original performances is that the beat is not

uniquely defined. We approximated the beat by cymbal onsets, because drummers provide a

rhythmic foundation, because cymbal onsets can be well separated from other instrument

onsets, and because the short attack times allow for millisecond-precise onset detection. This

precise onset detection is crucial for the subsequent systematic and reproducible analyses of

large datasets.

In the following, we sketch the semi-automated workflow for beat-extraction (see Fig 1).

More details are given in the methods section. (1) The percussion-dominated channel is

selected. (2) The frequency range in which the cymbal dominated is isolated. (3,4) Using dif-

ferentiation, putative cymbal events are identified. (5) Of those, the cymbal onsets that built a

regular beat sequence are combined to a beat-onset time series. This step excludes cymbal

onsets that were not on the regular beat. (6) To improve the temporal precision of the

extracted beat onsets, the precise onset time is estimated on the rising slope of the cymbal beat.

This workflow allowed us to acquire beat time series from more than 100 recordings, compris-

ing each about 600 beat onsets. All songs we analyzed are listed in S1–S3 Tables.

Human beat performance in music

We analyzed recordings played with or without metronome. For those played with a metro-

nome (paced recordings), we consistently found a power law for the power spectral density

(PSD) of the inter-beat intervals (IBIs) (Fig 2C, sketch in Fig 3). The exponents βM of the

motor or microtiming deviations varied across recordings, but consistently indicated long-

range correlations (LRCs). Its median was �bM ¼ � 0:87ð0:43Þ (where the standard deviation is

Fig 1. Workflow for the estimation of the beat-onset time series from one channel of a music recording.

https://doi.org/10.1371/journal.pone.0186361.g001
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Fig 2. A-C. Power spectral densities (PSD) of inter-beat intervals (IBIs) for unpaced and paced (metronome-guided)

recordings. “Long” refers studio drum recordings of about 30 min and “short” to jazz and rock/pop recordings of

typically�3 min (A: long jazz recording; B: Buster Smith—Kansas City Riffs; C: Bee Gees—How Deep Is Your Love).

D-F. IBI distribution for the same example recordings.

https://doi.org/10.1371/journal.pone.0186361.g002

Fig 3. Scheme of the power-spectral density (PSD) of inter-beat interval (IBI) time series. A. The combination of a long-range correlated

clock and motor process (dashed lines) superpose to a V-shaped PSD of the IBIs (solid line). The characteristic frequency (or time scale, see upper

axis) at the minimum determines the turnover between the clock-dominated and motor-dominated regime. B. Same as panel A, but assuming

that both, the clock and motor process are uncorrelated. C. Sketch of genre-induced differences in the PSD.

https://doi.org/10.1371/journal.pone.0186361.g003
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given in parentheses). �bM is negative, because the IBI time series, compared to the deviations

from the metronome, represents a differentiated signal (see below). �bM significantly differed

from an independence assumption (b
ind
M ¼ � 2, p< 10−30, where significance was obtained by

analytical calculation of the bootstrap distribution; Fig 4A). Qualitatively, these results are con-

sistent with those for simple finger tapping tasks, indicating that a similar process underlies

beat generation in simple tapping tasks as well as in music.

IBI time series from unpaced music recordings showed characteristic V-shapes for the PSD

(Fig 2A and 2B). Such V-Shapes can be generated by the superposition of two stochastic pro-

cesses, each of them contributing to the PSD. In analogy to finger-tapping experiments, we

interpret the two processes as a “clock process” C governing temporal interval estimation, and

a “motor process” M governing the motor execution of a planned interval (Fig 3A) [13, 15,

16]. In this general framework, an IBI interval Ii is generated by a clock estimate Ci, and motor

deviations Mi, which represent the microtiming deviations from the intended clock interval Ci

[13, 15, 16, 18]:

Ii ¼ Ci þMi � Mi� 1; ð1Þ

The PSD of the intervals I is thus generated by the PSDs of the two stochastic processes, C and

M. The clock process contributes with a power law Pðf Þ / f � bC , where 0:5 ≲ bC ≲ 1:5 for

long-range correlations. For an uncorrelated process one expects b
ind
C ¼ 0 (Fig 3A and 3B).

The motor process M enters I as a difference, and hence contributes to the PSD with −1.5�

βM� −0.5 for long-range correlations, whereas b
ind
M ¼ � 2 would reflect an uncorrelated pro-

cess (Fig 3A and 3B). As the clock and motor processes contribute to I with exponents of oppo-

site sign, βC> 0 and βM< 0, respectively, C dominates the PSD at low frequencies, whereas M
dominates at high frequencies. This generates the characteristic V-shape and allows to estimate

both scaling exponents from the PSD of the IBIs (Figs 2A, 2B and 3A). When the rhythm is

performed with a metronome (paced), the dynamics of the clock process is strongly confined,

and the motor process alone dominates the PSD on the entire frequency range, i.e. one

observes a single power law regime in the power spectral density (PSD) of the IBI time series,

as reported above (Fig 2C) [7, 15].

Fig 4. Scaling exponents (β) obtained from analyzing the PSDs of IBI time series. A. Neither the clock nor the

motor process is random but clearly long-range persistent, i.e. βC> 0, −βM< 2. ��� denotes p� 10−3 (significance

obtained by bootstrapping). B. Genre-dependence of the scaling exponents. The motor process showed significantly

stronger long-range persistence in rock/pop (R) than in jazz (J). The box plot depicts the median in red, boxes at the

first and third quartile, whiskers at 1.5 � IQR (interquartile range), and circles represent outliers. �� denotes p = 0.001,

and n.s. denotes not significant.

https://doi.org/10.1371/journal.pone.0186361.g004
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We systematically quantified the scaling exponents βC and βM for unpaced recordings

(Figs 4 and 5). The clock process showed LRCs with �bC ¼ 0:54ð0:38Þ. It significantly differed

from an independent process, which would be characterized by b
ind
C ¼ 0 (p = 10−29, bootstrap).

Our results indicate that tempo fluctuations across the entire recording do not occur indepen-

dently, but ultimately are related to fluctuations at any other time. The motor process contrib-

uted with βM� −1 (�bM ¼ � 1:09ð0:55Þ), and significantly differed from an independent

process as well (b
ind
M ¼ � 2, p = 10−29, bootstrap).

These results can be interpreted as follows: As the local tempo, governed by the clock pro-

cess, needs to be maintained, any deviation from the local clock or metronome shortens one

interval and at the same time lengthens the other, resulting in anti-correlations on I, and nega-

tive values of βM. Last, the turnover between the clock- and motor-dominated regimes was

generally at about log2 fV� −3 ( log 2
�f V ¼ � 2:98ð0:98Þ). That is, only for about 23 = 8 beats

or a few measures the motor process dominated the PSD, while for time scales spanning more

than about 8 beats the clock process dominated.

Interestingly, unpaced and paced recordings only differed slightly in their IBI distributions

p(IBI) (Fig 2D–2F). Despite the absence of a metronome, unpaced recordings showed only

slightly broader p(IBI) (σ = 13.1(3.8) ms and σ = 11.5(4.3) ms, respectively, p = 0.067,

d = 0.393). Moreover, for both conditions, the microtiming deviations showed similar scaling

properties, i.e. the βM did not differ between the conditions (p> 0.05). In contrast, the charac-

teristic V-shape was clearly present for the PSD of I when recordings were played without a

metronome, whereas those played with metronome showed a single power law, because the

metronome presumably suppressed or replaced the clock process (Fig 2). This result supports

the hypothesis of two independent processes, one being suppressed when beats are performed

under pacing by a metronome.

Fig 5. Fit parameters of the unpaced musical recordings by genre (jazz: red, rock/pop: blue). Both, the music

performances and our studio recordings showed consistent tendencies (median (SD) given as black lines (colored ranges)

for the individual parameters). Most prominently, the motor persistence βM is genre-dependent.

https://doi.org/10.1371/journal.pone.0186361.g005
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As many recordings are fairly short (about 3 minutes, median of 580 beats), the effect of

spectral averaging was small and thus the PSDs were noisy. To obtain PSDs from longer time

series, we recorded seven unpaced, genuine drum performances from a professional musician

in a studio setup, lasting 20 to 30 minutes each and comprising 3189(612) beats. For these long

time series, the PSDs were very clear due to better spectral averaging (Fig 2A). The parameters

obtained from these PSDs were consistent with those of the short musical recordings analyzed

above: �bC ¼ 0:77ð0:15Þ, �bM ¼ � 1:11ð0:19Þ, and log 2
�f V ¼ � 3:77ð0:26Þ. As the short and

long recordings did not differ significantly in any of the parameters, we merged both for the

analysis of genre-dependence in the following sections. Note, that we obtained the same results

when we considered the short recordings alone, and the same as a trend for the seven long

recordings, which alone, however, would not be numerous enough to reach significance.

Genre-dependence

Do the scaling properties of the clock and motor process depend on the musical genre or are

they a general feature of music? With the highly precise IBI time series from jazz and rock/pop

music we were able to test for genre-dependence.

Most interestingly, we found that jazz recordings showed smaller βM for the unpaced songs

than rock/pop recordings (Fig 4B, p = 0.001, d = 0.509, restricted permutation test (RPT), for

details on the statistical tests see methods). More precisely, for jazz recordings we found

�bM ¼ � 1:23ð0:47Þ, and for rock/pop �bM ¼ � 0:96ð0:56Þ. The same trend was observed for

the paced songs. In contrast, jazz and rock did not differ in the clock exponent βC (Fig 4B).

These results indicate that in jazz, musicians make more use of microtiming deviations on

very short time scales, i.e. they introduce stronger deviations from the local tempo. In rock/

pop, musicians play with a more regular beat on these short time scales. On longer time scales,

where the clock process dominates, the tempo variations do not differ between jazz and rock/

pop, indicating that the overall musical structure from short motives to long blocks does not

differ between these genres, and we hypothesize that other genres might show similar LRCs

for the clock process as well.

Basic beat variability. In addition to the very prominent genre-dependence in the motor

process, we found that on average the beat in jazz was slightly slower than in rock. In detail,

the median IBI in jazz (rock/pop) was 330 ms (288 ms) for the unpaced recordings, and 400

ms (282 ms) for the paced recordings (p = 0.013, d = 0.574, RPT). More interestingly, the vari-

ability (i.e. the standard deviation of I) was higher for jazz than for rock; it was 14.3 ms (11.9

ms) for the unpaced performances, and 14.6 ms (9.2 ms) for the paced performances

(p = 0.001, d = 0.745, RPT). It is to be expected, that faster performances show less variability

(smaller SD). To account for this, we compared the tempo-normalized variability of the IBI

time series, i.e. the Fano factor F ¼ s2=�I , where σ denotes the standard deviation and �I the

median I. Consistently with the differences above, the Fano factor was higher in jazz than in

rock across the paced and unpaced recordings (p = 0.016, d = 0.294, RPT, Bonferroni corrected

for multiple comparisons), although the effect size was smaller. When analyzing the paced and

unpaced recordings separately, both showed the same trend (p = 0.049, d = 1.211 for paced,

p = 0.132, d = 0.182 for unpaced, Bonferroni corrected for multiple comparisons), however,

the effect size was more pronounced for the paced songs. Together, these result suggests that

jazz makes more use of temporal variability, especially when recordings are played with a met-

ronome (paced), i.e. when only the motor, but not the clock process can be used as an expres-

sive component of music.

Microtiming in music
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Discussion

Interestingly, our results for rhythm generation in music revealed evidence for at the same two

underlying processes as inferred for simple finger tapping tasks: a clock and a motor process,

both of them long-range correlated. In both settings, music and finger tapping, the clock pro-

cess disappeared when a metronome was used, and the remaining motor process showed a sin-

gle power law with slope around unity. However, although the LRCs in both settings have

similar characteristics, their origin may be very different: When a piece of music is performed,

it has structure on all scales, from motifs, phrases and themes to verses and movements. This

structure is reflected in the tempo and is likely to underlie the observed long-range correla-

tions. Such structure is absent in finger tapping tasks. Those tasks are somewhat dull for the

subjects, and hence it may well be that their mind is wandering during tapping. As a conse-

quence, concentration may wax and wane, certainly on many different scales as well, thereby

generating LRCs. Studies relating neural activity to motor precision and perception hint in

that direction [12, 21]. Smit et al, for example, showed clear correlation between βC and the

scaling exponent derived from neural alpha oscillations [12]. Hence, although the signatures of

the beat time series are similar for music and finger tapping, their origin may differ vastly: One

lying in the multi-scale structure of a musical composition, which aims at keeping us capti-

vated, the other making our mind wander owing to the dullness of tapping a simple beat for

minutes in a row. Such waxing and waning of concentration and performance can be tested in

future studies by simultaneously measuring markers of attention in brain activity or pupil

diameter and relating this to the microtiming deviations in finger-tapping tasks; in music

songs, the microtiming deviations might be related to the structure of each song.

For beat generation in music as well as in simple tapping tasks, the generative models still

remain unknown. In past studies, LRCs in finger tapping were attributed either generically to

models for 1/f noise, e.g. long-range correlated (critical) brain dynamics or the superposition

of processes on different time scales [12, 22–28]. Alternatively, they were explained by more

mechanistic models, such as the linear phase correction model [29], the shifting strategy

model [30], or the hopping model [31], as summarized by Torre et al. [15].

We found both, the clock and the motor process to show LRCs characterized by βC� 0.6

and βM� −1, respectively. Are these results for beat in music consistent with those found for

finger tapping? Early studies on finger tapping assumed that both the motor and the clock pro-

cess showed uncorrelated Gaussian noise (βC� 0, βM� −2), but never tested that explicitly by

evaluating e.g. the PSD [13, 18]. First analyses of the PSD showed 0.9< βC< 1.2 for the clock

process [16, 19]. The exponent βM was not fitted but assumed to reflect an uncorrelated pro-

cess (βM� −2), although the spectra were clearly flatter, hinting at LRCs in the motor process

as well. For the clock process, βC� 1 was found consistently in various simple finger tapping

tasks [12, 16–19]. When two subjects tapped in synchrony, βC was a bit smaller (βC� 0.85),

and in an exemplary pop song, βC was found to be even smaller (βC� 0.56), which is very simi-

lar to our results on the over 100 music recordings. Overall, our study, together with the past

ones, suggests that finger-tapping tasks have a larger βC than beat generation in music. This

indicates stronger persistence of the tempo drifts in tapping compared to music pieces. The

origin for this difference, though, remains unknown. It is conceivable that professional musi-

cians are better trained at keeping a constant tempo, whereas the subjects in the tapping tasks

typically did not have any training.

Regarding the motor process, results are very scarce for unpaced finger tapping. For paced

finger tapping, the βM were typically estimated in a different manner. Instead of the IBI time

series, the deviations from the metronome, i.e. the error time series was used. For those, the

b
0

M is expected to differ by 2, b
0

M ¼ bM � 2. We found βM� −1, both for paced and unpaced

Microtiming in music
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music recordings. For tapping, earlier studies reported βM� −1.5 or βM� −1.3 [7, 10, 11, 32].

Hence, fluctuations on short time scales are stronger for tapping than for music beat genera-

tion. Whether these differences are attributed to the different cognitive involvements, or

whether they reflect differences between lay people’s tapping performance, versus professional

musician’s beat generation, remains an open question.

Materials and methods

Datasets

All datasets are available in the supplementary material S1 Dataset.

Dataset 1: Real-world musical performances. We analyzed in total 100 recordings (47

jazz and 53 rock/pop), listed in Tables S1–S3 Tables. Of these recordings, 9 jazz and 13 rock/

pop recordings were played with metronome (“paced recordings”). The recordings are

denoted by J�� and R�� with �� denoting a consecutive (arbitrary) number of the jazz or rock/

pop song, respectively. All recordings satisfied the following criteria:

1. The cymbals were clearly audible even when other high-pitched sounds were interfering.

2. The cymbals’ main rhythmic function was for pace-keeping, i.e. we discarded recordings

where the cymbals only occurred occasionally or were used in a mainly expressive way, the

cymbal patterns frequently changed or where drum-play was virtuoso in general.

3. The audio quality for MP3-encoded recordings was at least 320 kBit/s.

Dataset 2: Experimental performances. To obtain a complementary dataset, we asked a

professional drummer to play jazz and rock/pop music as genuinely as possible on his own

and in absence of a metronome. The drummer gave informed, verbal consent that we use the

recording for timing analysis.

The drummer was free in all musical decisions like tempo, rhythms and musical structure

but was asked to avoid the crash cymbal and not to interrupt his performance. Additionally he

was aware of the fact that we focused on the cymbals in our analysis and thus paid attention to

use them consistently.

The drummer was a professional musician with a conservatory degree in drumming, and

long standing experience with live and studio jazz performances. We obtained 7 drum perfor-

mances in total (3 jazz and 4 rock/pop) with a length of 20–30 minutes each.

A setup with six drum microphones (Shure PGA Drumkit 6) was used to record the ride

cymbal, hi-hat, the toms, the snare and the bass drum separately. In order to reduce cross-talk,

we aligned each of the two overhead microphones (Shure PGA 81) to point towards the hi-hat

and ride cymbal surface within a close distance (�5 cm) and away from the other drums.

For all these recordings and performances, we estimated the beat time series as described

below.

Time series extraction

In the following we detail our semi-automated workflow for millisecond-precise, reproducible

beat extraction. It consists of six transformation and refinement steps in order to obtain high-

precision cymbal beat time series from the initial audio signal.

(1) From the stereo audio signal, recorded at a sampling frequency of 44.1 kHz, the percus-

sion-dominant channel was isolated (Fig 1(1)). It is denoted by ξ(t0), where t0 is the discrete

time sampled at about 0.02 ms.

(2) To detect the onsets of the cymbal, we used a time-frequency representation of ξ(t0).
More specifically, we calculated the short-term Fourier transform (STFT) of ξ(t0), using in the

Microtiming in music

PLOS ONE | https://doi.org/10.1371/journal.pone.0186361 January 24, 2018 9 / 14

https://doi.org/10.1371/journal.pone.0186361


time domain a window size of 128 samples (�3 ms), a step size of 8 samples (�0.2 ms),

smoothed with a Hann function.

In the frequency domain this results in 64 bands of fNyquist/64� 345 Hz. Hence for each

time step t (corresponding to 8 samples of t0) and frequency window k, we obtained the spec-

trogram S(k, t). The cymbal was most prominent in the band from�15 kHz to�19 kHz. For

higher frequencies, MP3 compression artifacts distorted the signal, and for lower frequencies,

other instruments interfered. The precise values of the frequency band depended on the spe-

cific piece and were adjusted if necessary.

(3) For every frequency band k, a rise in power, potentially indicating a cymbal onset, was

determined by subtracting the average power of the past 9.3 ms (i.e. 51 time steps) from the

current sample:

S0ðk; tÞ ¼ Sðk; tÞ �
1

51

X51

i¼1

Sðk; t � 1Þ

The onset detection function y(t) is the average of S0(k, t) over the cymbal-dominated fre-

quency bands k from�15 kHz to�19 kHz.

(4) To extract putative cymbal events tev
i , we applied a simple peak-picking algorithm by

first applying a threshold ythresh = 0.07 �max{y(t)} and then discarded all but the maximal

within any time window for size Tblock = 70 ms. This resulted in a minimum interval of

2 � Tblock between local maxima. Occasionally the threshold had to be manually lowered.

(5) To exclude all cymbal events that are not part of the beat, we first estimated the beat

period T. To this end, we calculated the intervals δt between each putative cymbal event tev
i and

the m = 2 following cymbal events. The beat period T then manifested as a strong peak in a his-

togram of the δt within a range [0 ms; 1000 ms].

The local rhythmic structure of the song was obtained by plotting the δt versus the corre-

sponding tev
i . In this representation, the regions in the song with, e.g., fainter or missing cym-

bals resulted in sparsely populated regions. For such pieces, the procedure described above

was repeated with a lower threshold. If this led to many false-detections, then we increased the

default value of m to 3 or 4.

Having estimated the beat period T, we grouped the cymbal events to labeled sequences

that were locally in agreement with T: Two cymbal events tev
i and tev

j were assigned the same

label if their time difference was within T ± τ. τ was set to 35 ms and adjusted if necessary.

These labeled sequences were manually assembled to full beat time series t̂ i. Only sequences of

length 256 or longer were used for further analysis, apart from 3 slightly shorter time series

(see below).

The steps described up to this point needed about one minute quality checking per record-

ing. They where optimized to quickly validate whether a sufficiently long sequence of beats

could be extracted reliably. In the following, we describe how for these 107 recordings the mil-

lisecond precise onsets were extracted.

(6) First, all t̂ i of the putative beat time series were checked for validity and corrected manu-

ally if necessary. Then we determined millisecond-precisely the physical onset time ti as the

time were the onset detection function y(t) (see step 3) first rose above base line (the blue line

in panel (6) indicates the estimated physical onset time ti). ti is expected to be at most 50 ms

before the corresponding t̂ i. Hence starting at t̂ i � 50 ms, we scanned that entire window to

find the last t for which y(t) exceeded its own preceding 5 ms baseline, i.e. y(t)> max{y(t − 5

ms), . . ., y(t − 1 sample)} is fulfilled. In a few pieces, e.g. with prominent rim-shots, which

result in multiple closely spaced local maxima, the most reliable type of maximum was used by

defining a target interval in which y(ti) was expected to lie. Typically, the correct onset times

Microtiming in music

PLOS ONE | https://doi.org/10.1371/journal.pone.0186361 January 24, 2018 10 / 14

https://doi.org/10.1371/journal.pone.0186361


were unambiguously visible in the spectrograms. These automatically detected onset times ti
were all checked audio-visually and adjusted if necessary.

Time series analysis

We calculated the power spectral density (PSD) of the inter-beat interval (IBI) time series, i.e.

the temporal difference between two successive beat onsets di = ti+1 − ti. Here, any missing ti
was handled as NaN. The IBIs were detrended with a polynomial of degree 3. Afterwards, the

NaNs were discarded, because this procedure leads to a better estimate of the PSD. Time series

with less than 256 data points were centered and zero-padded—this applied to three out of the

107 time series (R16, R32, R48), where with N = 194 R48 was the shortest.

To estimate the exponents, we applied the standard Welch PSD method introduced in [33]

with window size Nwin = 256. To suppress spectral leakage, each segment was multiplied with a

Hann window wðnÞ ¼ sin 2 pn
Nwin� 1

� �
, where n denotes the index n = 0, 1, . . ., Nwin − 1. The

overlap was set to Noverlap� Nwin/2, i.e. first the number of windows fitting in the time series

of length N was calculated and the overlap was adjusted to cover the whole time series instead

of the next-smaller multiple of Nwin/2.

For unpaced performances, we fitted a V-shaped PSD (see Fig 3) using a superposition of

two power laws with opposite-signed scaling parameters βC and βM:

~Pðf Þ ¼ PCf � bC þ PMf � bM ; ð2Þ

where βC putatively quantifies how the clock process is correlated over time, while βM quanti-

fies how the “microtiming deviation” from the beat or “motor process” is (anti)correlated over

time. PC and PM describe the power of the clock and motor components, respectively. As the

clock and the motor components have opposite sign, each of them dominates one side of the

spectrum, and the turnover frequency, i.e. the resulting minimum of P(f), is denoted by fV (Fig

3A). fV is a function of the exponents and power of the motor and clock components:

log 2 fV ¼
log 2 PC � log 2 PM

bC � bM
:

When fitting all the free parameters θ = (fV, βC, βM) of the spectrum, we aimed at weighting the

motor and clock contributions equally. To this end, we assumed a turn-over frequency f �V and

weighted the fit residuals of both sides of f �V equally. This results in a weighting function

wðf ; f �VÞ ¼

(
1=N � ; if f � f �V

1=Nþ; if f > f �V

where N− (N+) denotes the number of frequency bins f that are smaller (larger) than f �V . The

residual

rðyÞ ¼
X

f

wðf ; f �VÞj log 2 Pðf Þ � log 2
~Pðf ; yÞj

between model and data was minimized using the Broyden-Fletcher-Goldfarb-Shanno algo-

rithm [34]. To initialize the minimization, for each trial each side of the log-transformed spec-

trum was approximated by a linear relationship, using the Theil-Sen method [35]. As f �V is not

known a priori, we scanned log 2 f �V equidistantly on log 2 f �V 2 ½� 6; � 2�. For each time series

we thus obtained ten parameter sets θ. Note that f �V was only used to define the weighting
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function w(f), while fV proper is a free parameter. We still used different f �V , because it allowed

for an estimate of the variability of the parameters θ.

In the case of the paced (metronome-guided) recordings we expected the clock component

to be missing. As a consequence, the PSD approximates a power law with Pðf Þ � f � bM . Thus

when fitting with the procedure above, the parameters βM and βC are expected to be both nega-

tive. This condition was used as a test for paced versus unpaced pieces. The βM of the unpaced

pieces can then be estimated either by fitting a single power law, or by fitting the V-shape as

above.

Permutation test and effect size

To test for the presence of different effects for jazz (J) versus rock/pop (R), we applied a

median-based two-sided permutation test on the estimated parameters βC, βM and log2 fV
obtained by the V-shaped fit. Therefore, the median values �x ¼ f�bC;

�bM; log 2
�fVg for jazz and

rock/pop were compared by Dx ¼ �x J � �xR for each parameter.

In addition to the p-values from the permutation, we reported the effect size for the differ-

ences between jazz and rock/pop recordings. We used a modified Cohen’s d

d ¼
�x J � �xR

s
;

where �x denotes the median of the respective values �bC, �bM or log 2
_�fV . The pooled standard

deviation σ was computed from the population sizes nJ, nR and standard deviations σJ, σR of

the respective populations:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnJ � 1Þs2

J þ ðnR � 1Þs2
R

nJ þ nR � 2

s

:

Effect sizes are considered being small for 0.2< |d|< 0.5, medium for 0.5< |d|< 0.8 and

large for |d|> 0.8.
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