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Abstract

The effects of warm machine perfusion preservation of liver grafts donated after cardiac

death on the intracellular three-dimensional ultrastructure of the organelles in hepatocytes

remain unclear. Here we analyzed comparatively the ultrastructure of the endomembrane

systems in porcine hepatocytes under warm ischemia and successive hypothermic and

midthermic machine perfusion preservation, a type of the warm machine perfusion. Porcine

liver grafts which had a warm ischemia time of 60 minutes were perfused for 4 hours with

modified University of Wisconsin gluconate solution. Group A grafts were preserved with

hypothermic machine perfusion preservation at 8˚C constantly for 4 hours. Group B grafts

were preserved with rewarming up to 22˚C by warm machine perfusion preservation for 4

hours. An analysis of hepatocytes after 60 minutes of warm ischemia by scanning electron

microscope revealed the appearance of abnormal vacuoles and invagination of mitochon-

dria. In the hepatocytes preserved by subsequent hypothermic machine perfusion preserva-

tion, strongly swollen mitochondria were observed. In contrast, the warm machine perfusion

preservation could preserve the functional appearance of mitochondria in hepatocytes. Fur-

thermore, abundant vacuoles and membranous structures sequestrating cellular organelles

like autophagic vacuoles were frequently observed in hepatocytes after warm machine per-

fusion preservation. In conclusion, the ultrastructure of the endomembrane systems in the

hepatocytes of liver grafts changed in accordance with the temperature conditions of

machine perfusion preservation. In addition, temperature condition of the machine perfusion

preservation may also affect the condition of the hepatic graft attributed to autophagy sys-

tems, and consequently alleviate the damage of the hepatocytes.
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Introduction

The shortage of brain-dead donor liver grafts is a serious problem worldwide. One way of

expanding the donor organ pool is by using grafts donated after cardiac death (DCD). How-

ever, the use of DCD liver grafts incurs a higher risk of primary nonfunction or ischemia-

reperfusion injury. The superiority of machine perfusion preservation (MP) to simple cold

storage was recently reported in clinical kidney preservation [1,2]. Similarly, in the field of

liver transplantation, strategies as MP with oxygen and nutrition-containing solution have the

potential to improve the outcome of liver transplantation with marginal grafts by reducing

preservation injury and improving graft assessment [3,4]. MP of DCD liver grafts are roughly

categorized into two groups: cold MP and warm MP (WMP) [3,5,6]. Many studies have shown

that the cold MP, named hypothermic MP (HMP) first introduced in accordance with preced-

ing MP of kidney [7], improved graft function and attenuated classical biochemical markers

of liver preservation injury compared to simple cold storage [8–16]. In addition, WMP had

emerged as a novel strategy, which maintain liver grafts at a more physiologic temperature com-

pared to HMP to avoids cold ischemic injury and offers the opportunity to assess and possibly

repair a metabolically active liver graft [3,6,17,18]. WMP, including 3 subcategories by tempera-

ture range [19]: midthermic MP (MMP, 13-24C), subnormothermic MP (SMP, 25-34C) and

normothermic MP (NMP, 35-38C), have already proven advantageous in reducing markers of

biliary injury during preservation and restoring normal biliary physiology [20]. Furthermore,

WMP of DCD liver grafts have demonstrated the good result for the graft function and trans-

plantation in rat, porcine and human [20–37]. Matsuno et al. directly showed that the AST and

LDH levels in the effluent were lower in MMP or SMP (22-25C) with gradual rewarming as a

type of WMP compared with HMP after temporal hypothermia subsequent warm ischemia

[38–40]. Matsuno et al. subsequently described that the utility of MMP or SMP with gradual

rewarming are more relevant clinically than HMP under the reality situation of clinical organ

retrieval requiring a period of cold preservation due to transport between institutions [39,41].

However, the effects of each type of MP on the intracellular ultrastructure of organelles,

including the mitochondria in hepatocytes, differ, and few studies have examined these effects

in detail. A number of reports have described the ultrastructural changes in hepatocytes under

conditions of warm ischemia or various types of MP using a transmission electron microscope

(TEM) [42–45]. However, three-dimensional (3D) intracellular ultrastructure, particularly the

shape of the mitochondrial cristae, has been unclear, partly due to the limitations inherent in

the two-dimensional images obtained by a TEM [46,47]. This dimensional limitation may be

resolved by using osmium maceration, in which the specimens are immersed in a diluted

osmium tetroxide solution to remove the cytoplasmic matrix [48]. Osmium maceration

enables the clarification of the 3D ultrastructure of organelles composed of lipid components.

We recently found osmium maceration useful for determining the 3D ultrastructure in por-

cine hepatocytes [49]. Subsequently, in this study, we comparatively investigated the changes

in the ultrastructure of the endomembranous systems, including the mitochondria, endoplas-

mic reticulum, and autophagosomes in porcine hepatocytes under warm ischemia and succes-

sive HMP or WMP. Based on this, we also discussed the putative theories of WMP as more

optimal conditions of preservation of DCD liver grafts.

Materials and methods

Antibodies

Mouse monoclonal anti-cytochrome C antibodies were purchased from Promega Corporation

(Madison, WI, USA; product code G7421). Rabbit polyclonal anti-LC3 antibodies were purchased
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from Medical and Biological Laboratories (Nagoya, Japan; product code PM036). Secondary anti-

bodies conjugated with fluorescent dyes (Alexa Fluor 488- and 594-conjugated donkey polyclonal

anti-rabbit- and anti-mouse-IgGs) were purchased from Invitrogen (Carlsbad, CA, USA) for

observation with a confocal laser microscope.

Animals

Domestic female cross-bred Large-Yorkshire, Landrace, and Duroc pigs (approximately 25 kg,

2 to 3 months old) were purchased from Daisetsusanrokusya Co., Ltd. All animal work was

conducted according to the Guide for the Care and Use of Laboratory Animals at Asahikawa

Medical University. All animal studies and procedures were approved by Asahikawa Medical

University Animal Research Committee (permit no. 14172).

Perfusion preservation machine

Porcine livers were perfused with a machine perfusion system (Fig 1) described previously

[39]. The system consists of 2 separate circulating perfusion circuits for the portal vein (PV)

and hepatic artery (HA), each has a roller pump, a flow meter and a pressure sensor, allowing

nonpulsatile and pulsatile flow, respectively. An oxygenator was installed in the HA circuit.

Fig 1. Schematic representation of the continuous machine perfusion system.

https://doi.org/10.1371/journal.pone.0186352.g001
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Both circuits were connected via plastic connectors to the hepatic vessels. Waterproof thermo-

couples installed in this system measured the solution and the organ temperatures. Furthermore,

a dissolved oxygen (DO) meter was installed in this system to measure the DO concentration of

solution. A computer records data and controls flow conditions and temperatures of the preser-

vation solution. The temperature in the organ chamber was controlled by a heat exchanger and

ice-cold water. As described previously [38–41], the flow rate was controlled as 0.22 and 0.06

mL/min per gram for the PV and HA, respectively.

Preparation and preservation of the DCD liver

Six pigs weighing approximately 25 kg each were used as donors. In the present research,

under inhalation anesthesia with isoflurane (Forane, Abbott, Japan), the pigs were laparoto-

mized and the tissue samples of liver were biopsied from at least three distinct regions as

control. Then, cardiac arrest was induced by intravenous injection of potassium chloride

described previously [38][49], and removal of ventilation. The induction of cardiac arrest

set as the starting point of warm ischemia. During warm ischemia, we performed the peel-

ing around the blood vessels including portal vein and hepatic artery to connect with organ

flush lines. Sixty minute after warm ischemia, the tissue samples of liver biopsied from at

least three distinct regions, and the liver was procured to initially flushed with Euro-Collins

solution via portal vein and hepatic artery at 8˚C as a back table operation. Immediately, the

organ flush lines connected to the perfusion preservation machine and the livers were per-

fused via both the hepatic artery and the portal vein in a closed circuit. Livers were perfused

for 4 h with modified University of Wisconsin gluconate solution. The temperature condi-

tions of the machine perfusion were divided to two groups, A and B. In Group A (n = 3),

grafts were perfused at 8˚C constantly as HMP. In Group B (n = 3), grafts were gradually

rewarmed from 8 to 22˚C during perfusion as MMP. These experimental conditions of

groups A and B correspond to the groups of “2” (HMP after warm ischemia) and “3” (MP

with rewarming after warm ischemia) in the previous study [38], respectively. Four hours

after each MP, the tissue samples of liver were collected from at least three distinct regions

of well-perfused area of a liver graft. All the samples were immediately treated with each fix-

ative as described below for the analysis.

Hepatocellular damages of the preserved livers were evaluated by aspartate aminotrans-

ferase (AST), lactate dehydrogenase (LDH) levels in perfusate as described previously [38].

Perfusate was collected from the suprahepatic vena cava at 4 hours after reperfusion of each

MP.

Transmission electron microscopy

For observation by TEM, the samples biopsied from the liver of the experimental animals were

cut into small pieces and immediately transferred into a fixative mixture of 2% glutaraldehyde

/2% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB, pH adjusted to 7.4) for 2 h at

4˚C. After washing thoroughly with 0.1 M PB containing 7.5% sucrose, the samples were fur-

ther fixed with 1% osmium tetroxide (OsO4) in 0.1 M PB for 2 h at 4˚C. The samples were

then washed thoroughly with 0.1 M PB containing 7.5% sucrose, dehydrated in ascending con-

centrations of ethanol (50%, 70%, 95%, and 100%), transferred into propylene oxide, infil-

trated, and embedded in epoxy resin (Epon 812). The ultrathin sections from the samples

embedded in Epon 812 were then contrasted with saturated aqueous solutions of uranyl ace-

tate and lead citrate, and examined using a TEM (H-7650; Hitachi High Technologies, Tokyo,

Japan).
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Scanning electron microscopy

Tissue samples for observation by a scanning electron microscope (SEM) were prepared in

accordance with the osmium maceration methods described previously [48]. Briefly, the sam-

ples biopsied from the liver of the experimental animals were cut into small pieces and imme-

diately immersed into a fixative mixture of 0.5% PFA and 0.5% glutaraldehyde in 0.1 M PB

(pH 7.4), for 30 min at 4˚C. After fixation, the tissue blocks were directly immersed in 1%

OsO4 in 0.1 M PB for 6 h at 4˚C. The samples were then washed thoroughly with 0.1 M PB

three times, immersed in 25% and 50% dimethyl sulfoxide for 30 min each for cryoprotection,

and frozen on a metal plate deeply chilled with liquid nitrogen. The frozen liver blocks were

cracked into 2 pieces with a screwdriver and a hammer and transferred into 50% dimethyl sulf-

oxide for thawing. After freeze cracking, the samples were washed 3 times in 0.1 M PB and

then transferred to 0.1% OsO4 diluted with 0.1 M PB for 100 h at 20˚C under light for osmium

maceration. The macerated tissues were immersed in 1% OsO4 in 0.1 M PB for 1 h for further

fixation. After rinsing with 0.1 M PB, the samples were treated with 1% tannic acid in 0.1 M

PB and then with 1% OsO4 in 0.1 M PB for conductive staining. The conductive-stained sam-

ples were then dehydrated in ascending concentrations of ethanol (70%, 80%, 90%, 95%, and

100%), transferred into isoamyl acetate, and dried in a critical point dryer (HCP-2; Hitachi

Koki Co., Ltd., Tokyo, Japan) using liquid CO2. The dried samples were mounted onto an alu-

minum metal plate and coated with platinum-palladium in an ion sputtering device (E1010;

Hitachi Koki Co., Ltd.). After the process described above, the specimens were observed using

a field emission SEM (S-4100; Hitachi High Technologies).

The relative frequency (RF) of abnormal mitochondria was calculated from SEM images

with a magnification of ×10,000; representative 3 images were taken from each sample, and

subsequently RF of abnormal mitochondria was calculated in each image. Mitochondrial area

measurements were generated from SEM images with a magnification of ×10,000; representa-

tive images were taken from each sample of a minimum of 3 surfaces apart within the tissue

block and hepatocyte mitochondria were analyzed. ImageJ software was used to calculate the

area by drawing around of each individual mitochondrion analyzed. At least 300 measure-

ments for each experimental group were generated.

Immunofluorescence microscopy

For immunofluorescence microscopy, the samples biopsied from the liver of the experimental

animals were cut into small pieces and immediately transferred into a fixative mixture of 4%

PFA in 0.1 M PB (pH 7.4) containing 4% sucrose for 2 h at 4˚C. After washing thoroughly

with 0.1 M PB containing 7.5% sucrose, the samples were immersed sequentially in 15%

sucrose (for 6 h) and 30% sucrose (for 12 h) solutions buffered in 0.1 M PB at 4˚C, and then

the tissue blocks were frozen at –30˚C in the Tissue-Tek O.C.T. compound (Sakura Finetek,

Tokyo, Japan). Tissue sections of 15 μm thickness were cut from the frozen tissue blocks with

a cryostat (Leica Microsystems GmbH, Wetzlar, Germany) and mounted on microscope glass

slides. These sections were treated with a 0.05% citraconic anhydride solution (Immunosaver;

Nissin EM Co., Ltd., Tokyo, Japan) for 30 min at 60˚C for antigen retrieval [50]. The tissue sec-

tions were permeabilized with a 0.2% Triton X-100 solution for 10 min at 20˚C and then incu-

bated with 2% normal donkey serum (30 min, 20˚C) for blocking. After these pretreatments,

tissue sections were incubated with a mixture of primary antibodies of different species (rabbit

and mouse origin) for 16 h at 20˚C. The sections were subsequently incubated with a mixture

of the appropriate sets of Alexa Fluor 488- and 594-labeled secondary antibodies for 3 h at

20˚C. Between each step, the sections on the microscopic slides were washed 3 times with 0.01

M PB (pH 7.4) containing 0.5 M NaCl and 0.1% Tween 20. After nuclear counter staining with
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40-6-diamidino-2-phenylindole, the coverslips were then mounted onto the tissue sections in

90% glycerol (vol/vol in PBS) containing 0.1% p-phenylenediamine dihydrochloride (Sigma-

Aldrich). The stained sections were viewed with a confocal laser microscope (FV-1000D;

Olympus, Tokyo, Japan).

Statistical analysis

Data in the text and figures represent the means ± SEM. Unpaired two-tailed t tests were used

to compare the significance of differences between two groups.

Results

Observation of intracellular ultrastructure of hepatocytes by TEM and

SEM

First, we examined the correspondence of the findings on TEM and SEM observation. At low

magnification, TEM observation of hepatocytes in control liver revealed that they were basi-

cally mononuclear and possessed large numbers of oval or sausage-shaped mitochondria (Fig

2A). The hepatocytes had extensive endoplasmic reticulum in their overall cytoplasm, and

their nuclear shape was a regular ellipse and their chromatin distributed uniformly (Fig 2A).

The relationships between the cells appeared to be intact, as normal bile canaliculi with micro-

villi was formed by the plasma membrane of contiguous hepatocytes, which had a well-devel-

oped microvillus border. These hepatocytes and normal endothelial cells lined the space of

Disse. These findings observed with a TEM corresponded relatively well to the low-magnifica-

tion findings on observation with an SEM of the freeze-fractured surfaces of the control liver

processed with osmium maceration. In addition, SEM observation clearly showed the details

of the bile canaliculi, spaces of Disse, and intra-cisternal spaces of the membranous organelles,

including some 3D conformation information (Fig 2B).

High-magnification observation with a TEM revealed that the nuclear envelope was clear

and smooth, and reticulated-smooth endoplasmic reticulum was abundant in hepatocytes (Fig

2C). In addition, TEM observation showed that the mitochondria had normal inner and outer

membranes and sparse cristae in the hepatocytes (Fig 2C, colored green). Additional observa-

tion with an SEM revealed that the well-developed tubular cristae connected mutually and

occasionally (Fig 2D, open arrows). These data clearly showed well correspondence of observa-

tion of TEM and SEM. Furthermore, the SEM observation could demonstrate the 3D detail of

intracellular organelles, which include the cristae of mitochondria in hepatocytes.

Changes in the ultrastructure of organelles within hepatocytes after

warming ischemia

After 1 h of warming ischemia, the color of the porcine liver samples had changed to dark red,

macroscopically. Along with these changes in the appearance, the intra-cellular ultrastructure

of hepatocytes was distorted. The low-magnification findings on observation with an SEM of

the freeze-fractured surfaces of the liver after 1 h of warming ischemia processed with osmium

maceration showed the contact between the hepatocytes had slightly loosened, both at the

microvillus borders and at the junctions with sinusoidal endothelial cells. Generally, the endo-

plasmic reticulum increases in size and tends to have a lamellar morphology in hepatocytes

(Fig 3A). However, the hepatic architecture and the relationships between the hepatocytes

were largely maintained, as the cells formed normal bile canaliculi and interfaces. Noteworthy,

the abnormal large vacuoles appeared in the hepatocytes (Fig 3A, colored red). These vacuoles

were generally located near the nucleus but also appeared elsewhere in the cytoplasm.
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Occasionally, the large, abnormal vacuoles contained rather small vacuoles with a smooth sur-

face (Fig 3A, asterisk). Observation of the freeze-fractured surface of these small vacuoles

revealed a double membrane and the presence of small, empty vesicles (Panel A in S1 Fig).

Interestingly, the internal space between the double membranes of a part of small vesicles was

occasionally connected to the lysosome-like structure in cytoplasm (Panel A in S1 Fig, open

arrowheads).

Fig 2. The ultrastructure of the endomembrane structure in the hepatocytes of the control liver. (A and C) Typical hepatocytes were identified in

the ultrathin sections of the Epon 812-embedded control liver tissue (A). Nucleus was colored blue. The partial area indicated in A was further

photographed at a higher magnification (C). Nucleus was colored blue and mitochondria were colored green. Bars = 1 μm. (B and D) Similar typical

hepatocytes in osmium-macerated control porcine liver tissues were viewed with a scanning electron microscope (B). Nucleus was colored blue. The p

area indicated in B was further photographed at a higher magnification (D). Nucleus was colored blue and mitochondria were colored green. Open arrows

indicated cristae of mitochondria. Bars = 1 μm.

https://doi.org/10.1371/journal.pone.0186352.g002
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Even more interestingly, an SEM observation showed that the mitochondria in the hepato-

cytes were slightly swollen, with abnormal vesicles found in each mitochondrion. At high mag-

nification, some intra-mitochondria vesicles had multi-lamellar membranes (Fig 3B, open

arrowheads). Although these abnormal mitochondria were rarely observed in control, the

RF was significantly increased in the liver after 1 h of warming ischemia (Fig 3C, control vs.

WIT_1h, 3.75±0.93 vs. 24.05±4.59 percent per image, �P<0.001). Observation of other hepato-

cytes revealed that the outer membrane of the mitochondria had invaginated into the lumen

with cytoplasm or an endoplasmic reticulum (Panel B in S1 Fig, open arrows).

Comparison of changes in the intracellular ultrastructure with

hypothermic and midthermic machine perfusion

The macroscopic appearance of the liver samples preserved with HMP (Group A) or MMP

(Group B) similarly became pale after 4 h; however, the ultrastructure of the hepatocytes was

significantly different between each condition followed the extent of hepatocellular damage in

liver graft. As we reported previously [38], the value of lactate dehydrogenase (LDH) and

aspartate aminotransferase (AST) in perfusate showed that the MMP significantly suppressed

the increasing of the hepatic enzyme release compared to HMP (Panel A in S3 Fig. (LDH);

HMP_4h vs. MMP_4h, 4760±856 vs. 1970±173 IU/L, Panel B in S3 Fig. (AST); HMP_4h vs.

MMP_4h, 3170±250 vs. 2120±198 IU/L, �P<0.05, respectively). Correspondingly, observation

by SEM revealed that the hepatic architecture and the connections between the hepatocytes

were no longer visible, as the microvillus borders of the hepatocytes showed abnormal com-

paction and reduced volumes of canaliculi in the liver in Group A (Fig 4A).

Furthermore, the presence of mitochondria in the cytoplasm and reticulated endoplasmic

reticulum was observed in the hepatocytes in Group A (Fig 4A). At higher magnification,

strongly swollen mitochondria and atrophy of cristae appeared in the hepatocytes in Group A

(Fig 4B, colored green). Despite the disappearance of the large vacuoles observed at 60 min

after warming ischemia, we did observe small vacuoles scattered around the cytoplasm in

hepatocytes from Group A that wrapped the swollen mitochondria incompletely (Fig 4A and

4B, colored red). In contrast, in Group B, although the connections between the hepatocytes

had loosened, the hepatocytes appeared more visible, as the canaliculi were of normal volume

and the mitochondria appeared to have a normal function (Fig 5A). Interestingly, numerous

abnormal large vacuoles remained in the cytoplasm of hepatocytes after 4 h of MMP (Fig 5A

and 5B, colored red). Electron microscopy occasionally visualized abundant vacuoles and

membranous structures sequestrating cellular organelles, just like the autophagosomes in

hepatocytes (Fig 5A, asterisks). At high magnification, although the intravacuolar mito-

chondria were slightly swollen (Fig 5B, colored purple), cytoplasmic mitochondria rather

maintained a functional small morphology and the cristae (Fig 5B, colored green). Mito-

chondrial swelling, generally reflected by an increase of the mitochondrial area is a well-

accepted hallmark of dysfunction of this organelle [51,52]. Mitochondria area measure-

ments in hepatocytes showed that the MMP significantly suppressed the increasing of

mitochondria area compared to HMP (Fig 5C, HMP_4h vs. MMP_4h, 0.68±0.02 vs. 0.39

±0.02 μm2 per mitochondria, �P<0.0001).

Fig 3. Changes in the ultrastructure of the endomembrane systems in porcine hepatocytes after warm ischemia. (A and B)

Representative hepatocytes were observed by SEM in the osmium-macerated porcine liver graft samples after warm ischemia for 60 minutes.

Nucleus was colored blue and abnormal vacuoles were colored red. Asterisks indicated the internal vacuole in an abnormal vacuole. The

partial area indicated in A was further photographed at a higher magnification (B). Mitochondria were colored green. Intra-mitochondrial

abnormal vesicles were indicated by open arrowheads. (C) Abnormal mitochondria was counted in SEM images (9–11 views of each groups,

N = 3). Data represents as the means ± SEM. Unpaired two-tailed t-tests were used (p < 0.001). Bars = 1 μm.

https://doi.org/10.1371/journal.pone.0186352.g003
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Discussion

In this study we confirmed the usefulness of the SEM observation of osmium-macerated tissue

samples for description of ultrastructure of hepatocellular organelles, especially the internal

architecture of mitochondria (Fig 2). Based on this, we revealed the ultrastructural characteris-

tics along with some 3D information of hepatocytes from porcine liver grafts after warm ische-

mia and subsequent MP after cardiac death by using SEM. Simple warm ischemia of liver

grafts for 60 minutes affects the ultrastructural characteristics of hepatocytes.

One of the abnormal findings was the peculiar appearance of a multilamellar body in mito-

chondria after warm ischemia (Fig 3B). Similar structures in the hepatocytes of a murine ische-

mia reperfusion model were reported as autophagic vacuoles on TEM observation [53]. These

autophagic vacuoles appeared under the condition of autophagy induction, as warm ischemia

and ischemia-reperfusion induced autophagy in hepatocytes [54–56]. Our results revealed that

the autophagic vacuoles in mitochondria were formed by invaginations into the matrix space

of the mitochondrial outer membrane at the site of contact with the endoplasmic reticulum

(Panel B in S1 Fig). This finding is consistent with the fact that autophagosomes are formed at

the site of contact of mitochondria with the endoplasmic reticulum [57].

The process of mitochondrial autophagy, termed mitophagy, has several distinct variants.

In mitophagy induced by starvation or hypoxia, mitochondria deformation typically occurs in

coordination with the sequestration of mitophagosomes. By contrast, in mitophagy induced

by the onset of mitochondrial permeability transition (MPT), mitochondrial deformation is

not observed [58–60]. In addition, hepatocytes under conditions of hypoxic stress suppress the

production of reactive oxygen species (ROS) by the degradation of mitochondria with mito-

phagy [55]. Therefore, the autophagic vacuoles of mitochondria in hepatocytes suffering warm

ischemia might be associated with hypoxia-induced mitophagy. This hypothesis is supported

by the fact that the number of autophagic vacuoles in the mitochondria decreases after oxygen-

ation by machine perfusion, regardless of the temperature (Figs 4 and 5).

Autophagy occurs at low basal levels in virtually all cells that perform homeostatic func-

tions, including the removal of damaged organelles such as mitochondria, and is involved in

the recycling of denatured proteins and metabolic catabolites [61,62]. Damaged organelles par-

ticipating in ROS generation, including mitochondria, are sequestrated and removed by the

autophagic process, and autophagy plays a role in suppression of ROS generation and subse-

quent apoptosis [63]. Autophagy prevents hepatocyte apoptosis or necrosis under conditions

of hypoxia-induced oxidative stress [54,56,64,65]. Considering these facts, it seems that the for-

mation of mitochondrial autophagosomes in hepatocytes during warm ischemia suggested

that the autophagy system plays a role in protecting hepatocytes from hypoxic injury.

Another finding was the appearance of huge single-membrane vacuoles in the hepatocytes

(Fig 3A). There are a number of reports of the appearance of huge vacuoles in hepatocytes of

animal models under hypoxia-induced oxidative stress after warm ischemia or cardiac death

[45,66–70]. In addition, the extent of parenchymal vacuolation in warm ischemia liver grafts

reflects the severity of hepatocellular damage [71]. On 3D observation using an SEM, we

found that the huge vacuoles frequently contained smaller vacuoles within them (Panel A in

S1 Fig). SEM observation of the freeze-fractured surface revealed that the intravacuolar vacu-

oles with double membranes contained vesicles. Furthermore, these intravacuolar vacuoles

Fig 4. The ultrastructural alteration in porcine hepatocytes preserved by HMP. (A) Representative hepatocytes were observed by SEM

in the osmium-macerated porcine liver graft samples preserved by HMP for 4 h after 60 minutes of warm ischemia. Nucleus was colored blue

and abnormal vacuoles were colored red. The partial area indicated in A was further photographed at a higher magnification (B). Mitochondria

were colored green and abnormal vacuoles were colored red. Bars = 1 μm.

https://doi.org/10.1371/journal.pone.0186352.g004
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were connected to lysosome-like structures in the cytoplasm (Panel A in S1 Fig, open arrow-

heads). In addition, the appearance of LC3 accumulation corresponding to the vacuoles sug-

gests a relationship between the vacuoles and autophagy (Panel A and B in S2 Fig). The

etiology of vacuolation of hepatocytes has never been completely clarified, but the co-localiza-

tion of cytochrome C with the accumulation of LC3 suggests that the vacuolation is due to

mitochondrial autophagosomes (Panel B in S2 Fig). This hypothesis is consistent with the the-

ory that autophagy mediates the cellular resistance of hepatocytes to the mitochondrial death

pathway by blocking the activation of caspase-8 and subsequent cytoplasmic release of cyto-

chrome C [72,73].

The alterations of the ultrastructural characteristics in hepatocytes caused by warm ische-

mia lead to various outcomes depending on the temperature conditions of subsequent MP.

For the first example, swelling of mitochondria and dilation of endoplasmic reticulum in hepa-

tocytes are more severe after HMP than MMP relatively. The swelling of mitochondria is

induced by the onset of MPT, suggesting that the damage of mitochondria results in the pro-

duction of ROS [74]. In addition, the dilation of the endoplasmic reticulum suggests that it’s

under stress. These differences in the intracellular ultrastructural outcomes in hepatocytes

between each MP type give an explanation for the results of our previous study showing that

the AST and LDH levels in the effluent were lower in WMP compared with HMP [39,38].

Second, membrane structures enclosing some of the organelles were discerned in the hepa-

tocytes after MMP for 4 h. These membrane structures comprised a single membrane, similar

to the vacuoles that appeared after warm ischemia. TEM observation of post-mortem rat hepa-

tocytes has also shown the presence of vacuoles surrounding organelles [70]. Considering

these facts, it seems that the membrane structures enclosing some of the organelles is associ-

ated to the vacuoles appeared after warm ischemia. In addition, a comparison of the immuno-

histochemistry findings and SEM observations showed that the large accumulations of LC3

co-localized with cytochrome C in hepatocytes after MMP corresponded well with the mem-

brane structures enclosing mitochondria (Panel D in S2 Fig). These findings suggest that the

membrane structures isolating the organelles, including the mitochondria, are related to

autophagy. Some studies have reported that the WMP prompts energy metabolism recovery

[75,76]. In addition, controlled oxygenated rewarming, which is similar to MMP, resulted in

significantly increased gene expression and protein levels of autophagy-related beclin-1 [77].

Therefore, it seems that the membrane structures isolating the organelles, including the mito-

chondria, are related to the induction of macroautophagy.

Third, we found that the endoplasmic reticulum membrane was frequently attached to the

surface of the swollen mitochondria after HMP for 4 h (Fig 4B). Immunohistochemistry

showed the presence of a number of small accumulations of LC3 co-localized with cytochrome

C in the cytoplasm of these hepatocytes (Panel C in S2 Fig). Salas et al. found that hypothermia

was a decisive element in the production of hepatic autophagy in rats [78,79]. In addition, the

appearances of swollen mitochondria in the hepatocyte of mice under conditions of hypother-

mia have suggested that the damage to mitochondria is induced by the hypothermic condition

itself [78]. Extended times of HMP may also be subject to particular disadvantages and limita-

tions with regard to endoplasmic stress [80,81]. Therefore, it seems that the hypothermic

Fig 5. The ultrastructural characteristics in porcine hepatocytes preserved by MMP. (A) Representative hepatocytes were observed by

SEM in the osmium-macerated porcine liver graft samples preserved by MMP for 4 h after 60 minutes of warm ischemia. Nucleus was colored

blue and abnormal vacuoles were colored red. Asterisks indicated the vacuoles include the vesicles and mitochondria. The partial area

indicated in A was further photographed at a higher magnification (B). Abnormal vacuoles were colored red. Cytoplasmic mitochondria were

colored green and intravacuolar mitochondria were colored purple. (C) Mitochondria areas were measured in SEM images (9–11 views of

each groups, N = 3). Data represents as the means ± SEM. Unpaired two-tailed t-tests were used (p < 0.0001). Bars = 1 am.

https://doi.org/10.1371/journal.pone.0186352.g005
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conditions of HMP induce mitophagy without mitochondrial deformation, due to the onset of

MPT [59]. The validity and relevance of this hypothesis need further confirmation in future

studies.

There is a limitation to our study. The relatively high level of the LDH and AST in perfusate

of MMP suggest that the considerable hepatocellular damage exist even in the more protective

method, MMP in this study. The warm MP with rewarming is promising, as more and more

researchers are publishing results preferring these temperature settings [82]. However it has

not been sufficiently defined the rewarming velocity of liver grafts, the critical temperature the

liver should reach, and the period of warm MP needed to adjust metabolic parameters [82].

Therefore, it is necessary that our morphological analysis should be done on the more protec-

tive modified WMP to clarify the protective mechanism of the MP on the liver graft in future.

In conclusion, the temperature conditions for WMP alleviate the damage of the hepatic graft

via ultrastructural changes of mitochondria potentially associated with autophagy in hepato-

cytes. This alleviation potentially depends on the metabolically active scenario where organs are

supplied with nutrients and oxygen to re-establish homeostasis facilitated by WMP. However,

autophagy-associated hepatocyte death has been reported to trigger liver graft dysfunction, indi-

cating that the effect of autophagy on hepatocytes is still controversial [16]. Further physiologi-

cal studies are needed to clarify the detailed mechanisms of the ultrastructural changes and

autophagy in hepatocytes under various temperature conditions of perfusion preservation of

liver grafts for more appropriate preservation of liver grafts donated after cardiac death.

Supporting information

S1 Fig. The appearance of abnormal vacuoles and ultrastructural changes in the mitochon-

dria in porcine hepatocytes after warm ischemia. (A) Representative abnormal vacuoles

were observed in porcine hepatocytes using SEM after warm ischemia for 60 minutes. An

abnormal vacuole was colored red. A lysosome-like structure was colored blue. Open arrow-

heads indicated the connection between the abnormal vacuole and lysosome-like structure.

Simultaneously, the abnormal invagination of the mitochondrial outer membrane into the

matrix space was also observed (B). Mitochondria were colored green. Open arrows indicate

invaginations of mitochondria. Bars = 1 μm.

(TIF)

S2 Fig. The changes in the intracellular distribution of LC3 and cytochrome C in porcine

hepatocytes after warm ischemia and subsequent preservation by HMP or MMP. (A-D)

Tissue sections (thickness: 15 μm) of the sample of porcine liver biopsied at the time of pre-

DCD (A), after 60 minutes of warm ischemia (B), and 4 h after starting the preservation by

HMP (C) or MMP (D) were simultaneously immunostained with rabbit polyclonal anti-LC3

(visualized with Alexa Fluor 488; green pseudocolor in A-D) and mouse monoclonal anti-cyto-

chrome C (visualized with Alexa Fluor 594; red pseudocolor in A-D) antibodies. The cell

nucleus was also stained with DAPI (Sigma-Aldrich) and viewed with a 405-nm laser source

(blue). Bar = 10 μm.

(TIF)

S3 Fig. The changes in the perfusate enzymes after warm ischemia and subsequent preser-

vation by HMP or MMP. (A) Levels of lactate dehydrogenase (LDH), and (B) levels of aspar-

tate aminotransferase (AST) in the perfusate at 4 hours after hypothermic and midthermic

machine perfusion preservation. Data represents as the means ± SEM. Unpaired two-tailed t-

tests were used (p<0.05).

(TIF)
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