
RESEARCH ARTICLE

Protocol vulnerability detection based on

network traffic analysis and binary reverse

engineering

Shameng Wen*, Qingkun Meng, Chao Feng*, Chaojing Tang

College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China

* wenshameng@126.com (SW); chaofeng@nudt.edu.cn (CF)

Abstract

Network protocol vulnerability detection plays an important role in many domains, including

protocol security analysis, application security, and network intrusion detection. In this

study, by analyzing the general fuzzing method of network protocols, we propose a novel

approach that combines network traffic analysis with the binary reverse engineering

method. For network traffic analysis, the block-based protocol description language is intro-

duced to construct test scripts, while the binary reverse engineering method employs the

genetic algorithm with a fitness function designed to focus on code coverage. This combina-

tion leads to a substantial improvement in fuzz testing for network protocols. We build a pro-

totype system and use it to test several real-world network protocol implementations. The

experimental results show that the proposed approach detects vulnerabilities more effi-

ciently and effectively than general fuzzing methods such as SPIKE.

Introduction

As the use of complex and important network applications increases, network protocol secu-

rity requirements become ever more significant. However, finding effective approaches for

testing network protocol security has proven to be a difficult problem [1–3].

Fuzz testing is one important network protocol security test method. Fuzz testing involves

injecting large amounts of data to test the security of applications, and it can also be used to

detect vulnerabilities in network protocol implementations. In this paper, the main research

objective is the application layer protocol, which includes the public protocols of both standard

networks and private networks without the details. In some cases, we must have a deep under-

standing of the protocol format and protocol interaction process to make fuzz testing reach

the deeper protocol states efficiently. The network traffic analysis based on block-based proto-

col description language can closely mimic the protocol to assist in generating suitable test

cases. The binary reverse engineering method, which is based on the genetic algorithm (GA)

and a fitness function, is designed to focus on high code coverage that can reach more vulnera-

ble points.

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Wen S, Meng Q, Feng C, Tang C (2017)

Protocol vulnerability detection based on network

traffic analysis and binary reverse engineering.

PLoS ONE 12(10): e0186188. https://doi.org/

10.1371/journal.pone.0186188

Editor: Yongxiang Xia, Zhejiang University, CHINA

Received: August 11, 2017

Accepted: September 27, 2017

Published: October 19, 2017

Copyright: © 2017 Wen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0186188
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186188&domain=pdf&date_stamp=2017-10-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186188&domain=pdf&date_stamp=2017-10-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186188&domain=pdf&date_stamp=2017-10-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186188&domain=pdf&date_stamp=2017-10-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186188&domain=pdf&date_stamp=2017-10-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186188&domain=pdf&date_stamp=2017-10-19
https://doi.org/10.1371/journal.pone.0186188
https://doi.org/10.1371/journal.pone.0186188
http://creativecommons.org/licenses/by/4.0/

In this paper, we introduce a novel method that combines network traffic analysis and

binary reverse engineering to improve network protocol fuzz testing. Briefly, this work pres-

ents the following main contributions:

• A novel method is proposed that uses the block-based protocol description language for pro-

tocol format analysis and the GA focuses on high code coverage test packets.

• We also built a prototype fuzz testing system used to detect vulnerabilities in network proto-

col implementations.

Related work

Reverse engineering research in the network protocol field tends to take one of two main

approaches: one uses the network traffic to infer the network protocol, while the other dynami-

cally tracks and analyzes executable programs using the network protocol. This latter approach

is called binary reverse engineering or tainted data analysis.

Marshall Beddoe originated the practice of network traffic analysis in 2004 when he

launched the Project Informatics (PI) project, whose goal was to find an algorithm to gener-

ate amino acids from DNA through biological analogy. Corrado Leita, Ken Mermoud, and

Marc Dacier proposed using the PI project to automatically generate Honeyd configuration

scripts [4]. Cui Weidong and Vern Paxson et al. proposed a solution for network protocol

identification and automatic recovery called RolePlayer [5]. The idea is that, by obtaining the

user input parameters, an interactive script can be generated based on a small amount of

data from a sample stream. Subsequently, the system can identify whether a new section of

the flow conforms to the learned protocol or not. This approach to network traffic analysis

can universally adapt to various network protocols, including both public and private

protocols.

The binary reverse engineering method can comprehensively track the process of network

applications and is relatively accurate, but its implementation is complex and each protocol

operating environment has special requirements. Protocol identification and fuzzing methods

that involve binary reverse engineering are based on dynamic taint analysis. In recent years,

dynamic taint analysis [6] has been used at the binary code level to achieve widespread track-

ing and analysis of untrusted data. Argos [7] and TaintCheck [8] are two typical examples. The

dynamic taint analysis method is based on tainted data. In dynamic taint analysis, all network

interactive data is considered to be from an untrusted data source. This method monitors pro-

cess structural information to obtain the processes’ protocol formats. Caballero Juan proposed

the Polyglot system based on this idea [9]. He considered network packets to be tainted input

data, performed monitoring at the instruction level and extracted the semantic features. Based

on the results of analyzing several monitored processes, the fused semantic information from

all messages could be represented using the same format; thus, he was able to extract a univer-

sal protocol format. G. Wondracek adopted this method to identify single message structures;

however, he extended the approach to identify multiple messages using a sequence alignment

method [10]. Nevertheless, the approach to analyzing tainted data has some limitations. For

example, taint analysis needs to operate a server program in a specified environment. In addi-

tion, tracking complex applications requires analyzing large amounts of data, which reduces

server performance. The method in this paper combines the advantages of network traffic

analysis and binary reverse engineering to improve the efficiency of network protocol vulnera-

bility detection.

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 2 / 14

https://doi.org/10.1371/journal.pone.0186188

Issue analysis

The key issue of vulnerability detection based on network protocol formats is how to construct

the test data packets. The traditional black box testing techniques are realized on a client and

based on a network protocol. Then, experts test the server based on their experiences of the

causes of data overflow by constructing test packets and sending them to the target system.

However, this approach has the following obvious defects.

1. Low test case hit rate. At present, the most serious problem with the traditional fuzzing

method is that the test case hit rate is too low, especially for network service software.

Because it lacks control over the target protocol, the server may directly refuse a test case

sent by the fuzzing device or can break the connection prematurely. Fuzz testing of an open

protocol is relatively simple because test cases can refer to detailed RFC and other public

documents. Consequently, for open protocols, generating a series of effective, complete test

cases is relatively simple. However, even when a protocol is both common and open, there

is no guarantee that the application developers will comply strictly with the published stan-

dards. Moreover, fuzz testing a private third-party protocol, regardless of its simplicity, is

also a challenge. Some subtle analyses can be achieved through reverse engineering, but

only at a high computational cost. Therefore, building automatic protocol analysis methods

is currently a significant problem [11].

2. Unable to determine when fuzz testing is complete. The number of test cases that can be

generated based on variations of the fuzzing method are infinite; thus, determining the spe-

cific duration that the fuzzing method should operate is problematic. When all the current

test cases have been generated, what should the fuzzing method do? When no abnormal

trigger exists, it either repeats the current processing step or alters the generative rules. At

present there is no clear standard for measuring and evaluating fuzz testing completion.

3. Locating the position of vulnerabilities is difficult. Often, several different test cases may

trigger the same exception during fuzz testing. When an exception is triggered, the location

of the abnormal exception handler is generally far away from the true anomaly, which leads

to problems in identifying the real vulnerability.

4. Multi-dimensional fuzz testing problems are not considered. At present the majority of test

case generation approaches based on fuzz testing are one-dimensional, namely, they gener-

ate a single mutation on one input element one time. However, triggering many vulnerabil-

ities requires multiple elements working together. Testing such vulnerabilities requires a

multi-dimensional fuzz technique. Currently, this advanced approach has several problems,

including combinatorial explosions, insufficient vulnerability coverage, and so on.

To address these defects in traditional vulnerability detection approaches, we used the

proposed method in this paper, which combines network traffic analysis and binary reverse

engineering, to generate test cases. This approach better conforms to the protocol format,

improves the test case pass rate, and can reveal network protocol vulnerabilities more effec-

tively and efficiently.

Framework design

In this paper, the design and implementation of the protocol vulnerability detection system

are divided into three main parts.

First, in a preprocessing phase, we manually collect target network traffic flow packets,

which form the information source for the subsequent analysis. The next phase is network traf-

fic analysis, which is based on the block-based protocol description language. By constructing

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 3 / 14

https://doi.org/10.1371/journal.pone.0186188

a network communication environment, the network protocol format is analyzed through

fuzzing. The key problem involves matching the length domain field. In this study, Wireshark

is used to parse the protocol format, and the block-based protocol description language is uti-

lized for test script construction. The third phase involves applying reverse engineering tech-

nology. Here we analyze message information to generate vulnerability detection fuzzing test

cases. Based on an evaluation of fuzz testing validity, we propose code coverage as a metric. In

addition, we introduce the GA model to produce better test cases through a designed coding

mode and fitness function. The algorithm then evolves test cases through reproduction, cross-

over and mutation. The framework of the proposed approach is shown in Fig 1.

Network traffic analysis based on block-based protocol description

language

Network traffic analysis based on the block-based protocol description language involves four

procedures: constructing the network communication environment, analyzing the network

protocol format, matching the length domain field, and constructing test scripts using the

block-based protocol description language.

Network communication environment construction

In essence, network communication involves client-server (C-S) mode, as shown in Fig 2. In

the TCP/IP communication protocol model, a client sends a request data packet and the server

returns a response data packet, called request-response mode. Therefore, network communi-

cation consists of the interaction of data packets. Each network service has a corresponding

application layer protocol, which determines how the server interprets the contents of request

packets. The details of the protocol are embodied in the data packets. When using client-server

mode during vulnerability detection, a fuzz testing generator constructs test cases using a test

script and sends them to server. Simultaneously, a running monitor is used to catch server

exceptions.

Fig 1. Framework of the proposed method.

https://doi.org/10.1371/journal.pone.0186188.g001

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 4 / 14

https://doi.org/10.1371/journal.pone.0186188.g001
https://doi.org/10.1371/journal.pone.0186188

Network protocol format analysis

Understanding the format of the protocol being tested is extremely important in researching

vulnerability detection based on network protocols. In this paper, the network protocol format

is abstracted to the model shown in Fig 3.

The variables in the protocol format are expressed as follows.

QUES: The format of the data packet; each protocol has a different format. This is a fixed

value.

LENGTH: The length of the variable STRING that follows the header. This is a variable

value.

STRING: The data section, which can contain any content. This is a variable value.

END: The format of the data packet. This is a fixed value.

It has been found that traditional black box testing techniques cannot achieve high hit rates

when the protocol format is unknown. If the network protocol is jointly determined by the cli-

ent and server API, or when testers have access to the client source code, then these APIs and

the client source code can differ from the test assumptions and affect the test results, resulting

in great differences between the expected and actual test results.

Even if the test has comprehensive knowledge of a known network protocol, it is still quite

difficult to construct a client test program based on that network protocol. Moreover, test pro-

grams for other protocols may be unavailable, which wastes resources.

Fig 3 shows that the fixed values QUES and END in the packets must be known. Thus legit-

imate test packets can be created only when the protocol format is well understood. The

Fig 2. Vulnerability detection in C-S mode.

https://doi.org/10.1371/journal.pone.0186188.g002

Fig 3. Protocol format analysis model.

https://doi.org/10.1371/journal.pone.0186188.g003

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 5 / 14

https://doi.org/10.1371/journal.pone.0186188.g002
https://doi.org/10.1371/journal.pone.0186188.g003
https://doi.org/10.1371/journal.pone.0186188

proposed method is quite different from the random fuzzing technology and can achieve bet-

ter results.

Length domain field matching

Traditional black box tests are designed using the Perl scripting language to generate network

data. This approach often replaces characters with long strings to find buffer overflow vulnera-

bility. But when this technique is extended to more complex protocols, such as protocols

formed of several layers (for example, the OSI seven-layer protocol model), this method is

invalid. In a multilayer protocol, the sizes of each layer are associated, with the objective of pre-

venting simple network data package imitations. In fact, most of today’s protocols are depen-

dent on other protocols, such as HTTP.

Any protocol can be divided into a length domain and a data domain. However, for test

subjects to construct their scripts, it is necessary to know the lengths of all the higher-level pro-

tocols to construct the underlying data package. If the relationships between the layers are not

addressed well, the data packets will be rejected by the server.

For example, when a test tries to send an extra-long string to a particular application,

replacing a character with an extra-long string is not easy. The tester must also dynamically

update the length field in the HTTP header. Moreover, more complex protocols include more

length fields that need to be updated. Thus, the traditional fuzzing method that sends random

data packets will simply waste time due to mismatched network packets.

However, construction a function to calculate the length of each string for various protocols

is difficult, and the reusability of such a function is not high. As a result, a technical framework

is needed to isolate the underlying protocol and the lengths of the known high level protocols.

For the artificial simulation protocol format, the best way is to consider the protocol as a long

string of characters rather than as a multilayer network protocol model. The block-based pro-

tocol description language allows a tester to create many data blocks and bind them to the

lengths of each domain. In this way, after the data block size is changed by replacing a shorter

string with a longer one, the tester could recalculate the data block size accurately and send a

request containing the correct length value.

Test script construction based on block-based language

The block-based protocol description language is used to solve the dynamic matching problem

of the length domain field, which can reduce the size of the fuzz input space significantly. Gen-

erally, protocol analysis methods grab a sample package and then parse the protocol format.

Automated capture tools are used to grab sample packages from the network. In this paper,

Wireshark 2.0.2.0 is used as the protocol grabbing and recognition engine. Wireshark can

identify more than 935 different protocol formats.

Based on an understanding of the protocol format, the next step is to write test scripts.

Typically, manually written scripts often generate errors. Traditional vulnerability detection

techniques show that writing test scripts is the most time-consuming portion of the task. Wire-

shark uses a PDML file as the tool to achieve test script automation.

To perform vulnerability detection more efficiently, protocol data packet construction is

vital. Good test cases should conform to the network protocol, yet be able to contain deformed

data packets. In this case, a deformity means the possibility that a packet will cause a vulnera-

bility. To do this, test script construction based on the block-based protocol description lan-

guage is introduced to specify the method and content of test data packages.

In the block-based protocol description language, a protocol format is divided into a length

domain field and a data domain field. For manual analysis, a network protocol can be

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 6 / 14

https://doi.org/10.1371/journal.pone.0186188

considered as a long string of characters rather than as the traditional multi-layer protocol

model. The main functions available in the block-based protocol description language are

listed in Table 1.

Test script construction is an important component of vulnerability detection. Using the

block-based protocol description language, the content that conforms to a protocol can be eas-

ily constructed. The key procedure is the conversion of PDML files using the block-based

language.

The function of PD2AD [12] is to convert the PDML files, which contain protocol packets

captured by Wireshark, into AD format. As long as the protocol is supported by Wireshark,

the PDML file format can be converted successfully. For protocols that Wireshark does not

recognize, we can still use the PDML file to parse the protocol by calling a custom function.

The major structural morphology is shown in Table 2.

Binary reverse engineering based on the GA model

Binary reverse engineering based on the GA model includes four procedures: evaluation of

fuzz testing validity, design of coding mode, design of fitness function and genetic operations.

An evolutionary fuzz testing method is designed to focus on high code coverage. In the pro-

posed method, functions and basic blocks are identified using static analysis tools. Next, we set

a break point on the corresponding function or basic block. Then, seed test cases are produced

using the GA model. The fitness function selects the best test cases, and the next test set gener-

ation is constructed using reproduction, crossover and mutation.

Evaluation of fuzz testing validity

The key issue in evaluating the validity of fuzz testing is how to measure the adaptability of the

test data. Here, we consider the code coverage that can be achieved as the metric. Code

Table 1. Main functions in the block-based protocol description language.

No Function Description

1 string(“dummy”) Define a constant character

2 string_uni(“dummy”) Define a constant character width character

3 send(“block”) Send data block

4 recv(“block”) Receive data block

5 fuzz_ string(“dummy”) Transform fuzz character to dummy

6 fuzz_ string_uni(“dummy”) Transform fuzz width character to dummy

7 fuzz_ hex(0xff ff \xff) Return hexadecimal value of fuzz

8 block_ size_ b32(“block”) Define a 32-bit big-endian data block

9 block_ size_ l32(“block”) Define a 32-bit little-endian data block

10 block_ size_ b16(“block”) Define a 16-bit big-endian data block

11 block_ size_ l16(“block”) Define a 16-bit little-endian data block

12 block_ size_ 8(“block”) Define an 8-bit data block

13 block_ size_ hex_ string(“block”) Define a data block of hexadecimal size

14 block_ size_ dec_ string(“block”) Define a data block of decimal size

15 hex(0x0a 0a \x0a) Define a hexadecimal constant character

16 block_ begin(“block”) Define the start point of a block

17 block_ end(“block”) Define the end point of a block

18 block_ crc32_ b(“block”) Define crc32 in a big-endian data block

19 block_ crc32_ l(“block”) Define crc32 in a little-endian data block

20 hex(0x0a 0a \x0a) Define a hexadecimal constant character

https://doi.org/10.1371/journal.pone.0186188.t001

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 7 / 14

https://doi.org/10.1371/journal.pone.0186188.t001
https://doi.org/10.1371/journal.pone.0186188

coverage is a measure used to determine how much code has been executed and can be applied

to both source code and binary files, although it is usually applied to source code. Code cover-

age is an important indicator that can both reflect test case coverage and measure test progres-

sion. Based on testing requirements, code coverage can be subdivided into: statement

coverage, decision coverage, condition coverage, path coverage, and so on.

Code coverage is a very important index in the process of fuzz testing, which can help to

better carry out fuzz testing. First code coverage rate is beneficial to evaluate the fuzzing overall

test completion, it shows what code need to focus and guides the generation of new test cases

to help find more potential vulnerability; on the other hand, a lot of repeated operations could

be avoided by analyzing the code coverage to improve the efficiency of fuzz testing. When ana-

lyzing code coverage, it can be found that many fuzzing template tests, such as for database sys-

tem function test cases, almost covered the same code block, so as long as the execution of a

test case is equivalent to the execution of all the cases, which can significantly improve the effi-

ciency of fuzz testing.

It is both time consuming and unnecessary to step through a complete program to evalu-

ate code coverage. Instead, there are two main methods for evaluating code coverage. First,

considering how functions are implemented, each function will have an entry point, and

generally has a return point (unless a fatal exception occurs during function execution). Con-

sequently, code coverage can be evaluated by tracing the function calls. Second, we also take

basic blocks into consideration for code coverage. A basic block is defined as a sequence of

instructions that are guaranteed to execute in sequence. By tracking the implementation of

basic blocks (which involves tracking instruction execution), code coverage can be calculated

accurately.

The GA model

The GA [13] is based on ideas taken from natural selection. Through the design of a fitness

function and the processes of genetic variation, the algorithm is intended to find a global opti-

mal solution using an adaptive search method. In the GA, the concept of the survival of the fit-

test from natural selection is important and is translated to some index that represents a

selection mechanism for each population generation. The GA has unique advantages in solv-

ing nonlinear search problems. The GA generally follows this process.

Table 2. Design of structural morphology.

//define major structural morphology

typedef struct configuration

{

char *xml_filename; //point to XML-PDML file pointer

int invert; //define packet packet > send = 0; second packet > send=1

unsigned int packet_counter; //number of packet grabbed

unsigned int protco_counter; //number of protocol type

unsigned int transport_type; //type of transform protocol:tcp=1;udp=2;

unsigned int ip_clinet; //ip address of the client

unsigned short port_server; //port of the client

unsigned int ip_server; //ip address of the server

unsigned short port_server; //port number of the sever

unsigned int ip_pkt; //ip address of the current packet

unsigned short port_pkt; //port number of the current packet

unsigned int send; //send=1 means send data, else means receive data

xmlDocPtr doc; //including tree stuctral pointer

XmlNodePtr cur; //point to single node pointer

. . .

} config;

https://doi.org/10.1371/journal.pone.0186188.t002

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 8 / 14

https://doi.org/10.1371/journal.pone.0186188.t002
https://doi.org/10.1371/journal.pone.0186188

First, an initial population is generated. In this process, we need to encode groups based on

specific issues to better adapt to different search conditions. Then, the GA uses a fitness func-

tion to calculate the fitness of each chromosome. The fitness function is defined by the user of

the algorithm based on problem-oriented selection criteria. After calculating the fitness func-

tion value of each chromosome, three genetic operators named reproduction, crossover and

mutation are applied, a new population is generated to simulate the survival of the fittest auto-

matically. This process continues until a termination condition is reached or the algorithm has

been repeated N times. At that point, the GA terminates, yielding the optimal solution.

Design of coding mode

The key to evolutionary fuzz testing using the GA is to transform the problem of test case opti-

mization and automation for protocol analysis by using the GA to find optimal solutions. The

first step in this transformation is to convert the parameters of the actual problem space to a

representative individual, which is composed of genes. This process is called coding, and it is a

data representation of the test cases.

To meet the GA’s requirements for crossover and mutation operations, each test case must

be expressed as a combination of genes. During the process of evolution, if the test case is com-

posed of a single gene, the protocol constraints between individual elements can easily be

destroyed. Thus, the coding mode is slightly more complex than a single gene structure.

An interaction between a client and a server is called a session, during which a data packet

is sent to the target application. Each session consists of a number of legs, and each leg contains

numerous tagged nodes named tokens. Each token is a single data item that can include both

data type fields or data content fields such as field data length, string type data, binary type

data, ans so on. To avoid premature convergence of the simple GA, a nested structure called a

session pool is used in practical coding implementations. A session pool consists of several

ordered sessions. The size of session pool can be set by the max number of session, the max

number of legs and the max token of each leg. The initialization is based on seed or random.

For convenience and simplicity, we choose the binary coding mode. In this mode, every ele-

ment of the parameter vector is coded as a string consisting of zeros and ones.

Design of fitness function

A fitness function is a measurement standard applied to the test cases in the GA model. The

GA does not use external information during the process of evolution; instead, only the fitness

function is used to search the population. Thus, the fitness function determines the evolution-

ary direction of the population. When the fitness function is improperly designed, some

extraordinary individuals will occur at the early stages of the genetic model, which affects the

global optimization performance.

In fuzz testing, a good test case is a combination of data that can trigger a program excep-

tion. The goal of evolutionary fuzz testing is to analyze the protocol automatically. Therefore,

good test cases should be designed in accordance with the protocol provisions. When more of

the test data conforms to the protocol format, the possibilities for processing the test cases

through the network increase, potentially triggering more vulnerabilities.

In this paper, the target binary function and basic block entry address are extracted with

static analysis. Then we set a breakpoint on the target function or basic block entry address

using a debugger. During fuzz testing, we record coverage during execution of the predefined

breakpoint test cases, and calculate the code coverage using the hit rate of the predefined

breakpoints. The fitness function designed not only considers the hits on the self-session pool

but also their affect on all session pools.

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 9 / 14

https://doi.org/10.1371/journal.pone.0186188

Reproduction, crossover and mutation

Reproduction is usually the first operator applied to a population. The reproduction operator

is intended to make the chromosomes with higher fitness values survive at a higher probability.

The roulette-wheel selection method [14] is usually chosen as the realization principle of the

reproduction operator.

The role of the crossover operator is to mix the contents of a pair of chromosomes to

improve population diversity. In a single-point crossover operator, the two strings are cat at an

arbitrary place and the same one portion of these two strings are swapped with each other to

create two new strings. An example of crossover operator is shown in Fig 4. The crossover rate

controls the frequency of the crossover operator. With a higher crossover rate, the new struc-

tures are introduced into the population more quickly. However, too high crossover rate

causes high-performance structures are discarded faster than selection can produce improve-

ments. Too low crossover rate causes the search gets stuck with the lower exploration rate.

The role of the mutation operator is to modify the values of some encoded chromosomes.

Mutation helps prevent the search process from falling into a local maximum, but a mutation

rate that is too high can lead to huge fluctuations. The mutation operator changes a 0 to a 1

and vice versa with a small mutation probability. An example of mutation operator is shown

in Fig 5.

Experiments and results

In this section, we use the proposed method to test FTP and TFTP protocols. The experiment

involves a QEMU virtual platform with a host machine and a guest machine. The host

machine contains an Intel1 Core™ i7-6700K CPU running at 4 GHz with16 GB memory and

the Ubuntu 14.04 operating system. The guest machines are running Linux Debian 7 and Win-

dows XP SP3 operating systems. The target programs execute in the guest machine. The proto-

type fuzzing system and the general fuzzing tool SPIKE (S1 File) execute on the host machine.

FTP protocol test

The File Transfer Protocol (FTP) is a standard network protocol used to transfer files between

a client and server on a computer network. The FTP protocol establishes a control connection

Fig 4. An example of crossover operator.

https://doi.org/10.1371/journal.pone.0186188.g004

Fig 5. An example of mutation operator.

https://doi.org/10.1371/journal.pone.0186188.g005

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 10 / 14

https://doi.org/10.1371/journal.pone.0186188.g004
https://doi.org/10.1371/journal.pone.0186188.g005
https://doi.org/10.1371/journal.pone.0186188

and a data connection and has two different modes: PASV and PORT. Our experiment uses

the PORT method as the test mode.

Usually, the protocol analysis method uses packet capture tools to collect data packets dur-

ing communications between the client and the server. In this experiment, Wireshark version

2.0.2.0 is selected as the packet capture tool. To date, Wireshark can identify more than 930

protocol formats. It saves captured packets as PDML files. Based on the syntax parsing and

block-based protocol description language, we can easily convert files in PDML format to a

related test script. Some partial test script results are shown in Table 3.

We chose seven real-world FTP programs as targets to test several known vulnerabilities.

These programs are Freefloat FTP Server, Core FTP, PCMan FTP Server, SurgeFtp Server,

Konica Minolta FTP Utility, and KnFTPd (S2 File). Through pre-analysis, we found that these

FTP programs have many functions. We removed some functions, including startup, shut-

down, configuration files operations, and others. Instead, our experiments focus on dangerous

functions that are directly related to the attack surface, which comprise approximately 10% of

the total.

To compare the effects of vulnerability detection, we compared our method with SPIKE

[15] based on the experimental objective using the general fuzz method. A comparison of the

results of the proposed method and SPIKE for vulnerability detection is shown in Table 4. The

experimental results validate that our system can successfully detect known vulnerabilities

more effectively than SPIKE.

TFTP protocol test

TFTP stands for Trivial File Transfer Protocol. TFTP is a simplified version of the FTP proto-

col and is also used for transferring files between network devices.

We choose six real-world TFTP programs as the targets to test several known vulnerabili-

ties. The targets are Tftpd32, 3Com 3CTftpSvc, Cisco Tftp Server and Serva32 (S3 File).

For this experiment, we also selected SPIKE as the comparison method. Table 5 shows a com-

parison of the results of the proposed method and SPIKE in vulnerability detection. Again, the

results validate that our system is more effective than SPIKE in detecting known vulnerabilities.

Conclusions

Fuzz testing technology is currently used widely for vulnerability detection. Its principles are

simple and the process of finding vulnerabilities that can be reproduced is also convenient.

Table 3. Description of FTP protocol based on block-based language.

//description of tcp FTP protocol based on block-based language

block_begin(“packet_1”); //fixed value

string(“QUES”); //fixed value

block_size_b32(“string_1”); //big endian 32 bits size

fuzz_string(“***”); //fuzzing data

block_end(“string_1”);

string(“END”);

string(“QUES”); //fixed value

block_size_b32(“string_2”); //big endian 32 bits size

fuzz_string(“***”); //fuzzing data

block_end(“string_2”);

fuzz_string(“END”);

hex(0a); //\n

. . .

block_end(“packet_1”);

send(“packet_1”); //tcp

. . .

https://doi.org/10.1371/journal.pone.0186188.t003

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 11 / 14

https://doi.org/10.1371/journal.pone.0186188.t003
https://doi.org/10.1371/journal.pone.0186188

However, because of the complexity of the targets, fuzz testing also has some defects and limi-

tations, particularly in detecting vulnerabilities in network protocols.

This paper presents a novel method of fuzz testing that fully considers the characteristics of

network protocol vulnerability detection by combining network traffic analysis and binary

reverse engineering. The proposed method introduces the block-based protocol description

language for protocol format analysis and uses the genetic algorithm to generate test cases that

focus on code coverage. Through experiments, we show that our method is both effective and

efficient.

In possible future work, we plan to use our method to test other complex network protocols

and continue to strive to improve our method’s performance.

Supporting information

S1 File. SPIKE.

(ZIP)

S2 File. FTP programs.

(ZIP)

S3 File. TFTP programs.

(ZIP)

Table 5. Comparison of the proposed method and SPIKE in vulnerability detection with TFTP protocol programs.

Software

Name

Software

Version

Vulnerability

Number

Vulnerability

Type

The Proposed

Method

SPIKE

Tftpd32 3.51.0.0

3.0.1

CVE-2013-6809

CVE-2006-6141

Format String

Buffer Overflow

S

S

S

S

3Com

3CTftpSvc

2.0.1r CVE-2006-6183 Buffer Overflow S S

Cisco Tftp

Server

1.1 CVE-2010-1174 Denial of Service F F

Serva32 2.1.0 CVE-2013-0145 Buffer Overflow S F

Detection Rate 80.0% 60.0%

https://doi.org/10.1371/journal.pone.0186188.t005

Table 4. Comparison of the proposed method and SPIKE in vulnerability detection using applications running the FTP protocol(S: Success, F:

Failure).

Software

Name

Software

Version

Vulnerability

Number

Vulnerability

Type

The Proposed

Method

SPIKE

Freefloat

FTP Server

1.0 CVE-2012-5106 Buffer Overflow S S

Core

FTP

2.1

build 1612

CVE-2009-3484 Buffer Overflow S S

PCMan

FTP Server

2.0.7 CVE-2015-7601

CVE-2013-4730

Directory Traversal

Buffer Overflow

F

S

F

F

SurgeFtp

Server

2.3a1 CVE-2013-4742 Buffer Overflow S S

Konica

Minolta

FTP Utility

1.0 CVE-2015-7767

CVE-2015-7768

Buffer Overflow

Buffer Overflow

S

S

S

S

KnFTPd 1.0.0 CVE-2012-5905 Buffer Overflow S S

Detection Rate 87.5% 75%

https://doi.org/10.1371/journal.pone.0186188.t004

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186188.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186188.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186188.s003
https://doi.org/10.1371/journal.pone.0186188.t005
https://doi.org/10.1371/journal.pone.0186188.t004
https://doi.org/10.1371/journal.pone.0186188

Author Contributions

Conceptualization: Shameng Wen.

Data curation: Shameng Wen.

Formal analysis: Shameng Wen.

Funding acquisition: Shameng Wen.

Investigation: Shameng Wen.

Methodology: Shameng Wen.

Project administration: Shameng Wen.

Resources: Shameng Wen, Qingkun Meng.

Software: Shameng Wen.

Supervision: Shameng Wen, Chao Feng, Chaojing Tang.

Validation: Shameng Wen.

Visualization: Shameng Wen.

Writing – original draft: Shameng Wen.

Writing – review & editing: Shameng Wen.

References

1. Kaksonen R, Laakso M, Takanen A. Software security assessment through specification mutations and

fault injection. In: Communications and Multimedia Security Issues of the New Century. Springer;

2001. p. 173–183. Available from: http://link.springer.com/chapter/10.1007/978-0-387-35413-2_16.

2. Brumley D, Caballero J, Liang Z, Newsome J, Song D. Towards Automatic Discovery of Deviations in

Binary Implementations with Applications to Error Detection and Fingerprint Generation. In: USENIX

Security Symposium; 2007. p. 15. Available from: https://www.usenix.org/events/sec07/tech/brumley/

brumley_html/paper.html.

3. Dunlap GW, King ST, Cinar S, Basrai MA, Chen PM. ReVirt: Enabling intrusion analysis through virtual-

machine logging and replay. ACM SIGOPS Operating Systems Review. 2002; 36(SI):211–224. https://

doi.org/10.1145/844128.844148

4. Leita C, Mermoud K, Dacier M. Scriptgen: an automated script generation tool for honeyd. In: Computer

Security Applications Conference, 21st Annual. IEEE; 2005. p. 12–pp. Available from: http://ieeexplore.

ieee.org/abstract/document/1565248/.

5. Cui W, Paxson V, Weaver N, Katz RH. Protocol-Independent Adaptive Replay of Application Dialog. In:

NDSS; 2006. Available from: http://www.internetsociety.org/sites/default/files/protocol_independent_

replay.pdf.

6. Chen K, Zhang YJ. Statically-directed dynamic taint analysis. Chinese Journal of Electronics. 2014; 23

(1):18–24.

7. Portokalidis G, Slowinska A, Bos H. Argos: an emulator for fingerprinting zero-day attacks for advertised

honeypots with automatic signature generation. In: ACM SIGOPS Operating Systems Review. vol. 40.

ACM; 2006. p. 15–27. Available from: http://dl.acm.org/citation.cfm?id=1217938.

8. Newsome J, Song D. Dynamic taint analysis for automatic detection, analysis, and signature generation

of exploits on commodity software. 2005.

9. Caballero J, Yin H, Liang Z, Song D. Polyglot: Automatic extraction of protocol message format using

dynamic binary analysis. In: Proceedings of the 14th ACM conference on Computer and communica-

tions security. ACM; 2007. p. 317–329. Available from: http://dl.acm.org/citation.cfm?id=1315286.

10. Wondracek G, Comparetti PM, Kruegel C, Kirda E, Anna SSS. Automatic Network Protocol Analysis.

In: NDSS. vol. 8; 2008. p. 1–14. Available from: http://seclab.tuwien.ac.at/people/pmilani/ndss08-anpa.

pdf.

11. Eronen J, Laakso M. A case for protocol dependency. In: Critical Infrastructure Protection, First IEEE

International Workshop on. IEEE; 2005. p. 9 pp.

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 13 / 14

http://link.springer.com/chapter/10.1007/978-0-387-35413-2_16
https://www.usenix.org/events/sec07/tech/brumley/brumley_html/paper.html
https://www.usenix.org/events/sec07/tech/brumley/brumley_html/paper.html
https://doi.org/10.1145/844128.844148
https://doi.org/10.1145/844128.844148
http://ieeexplore.ieee.org/abstract/document/1565248/
http://ieeexplore.ieee.org/abstract/document/1565248/
http://www.internetsociety.org/sites/default/files/protocol_independent_replay.pdf
http://www.internetsociety.org/sites/default/files/protocol_independent_replay.pdf
http://dl.acm.org/citation.cfm?id=1217938
http://dl.acm.org/citation.cfm?id=1315286
http://seclab.tuwien.ac.at/people/pmilani/ndss08-anpa.pdf
http://seclab.tuwien.ac.at/people/pmilani/ndss08-anpa.pdf
https://doi.org/10.1371/journal.pone.0186188

12. Banerjee U, Vashishtha A, Saxena M. Evaluation of the Capabilities of WireShark as a tool for Intrusion

Detection. International Journal of computer applications. 2010; 6(7). https://doi.org/10.5120/1092-

1427

13. Goldberg DE, Holland JH. Genetic algorithms and machine learning. Machine learning. 1988; 3(2):95–

99. https://doi.org/10.1023/A:1022602019183

14. Pencheva T, Atanassov K, Shannon A. Modelling of a roulette wheel selection operator in genetic algo-

rithms using generalized nets. Int J Bioautomation. 2009; 13(4):257–264.

15. Aitel D. The advantages of block-based protocol analysis for security testing. Immunity Inc, February.

2002; 105:106.

Vulnerability based on network and binary

PLOS ONE | https://doi.org/10.1371/journal.pone.0186188 October 19, 2017 14 / 14

https://doi.org/10.5120/1092-1427
https://doi.org/10.5120/1092-1427
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1371/journal.pone.0186188

