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Abstract

The Late Cenozoic East Asian winter monsoon (EAWM) enhancement has been attributed

to several factors, such as uplift of the Tibetan Plateau, retreat of the Paratethys Sea, and

global cooling related to polar ice volume increment. However, the fundamental forcing

factors remain enigmatic due to the absence of long and continuous climate records and

sensitive indicators. Here we reanalyzed the published grain-size record of Sikouzi fine

sediments in the western Chinese Loess Plateau through end-member (EM) modeling. The

results indicate that EM 2 with grain-size peaks between 10–100 μm decreased in content

from 20.1 to 17 Ma and stepwise increased from 17 to 0.07 Ma during the following six

stages (17–15 Ma, 15–12 Ma, 12–8 Ma, 8–6 Ma, 6–4 Ma and 4–0 Ma). Such varying trends

can be successively correlated in seven stages with the integrated benthic δ18O record,

implying that global warming weakened the EAWM from 20.1 to 17 Ma and global cooling

has stepwise strengthened the EAWM since 17 Ma. Therefore, we conclude that global tem-

perature change played a major role on the evolution of EAWM during the Neogene period.

By contrast, Late Cenozoic palaeogeographic reorganization caused by uplift of the Tibetan

Plateau and retreat of the Paratethys Sea contributed less to the evolutionary evolution of

EAWM. Spectral analysis of the EM 2 data first provided direct evidence of orbitally influ-

enced deposition in the study area and thus the EAWM variations during the Neogene

period. The 100-kyr period became weak since ~10 Ma, possibly due to the decrease in sen-

sitivity of a more stable, continental-scale ice sheet in Antarctica to local insolation forcing,

deserving further investigation.
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1. Introduction

Dust has extensively deposited in the Chinese Loess Plateau (CLP) at least since the Late Oligo-

cene [1–4]. Most loess deposits are generally underlain by Miocene to Pliocene red clay [4–

10]. Both loess and red clay are dominated by silt particles. It is a common sense that the Qua-

ternary loess was generally transported by the East Asian winter monsoon (EAWM) though

dry riverbeds have recently been recognized as important dust sources for the CLP and, by

inference, for the downwind North Pacific Ocean [11–13]. But the pre-Quaternary dust in the

CLP has different interpretations. For example, grain-size records of bulk samples from four

sections (Lingtai, Xifeng, Zhaojiachuan and Luochuan) in the central CLP are used to reveal

variations in the EAWM and westerly circulation [9] while quartz grain size is selected as a

winter monsoon index [10]. Accordingly, a new continuous sensitive record is needed to

explore long-term evolution of the EAWM so that its controlling factors can be addressed.

In semi-arid to arid regions, dust particles can be easily trapped by moist surfaces including

water bodies and vegetated surfaces like in a basin. A well-exposed, 2880-m-thick fluviolacus-

trine sequence at Sikouzi, Guyuan, Ningxia, China (Fig 1), suggested that a grand basin long-

term developed in the eastern Liupan Mountains in the western CLP during the Neogene

period, which was demonstrated generally continuous by magnetostratigraphic investigation,

spanning from 20.1 to 0.07 Ma [14]. Rare earth element patterns and sedimentary features of

representative samples from the Sikouzi sequence pointed to the windblown origin of Sikouzi

fine sediments [15]. This is well consistent with recent provenance recognition of Late Ceno-

zoic lacustrine sediments in North China [16–17]. Although our previous study presented a

rough three-stage evolution of the Sikouzi grain-size record [15], detailed numerical analysis

was not conducted and more information on climate change remains to be detected.

2. End-member modeling of the grain-size record

Numerical unmixing of grain size distribution data into constituent components, known as

end-member analysis (EMA), can yield valuable information on geological processes and

palaeo-environmental changes [18–20]. In this study, we reanalyzed the Sikouzi grain-size

data composed of 3398 samples [15] using a new developed GUI software of AnalySize for pro-

cessing and unmixing grain size data [19]. In the correlation map between multiple correlation

coefficient (R2) and end-member number (Fig 2A), end-member modeling improved greatly

from 2 to 3 end members, but improved fairly less from 3 to 4 end members. Given that expla-

ining the observed compositional variation requires a minimum number of end members in

EMA [18], three end members were modeled in this study and their peak values concentrated

at 1–10 μm (EM 1), 10–100 μm (EM 2), and more than 100 μm (EM 3), respectively (Fig 2B).

Noticeably, the study area lies in the western CLP and remained arid to semi-arid during the

Neogene period [21–22], which is supported by the spatial and temporal variations in Fupingo-
pollenites percentages across Inner and East Asia [23]. Previous studies suggest that the clay

mineral composition in loess and soil was of clastic origin [24] and that some clay-size material

is formed in low energy aeolian environments [25] or mountain processes such as glacial

grinding, frost weathering, salt weathering and even earthquakes [26–30], and thus variation

in EM 1 reflected a background deposition of dust. By contrast, abundance fluctuation in EM

2 probably indicated variations in the East Asian winter monsoon (EAWM) and the EM 3

fraction probably came from nearby the study area [15]. Correspondingly, 44 representative

samples of Sikouzi fine sediments were selected and divided into three groups, and their rela-

tive and accumulative frequency curves were presented in Fig 3. They seemingly reflect differ-

ent dynamics of transportation.
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3. Provenance analysis of C-M pattern

C-M patterns comprised by the one percentile (C) and the median diameter (M) are character-

istic of the depositional agent [31], and different parts of a C-M pattern reflect different pro-

cesses of transportation and deposition [32]. We compared our 44 representative samples with

the Mississippi river ones [31] in Fig 3. Distribution of the Mississippi river samples showed

an L shape with knee point closest to the C = M line, indicating that only a few of river samples

had a relatively good sorting. In contrast, 44 Sikouzi fine samples (Fig 3), and even almost all

of the Sikouzi samples, whether the fine (C < 135 μm) or the relatively coarse (C > 135 μm)

ones (Fig 4), are parallel to sub-parallel with the C = M line, implying that they had much bet-

ter sorting than the Mississippi river samples [31–32]. This further supports the windblown

origin of Sikouzi fine sediments [15], and is also consistent with our recent major and minor

Fig 1. Digital elevation model (DEM) map of northern China. Zone I-sandy loess; zone II-loess; zone III-

clayey loess. The decrease in loess grains from northwest to southeast is consistent with the northwesterly

winter monsoon winds over East Asia. The desert and mountains are indicated (adapted from [55]).

https://doi.org/10.1371/journal.pone.0186153.g001

Fig 2. Correlation map between multiple correlation coefficient (R2) and number of end-member (a), and

three selected end members (b).

https://doi.org/10.1371/journal.pone.0186153.g002
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element analysis (under submission). Furthermore, C values are usually more than 200 μm for

river samples and M values are often less than 10 μm for deep sea or deep lake samples [32].

These samples distribute in different areas from our samples. Thus these distribution features

can readily differ the Sikouzi windblown sediments from river or deep lake ones.

Therefore, the relatively coarse ones with C values> 135 μm (only 290 in all, ~8.5% of the

total 3398 samples), like the relatively fine ones with C values< 135 μm, are possibly wind-

blown in origin as well, because they are concentrated in the CM plot and are parallel to the

C = M line (Fig 4), showing a feature of good sorting for aeolian deposit. These relatively

coarse particles were probably transported by ambient wind [33–35] or gust [36] from nearby

sources.

4. Discussion

In this study, each of three end-members varied from zero to 100% but had different averages

(Fig 5). EM 1 had a mean value of 47.4% while EM 2 had an average of 38.4%. By contrast, EM

Fig 3. Relative and accumulative frequency of 44 representative samples selected from the Sikouzi

grain-size sequence are correlative to 3 end members in Fig 2, and their distribution in a C-M plot (red

cross) is in contrast with that of the Mississippi river samples (gray triangles, [31]). The former is

parallel to line C = M while the latter shows an L shape.

https://doi.org/10.1371/journal.pone.0186153.g003

Fig 4. Grain size distribution of the Sikouzi fine samples in a C-M plot during past 20 Ma and during

different time intervals.

https://doi.org/10.1371/journal.pone.0186153.g004
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3 had a low mean value of 14.2%. In order to present a clear varying trend for each end-mem-

ber, we run a linear fitting and averaging with a window width of 11 data points for each time

interval. EM 1 generally increased in abundance from 20.1 to 17 Ma and stepwise decreased

from 17 to 0.07 Ma (Fig 5A). On the contrary, percentage of EM 2 decreased from 20.1 to 17

Ma and stepwise increased from 17 to 0.07 Ma (Fig 5B). Intriguingly, EM 3 also showed a simi-

lar varying trend to EM 2 except the last time interval since 4 Ma (Fig 5C).

Such clear varying trends for three end-members of the Sikouzi grain-size record in Ning-

xia can be well correlated with the benthic foraminiferal composite δ18O record [37] (Fig 5D).

Given that shifts in δ18O are believed to reflect changes in global ice volume and thus varia-

tions in global temperature [37–39], we believe that shifts in δ18O were tightly associated with

changes in global temperature during the late Cenozoic period. From 20.1 to 17 Ma, both EM

2 and the δ18O curve showed a decreasing trend, implying that global warming during this

period weakened the EAWM. From 17 to 0.07 Ma, the δ18O curve, EM 2, and EM 3 showed a

stepwise increasing trend (Fig 5), implying that global cooling stepwise strengthened the

EAWM since 17 Ma. The middle-late Miocene transition and the significant development of

Fig 5. Variations of three end members of the Sikouzi grain-size sequence spanning the past 20 Ma

plotted against paleomagnetic ages and its correlation with the integrated δ18O curve [37]. For each

time interval, the solid line is linear fitting and the solid curve is averaging with a window width of 11 data

points.

https://doi.org/10.1371/journal.pone.0186153.g005
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East Antarctic Ice Sheet probably not only strengthened the meridional temperature gradients

and global aridity in the middle-high latitudes, but also intensified the oceanic and atmo-

spheric circulation and the major falling of global sea level [21–22]. Several positive feedback

mechanisms possibly modulated and magnified the mid-Miocene global cooling, including

vegetation changes, greenhouse gas (atmospheric CO2 and water vapor) fluctuations as Jiang

et al. [39] proposed.

Noticeably, from 6 to 4 Ma, whether the δ18O curve, EM 2 or EM 1, showed a slow variation

or maintained relatively stable, probably because the climate in Asia corresponded to global

warming during the Early Pliocene [40–41]. Supporting this viewpoint, sea surface tempera-

ture had almost no cooling from 6 to 4 Ma in the northwestern Pacific [42].

From 4 to 0.07 Ma, both the δ18O curve and EM 2 showed a rapid increase to the highest

values while EM 1 declined to the lowest for the whole sequence (Fig 5), indicating prominent

increase in polar ice volume was responsible for significant strengthening of the EAWM over

the past 4 Ma [15, 37].

Under the age control of biostratigraphy and magnetostratigraphy [14], the EM 2 data of

the Sikouzi grain-size record were detrended with a first difference filter to remove low-fre-

quency variance. We used the REDFIT38 program [43] to analyze the EM 2 data deducted by

LOESS (locally weighted scatterplot smoothing). Spectral analysis shows a clear forcing at

eccentricity (405 kyr and 100 kyr) and obliquity (41 kyr) (Fig 6A), for the first time providing

direct evidence of orbitally influenced fluctuating cycles of dust deposition in the study area

and thus the EAWM variations during the Neogene period. Furthermore, we used the wtc-r16

Matlab package to conduct continuous wavelet analysis [44] on the detrended EM 2 data. The

results show that the 405-kyr period was generally strong over the past 20 Ma and got obvi-

ously stronger during the Middle Miocene Climate Optimum (MMCO). Interestingly, during

the same period, both the benthic and planktonic δ13C records at Site U1337 in the east equa-

torial Pacific reveal marked 405-kyr carbon isotope cycles [45] as in ocean carbon reservoir

[46], probably indicating that the long eccentricity (405-kyr) paced carbon inputs from terres-

trial weathering to ocean [45] and possibly drove the East Asian summer monsoon [47]. The

100-kyr period became weak after ~10 Ma (Fig 6B), possibly due to the decrease in sensitivity

of a more stable, continental-scale ice sheet in Antarctica to local insolation forcing [48].

Noticeably, the 100-kyr period became strong at ~8.5–7 Ma, which is well correlated with the

analyzed results of Late Miocene lacustrine record from the eastern Qaidam Basin in North-

west China [49], possibly due to Southern Hemisphere insolation-driven Antarctic ice sheet

forcing or ephemeral variations of the Northern Hemispherie ice sheets before 7 Ma [50–51].

This inference is well consistent with the enhanced amplitude variation of the 100-kyr period

during the Mi events [52], implying that the 100-kyr cycle was strengthened at times of glacial

maxima as they were during the Late Pleistocene. Since ~5 Ma, the 100-kyr period showed a

higher variability than before, which is probably associated with the development and fluctua-

tion of bipolar ice volume [47, 53–54]. These deserve further investigation in the future.

5. Conclusion

EMA of the grain-size record of Sikouzi lacustrine sediments in Ningxia indicates that the

varying trend of three end members can be successively correlated in seven stages with the

integrated benthic δ18O record, implying that global warming weakened the EAWM from

20.1 to 17 Ma and global cooling stepwise strengthened the EAWM since 17 Ma. Hence,

we conclude that global temperature related to polar ice volume played a major role on the

long-term evolution of EAWM during the Neogene period. By comparison, Late Cenozoic

palaeogeographic reorganization caused by uplift of the Tibetan Plateau and retreat of the
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Paratethys Sea contributed less to the long-term evolution of EAWM. Spectral analysis of the

EM 2 data first provided direct evidence of orbitally influenced deposition of dust particles in

the study area and thus the EAWM variations during the Neogene period. The 100-kyr period

weakened since ~10 Ma, possibly due to the decrease in sensitivity of a more stable, continen-

tal-scale ice sheet in Antarctica to local insolation forcing, deserving further investigation.
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