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Abstract

In developing nations, many expanding cities are facing challenges that result from the over-

whelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic

flow information is crucial for urban traffic management. The main purpose of this paper is to

develop an adaptive model that can assess the real-time vehicle counts on urban roads

using computer vision technologies. This paper proposes an automatic real-time back-

ground update algorithm for vehicle detection and an adaptive pattern for vehicle counting

based on the virtual loop and detection line methods. In addition, a new robust detection

method is introduced to monitor the real-time traffic congestion state of road section. A pro-

totype system has been developed and installed on an urban road for testing. The results

show that the system is robust, with a real-time counting accuracy exceeding 99% in most

field scenarios.

Introduction

Many large cities in China are suffering from severe traffic problems as their vehicle popula-

tions have become unprecedentedly large. In addition to updating road networks, local gov-

ernments are developing their own intelligent transportation systems (ITSs) to address the

new challenges of traffic crowding. One of the basic components of an ITS is the vehicle count-

ing system, which is designed to collect traffic flow information. In this paper, we focus on

developing a vehicle counting system to be installed in urban bridges and tunnels. The basic

requirements for the new system are as follows: (a) its counting accuracy must be higher than

98%; (b) it must be robust in various weather and light conditions, and it should work well at

night; (c) it must be able to work online continuously for 24 hours a day to count vehicles at

any time and at any site; and (d) the system maintenance should not consume substantial

resources.

There are many ways to detect and count the vehicles driving along a specific road during a

specific time period [1]. Some cities have implemented vehicle counting by deploying induc-

tive loops. These loops provide high precision but are very intrusive to the road and come with

a high maintenance cost [2–4]. Other devices, such as pyroelectric infrared sensors or ultra-

sonic detectors, make vehicle detection suitable for nighttime scenarios and can obtain more
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detailed information about the vehicles, such as width, length, and speed [5–6]. Some other

papers provide qualitative behavior of adaptive vehicle-counting systems [7–11]. However,

these methods are sensitive to noise and weather conditions, making them insufficiently

robust.

In recent years, with the development of advanced computer infrastructure and digital

image processing, the use of video-based technologies in vehicle detection has received

increasing attention. Video sources can provide overall information about the vehicles and are

easy and cheap to both obtain and maintain; thus, video-based technologies are mainstream

methods in vehicle detection tasks.

Saad M. AI-Garn and Adel A. Abdennour adopt an automatic background updating algo-

rithm and incorporate edge detection methods for background subtraction, obtaining a detec-

tion accuracy of nearly 91% [12]. However, the accuracy of conventional methods can also

reach that level. Robert divides vehicle detection into daytime and nighttime detection pro-

cesses to address the different background illumination conditions [13]. Improving the robust-

ness of the system is a good start, but it still fails to consider the specifics of traffic jams, which

would require new technologies, such as a feature-based detection method [14]. Watanabe

et al. [15] construct a system based on machine learning, which employs genetic algorithm and

edge detection methods [16]. The complicated methods show promising results but consume

considerable resources, and ensuring their real-time performance is difficult. Many other sys-

tems, most of which can be derived or expanded from existing systems, focus on vehicle detec-

tion [17–21].

The existing methods have the following deficiencies: (a) their accuracy levels are relatively

low; (b) their detecting and counting methods have not focused on traffic jams, leading to low

robustness, and their performance in bad weather conditions cannot meet the standards;

(c) many of these methods seek to improve the detection accuracy by sacrificing the real-time

performance to some degree; and (d) most of these methods are designed for a common

environment.

To overcome the challenges described above, we constructed an integrated real-time vehicle

counting system with the following concepts: a) a block-wise background update mechanism

to reduce the amount of calculation required and to improve the vehicle detection efficiency;

b) separate algorithms for day and night and for free and congested traffic flows to improve

the robustness of the system; and c) virtual loop, virtual line detection and adaptive vehicle

counting methods for distinct traffic occasions to achieve precise real-time counting. The out-

come system was run in a long-term test, and the test results were collected for validation. The

results indicate that the counting accuracy reaches 99% in most of the tested scenarios. In addi-

tion, the program runs all the time, takes less than 70 ms to process a frame and can handle

most practical scenarios robustly.

This paper is organized as follows. The overall structure of the system is described in Chap-

ter II. The main methods of vehicle detection are detailed in Chapter III. Chapter IV presents

the novel traffic congestion detection technique. In Chapter V, the adaptive vehicle counting

method is introduced. The results and discussions are presented in Chapter VI. We conclude

this paper in Chapter VII.

Overview of the model

The flow chart for the vehicle detection and counting algorithm is shown in Fig 1. The main

configuration parameters, such as virtual coil generation, line detection parameters, threshold

values and night detection area, are predefined manually. The program begins with back-

ground initialization, which paves the way for subsequent processes. When a new frame is
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pushed into the system, the congestion status (congested or free) is determined using the

method described in Chapter IV. Two different paths are then designed, one for congested

traffic and one for free traffic. In one path, virtual coils are generated to count the vehicles in

congested traffic, which are relatively slow. In the second path, a technique based on virtual

line detection records the number of vehicles in free traffic, which are relatively fast. Before the

vehicles are formally detected, some required operations are executed in order, such as funda-

mental image filtering, background subtraction, image segmentation, lamplight suppression

(for nighttime conditions), shadow suppression (for daytime conditions), contour extraction

and filling. When all the steps have been executed, the newly detected vehicles are counted and

stored along with the traffic congestion status.

Vehicle detection method

Background update

Background subtraction is the most common method for identifying moving objects and is

adopted in this paper. Background modelling methods are categorized into non-recursive and

Fig 1. The flow chart of the system.

https://doi.org/10.1371/journal.pone.0186098.g001
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recursive method. Non-recursive methods, for example, frame difference, are highly adaptive

because they use history frames as references but are not sensitive to slowly changing light con-

ditions. Recursive methods, which continuously update the background to produce more ade-

quate results, add strict demands to the anterior background because any error in the initial

model will linger for a long period. Many mathematical models and techniques, such as the

mixture Gaussian model, Kalman filter, optical flow and code book, have been adopted to mit-

igate background subtraction problems. However, complicated models always come with a

trade-off. Most of the models require well-designed initial data or proper training processes.

The time performance of these models is not comparable to that of non-parametric models. In

this paper, we propose a block-wise background updating mechanism that recursively updates

the background using simple equations based on the statistics determined from history frames.

The basis of this method is described below.

An indicator of background update. The core idea of our background update mecha-

nism is that when a pixel p is pure background or is covered by targets for a certain period of

time, the recursive background update should be suspended. The first step is to find an indica-

tor to determine when to update the background.

For any pixel p in a series of consecutive frames I1, I2, . . .IN we assume that the correspond-

ing values are i1,p, i2,p, . . . iN,p. Assuming a uniform load surface and uniform target shells, the

gray level of the pixel can be simulated using the following equation:

in;p ¼ bn;pB ð1Þ

Here, B is the pixel value of the pure background, and β is the ratio between the pixel value

of the target and the background.

bn;p ¼
b;when p is covered by objects

1; otheriwse

(

ð2Þ

If there are N’ frames in the frame series where p is occupied by targets, we can obtain the

pixel expectation:

E ¼
N0

N
bB ð3Þ

Let η = N’ /N. The standard deviation is

StdðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðbn;pB �
N0

N
BÞ

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zð1 � ZÞ

p
bB ð4Þ

Define f(η) as Eq (5):

fðZÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zð1 � ZÞ

p
ð5Þ

f(η) is an inverted parabolic that achieves its extreme value 0.5 when η = 0.5 and βB is the pixel

value of the targets. As can be concluded from Eq (4), when η approaches 0 or 1, Std(p)

approaches 0 with dramatic speed, which indicates that p and its neighborhood are always

pure background or pure targets in the specified frame series. Therefore, it is not necessary to

update the background model in p or its neighborhood. When η is near 0.5, Std(p) is a perfect

approximation of the target pixel value βB, which indicates that the pixel and its neighborhood

are covered by moving targets. Thus, we choose Std(p) as the indicator of the block P that is

centered at p to determine whether to update the background model of P.
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The management of ‘ghosts’. A common problem of most traditional background sub-

traction algorithms is the generation of ghost artifacts. The commonly used equation for back-

ground updating is

Bn;p ¼ ð1 � aÞBn� 1;p þ aIn;p ¼ ð1 � aÞ
nB0;p þ a

Xn

i¼0

ð1 � aÞ
n� iIi;p ð6Þ

When n is sufficiently large, (1-α)nB0,p approaches 0, which indicates that the initial back-

ground matters little in the background update process.

All of the frames when p is covered by target objects constitute a frame set T whose length

is t. Then, Ii,p is expressed by

Ii;p ¼
bB; i 2 T

B; otherwise

(

ð7Þ

Then, we calculate the logarithm of the second item of Eq (6):

log
Xn

i¼0

ð1 � aÞ
n� iIi;p ¼ logBþ logð

X

i2T
ð1 � aÞ

n� i
bþ

X

i2N� T
ð1 � aÞ

n� i
Þ ð8Þ

We assume that there are k uniform vehicles that pass pixel p at the same speed. The vehi-

cles can be represented by V = {v1, v2, . . ., vk}. Each vehicle passed p in l frames. Vehicle vk first

touched pixel p in frame n(vk) and left p in frame n(vk)+l. N contains all the frames in the com-

putation range L whose length is commonly set to be 200. Typically, when α = 0.1, (1-α)200 is

sufficiently small to be neglected. Calculate the two items of Eq (8):

rðnÞ ¼
X

i2T
ð1 � aÞ

L� i
¼ y

L� l
X

y
� nðvkÞð1 � y

l
Þ=ð1 � yÞ ð9Þ

X

i2N� T
ð1 � aÞ

L� i
¼ ð1 � y

L
Þ=ð1 � yÞ � rðnÞ ð10Þ

Where θ = 1-α. After deduction, Bn,p can be obtained:

Bn;p � Bþ ½arðnÞðb � 1ÞB� ð11Þ

As shown in the above equations, the item in the bracket cause ghost artifacts. It is easy to

find that when no vehicles appear in the calculation range ρ(n) = 0 which makes Bn,p equals to

the real background B. To restore B from Bn,p, the value of the formula in brackets should be

determined. Technically, ρ(n) can be calculated by recording the frames when target objects

first touch pixel p and the frame when the object leaves p (to calculate the length l).
To obtain the indicated time, we define a calculation window for block i:

ðfnvðkÞg;bÞ ¼ CWi;Lðai; fi; th1; th2Þ ð12Þ

The length of CW is L. By shifting CWi,L from n to 1, the standard deviation is ai and the

average pixel fi are calculated. th1 and th2 are the specified threshold values. When ai <th1,

CW is covering the time range of pure objects or pure background; otherwise the state of the

pixel is changing. If the current background model is bi, then the value of |fi − bi| can be used

to determine whether the pixel is covered by objects. We can obtain the nv(k) by recording the

frame that object v(k) first touch pixel p. For every frame, if |fi − bi|> th2, then we record its

Urban video-based vehicle-counting system
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value. We can thus calculate the average foreground pixel f0. Then β can be expressed by:

b ¼ f0=b ð13Þ

Inevitable errors may occur in the process of removing ghost artifacts. Therefore, we apply

the adaptive local noise reduction filter based on the local statistics of the image.

The computational procedure.

1. First, partition the ROI (region of interest) of the target frame into many small, uniform

square blocks {Blocki} and then determine the central pixel pi for each block Blocki. For pi

each record its pixel value in all frames. Determine the computational interval n.

2. Compute the standard deviation ai and determine whether to update the background using

Eq (4).

3. Calculate parameters using Eq (12) and recover the background model using Eq (11).

4. Smooth the background using an adaptive local noise reduction filter.

In actual applications, the vehicle counting system focuses only on the road surface. We do not

need to consider trees or buildings. Block-wise methods dramatically reduce the amount of

calculations used in the background update process, and the standard deviation is the essential

indicator of whether to perform such an update.

The result of background update is shown in Fig 2.

Vehicle extraction

After the updated background image was obtained, the raw foreground image was subtracted

from the grayscale image and was segmented to extract the real vehicles, which engages

Fig 2. The background update result.

https://doi.org/10.1371/journal.pone.0186098.g002
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operations such as Otsu thresholding, shadow elimination, lamplight segmentation, and con-

tour extraction. The shadows of vehicles will cause large detection errors in bright daylight.

Shadow elimination is therefore an essential part of any vehicle detection algorithm. In this

paper, a method proposed by Cucchiara et al. to accomplish shadow suppression based on

hue, saturation, and value (HSV) color space information [17,18] is adopted. The method

adopted in this paper to extract the vehicle contour is proposed by Suzuki [19].

Traffic congestion detection

Existing vehicle detection and counting systems usually employ a simple algorithm for all traf-

fic conditions, which makes it difficult to ensure the stability and robustness of the system. In

this paper, the detection and counting proceed in different ways during congestion occasions

and during free flow occasions. Therefore, we developed a novel detection method to monitor

the real-time traffic state of the road section.

Principle

Traffic congestion occurs when the traffic volume generates demand for more space than the

available street capacity. Technically, a complicated complete model is needed for defining the

traffic congestion state of a road. In this paper, traffic congestion is specifically defined to pave

the way for counting slowly moving vehicles. For an urban road section, which is composed of

serval lanes, traffic congestion of each lane can be modelled by assuming that vehicles in that

lane move with sufficiently low speed within a certain period of time. As mentioned above, the

standard deviation of the frame series could be a good indicator of traffic congestion, but its

time response cannot meet the requirements of real-time traffic congestion detection. Thus,

the standard deviation is not applicable as an indicator. However, it stands to reason that traf-

fic congestion can be interpreted as a state in which little difference exists between adjacent

frames, making the frame difference a potential criterion for identifying traffic congestion. In

this paper, we propose a fast traffic congestion detection algorithm based on the frame differ-

ence function (FDF) and virtual loop. The experimental results perfectly support this idea, as

shown in Fig 3.

The results of Fig 3 are obtained by calculating the difference between the average intensi-

ties of every 2, 3, 4, 5, 6, and 7 frames with respect to frame time in the region of a virtual loop

(as shown in Fig 4). The source video is approximately 30 seconds long, starts with a normal

traffic state and then ends with a traffic jam. As the video shows, three vehicles intrude in the

area of the virtual loop; the first two leave immediately, but the first vehicle’s speed is much

greater than that of the second. The third vehicle leaves approximately 5 seconds later. Another

vehicle enters after one or two seconds, and then no vehicles move.

As shown in Fig 3, the vehicle’s movement produces an impulse-like change in the FDF in

all orders as the period of traffic congestion corresponds to the flat area of the function. The

response of a higher-order FDF to slow changes in the video is stronger than that of the first-

order FDF. Thus, a higher order results in higher detail resolution. As the sixth graph shows,

we can determine the exact time that a vehicle drives into or out of the virtual coil. The fourth-

and sixth-order FDFs are priorities, and they have excellent performance when used in traffic

congestion detection.

Procedures

Several FDFs can be assembled together to detect the traffic congestion or to adjust to compli-

cated scenarios. This study adopts the single sixth-order FDF for simplicity. The basic method

is to construct a calculation window CW, as defined in section II, to identify the peaks of the

Urban video-based vehicle-counting system
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FDF. The period should encompass at least the range of an impulse, which is approximately 15

frames long, as shown in Fig 5.

In this paper, every 20 consecutive frames form a calculation unit. Practical applications

may require more calculation units, such as 2 units with a range of 40 frames, to produce a

Fig 3. Frame difference function (FDF) of different orders.

https://doi.org/10.1371/journal.pone.0186098.g003

Fig 4. Virtual loops and the detection line.

https://doi.org/10.1371/journal.pone.0186098.g004
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more precise traffic state prediction. The calculation window is determined as follows:

CWt ¼ ðnum; aver; th3; th4; th5Þ ð14Þ

num is the count of FDFs whose values are larger than the threshold th5, and aver is the aver-

age FDF value of the calculation window. After completing the vehicle detection task, we can

obtain the list of vehicles for every calculation frame, which is denoted by V. Thus, the traffic

congestion status CWτ can be obtained as follows:

CWt ¼

normal; aver > th4 and num > th3 and V 6¼ null

clear; aver < th4 and V ¼ null

congested; aver < th4 and V 6¼ null

8
><

>:
ð15Þ

The threshold values th3 and th4 ensure that only valid vehicle signals are considered.

The FDF calculation for each lane proceeds asynchronously; thus, the traffic states of the

lanes may not be the same. However, the traffic state of the target road section must all be the

same. Only when all the lanes are congested is the traffic state of the road section considered

“congested”. The real-time traffic state of the road section is returned as reference data to the

database.

Vehicle counting

The existing video-based vehicle counting systems usually apply a single algorithm to count

vehicles, such as setting baselines [20] or using virtual loops [21]. Methods based on line detec-

tion are suitable for counting vehicles with high speed. In traffic congestion, the vehicles are

close to each other and move at a low speed; thus, there is a greater risk of counting two adja-

cent vehicles as one. Virtual loops are rectangles inside a single lane, they can be considered as

an extension of a parallel line detection pair or as a simulation of an inductance loop. Since the

whole area of the loop needs to be calculated, the computational time of this method is rela-

tively high. However, the methods based on virtual loops can effectively perform counting in

congested traffic. Based on the advantages of the two methods, we propose an adaptive

Fig 5. The sixth-order FDF with respect to frame sequence.

https://doi.org/10.1371/journal.pone.0186098.g005
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counting algorithm that can automatically shift between the two patterns, using detection lines

for normal traffic and virtual loops for congestion.

Counting based on the detection line

Principles. The detection line is a custom virtual line that cuts through the road, as shown

in Fig 4. The detection line should not be too far from the camera to maintain a certain dis-

tance between the virtual loops. The detection line should reach the two sides of a single lane

road. A vehicle driving across the detection line will always intersect the line in the perspective

of the image plane.

If a segment of the line is cut by a vehicle (represented by the circumscribed rectangle of the

vehicle), we set the state of the segment as “occupied”. After the vehicle has deviated from the

line, the segment is released, and its status is set to “released.” The vehicle count for the corre-

sponding lane is then updated.

The procedure is listed below:

Step 1: Obtain the four corner coordinates of the vehicle’s circumscribed rectangle. Determine

whether the rectangle cuts the line based on a coordinate-wise comparison. If the line inter-

sects the rectangle (as shown in Fig 6(a)), go to step 2; otherwise, go to step 3;

Step 2: Find the coordinates of the two intersection points, which form a segment belonging

to the detection line. Set the status of the segment as occupied. Acquire the rectangle of the

vehicle in the next frame, and then go to Step 1.

Step 3: Determine whether the rectangle is above or below the detection line. If the result is

“above”, then do nothing; otherwise, obtain the projection of the rectangle on the detection

line, and find its status. If the status of the projection segment is “occupied”, add 1 to the

vehicle in the corresponding lane and release the segment; otherwise, acquire the next

frame and go to Step 1.

Improvements. Not every vehicle has its apex vertical to the detection line, and the rect-

angles of the same vehicle in two different frames may not be the same. Thus, the occupancy of

the vehicle rectangle on the detection line varies from time to time, which is shown in Fig 6(b).

The vehicle drives through the detection line, and the segment that it occupies is X1X2. In a

later frame, the segment it occupies changes to P1P2. In this state, the computer does not

Fig 6. A special case in detection line.

https://doi.org/10.1371/journal.pone.0186098.g006
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know if the vehicle is the previous one because its relevant segment in the detection line is not

the same as before. Thus, the segment needs to be updated for every new frame.

Let x1, x2, p1 and p2 denote the X-coordinates of the points X1, X2, P1, and P2, respectively.

Define the overlap ratio of the two segments φ as:

φ ¼

ðx2 � p1Þ=ðx2 � x1Þ; if x1 � p1 � x2 � p2

ðp2 � x1Þ=ðx2 � x1Þ; if p1 � x1 � p2 � x2

1; if p1 � x1 � x2 � p2

ðp2 � p1Þ=ðx2 � x1Þ; if x1 � p1 � p2 � x2

0; otherwise

8
>>>>>>><

>>>>>>>:

ð16Þ

If φ exceeds 0.5, which means that the overlap ratio is greater than 50 percent, then the

same car is driving through the “two” segments. Then, update the segment that the vehicle

occupies to P1P2. If φ<0.5 another vehicle in another lane likely occupies segment P1P2.

In practical applications, errors exist between the estimated vehicle and the real vehicle in

both location and size. The circumscribed rectangle does not intersect with the detection line

when a vehicle leaves. Thus, the detection segment with the occupied status will not be released.

To solve this problem, we consider more frames instead of using only the next frame, which

improves the robustness of the algorithm and avoids repeated counting or underestimation.

Counting based on virtual loops

The virtual loop method is a vehicle counting method similar to the inductance loop buried

beneath the road surface. As Fig 5 shows, there is a virtual loop at the bottom center of every

lane, and the length of the virtual loop is the same as that of the lane. This is an imaginary

region that can be specified by customers.

Similar to the detection segment, every virtual loop has a status flag, denoted by Svc, that is

defined as follows:

Svc ¼
1; if the virtual loop is not empty

0; otherwise

(

ð17Þ

The concrete method for determining the value of Svc is to calculate the ratio of the object

pixels to all pixels and the average width of the object in the loop.

First, we calculate the final binary image with the detected objects lying in the loop. We find

the number of pixels, denoted by M, that belong to the object. Next, we assume that the size of

the loop is l � w, where l and w are the length and the width of the loop and have units of pixels.

Then, the object pixel ratio δ can be calculated using the equation below:

d ¼ M=ðw � lÞ ð18Þ

The object inside a loop is a connected region. The average width of the object, denoted as

W, can be obtained via image processing tools. The ratio of the width of the object to the width

of the loop λ is expressed as:

l ¼ w=l ð19Þ

Urban video-based vehicle-counting system

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 11 / 16

https://doi.org/10.1371/journal.pone.0186098


The experimental results show that Svc can be summarized as follows:

Svc ¼
1; if d � 0:1 and l � 0:35

0; otherwise

(

ð20Þ

Let Ci denotes the current count of the ith lane, which is updated as follows:

Ci ¼

Ci; Svc : 0! 0

Ci þ 1; Svc : 0! 1

Ci; Svc : 1! 0

Ci; Svc : 1! 1

8
>>>><

>>>>:

ð21Þ

Automatic shifting between the two counting patterns

Based on the traffic congestion detection method proposed in the previous chapter, the count-

ing pattern of the system can automatically shift between the two methods with excellent speed

performance. Assuming that the current traffic status is uncongested, the system will count the

vehicles based on a single detection line. When a traffic jam happens in any of the three lanes,

the counting pattern immediately shifts to the virtual loop method. Once the traffic congestion

clears, all the patterns change to the normal state in a similar fashion.

Results and discussion

Vehicle counting

The accuracy of the vehicle counting in our system along with the results of some existing sys-

tems are listed in Table 1.

The results are obtained by calculating the average accuracy for different scenarios using

systems listed as follows: 1: Chen et al. for car detection [20]; 2: Chen et al. [21]; 3: Lei et al.

[22]; 4: Pornpanomchai et al. [23]; 5: Rodrı́guez and Garcı́a [24]; 6: Mohana et al. [25]; 7: Li

et al. [26]. The average accuracy of vehicle counting for our system reaches 99.29%, which sur-

passes that of all the other listed algorithms, which is not entirely unexpected. Table 1 also

shows that the max-min difference among different occasions of our system remains at a very

low level, which helps to determine the robustness of our system. On one hand, the proposed

background update method, which focuses on the road ROI, can construct a more accurate

background model in most vehicle detection scenarios than the other systems, which helps the

system to more precisely identify vehicles. On the other hand, the adaptive shifting mechanism

between the two counting methods makes the system more immune to counting errors. Some

of the other auxiliary methods, such as shadow elimination and lamplight suppression, are

employed to further improve the accuracy of vehicle counting.

To test the robustness of vehicle counting, 12 scenarios, including days and nights, rainy

and sunny occasions, and congested and uncongested situations, are selected from the video

records stored in DVR. The results are listed in Table 2.

Table 1. Comparison with existing models.

Model This paper 1 2 3 4 5 6 7

Accuracy (%) 99.29 90.17 89.8 87.78 94.17 96.4 94.04 97.4

Max-Min (%) 0.19 11.1 10.2 28.08 4.37 7.2 4.5 2.8

https://doi.org/10.1371/journal.pone.0186098.t001
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As can be inferred from Table 2, the estimated results are always superior to the actual ones

in this test. On one hand, some vehicles are extremely close to each other and will be recog-

nized as a single one when driving through the same virtual loop in congested traffic. On the

other hand, when the traffic flows with an unexpectedly high speed, the system may fail to

detect some rapidly moving vehicles. There are also occasions when the detection result is cor-

rect but the counting system fails to count the detected vehicles, which is the main reason that

the estimated numbers are smaller than the actual ones. Although not presented here, many

issues occur when the estimated number of vehicles exceeds the actual number.

The average accuracy values of different situations are listed in Table 3.

It is no surprise that the accuracy differences among various scenarios are quite small. As

explained above, the system adopts an adaptive background updating algorithm, an adaptive

counting pattern and a few auxiliary methods to ensure the accuracy of the estimated back-

ground model and of vehicle counting.

Overall, the counting accuracy in the daytime scenario is higher than that in the nighttime

scenario, which coincides with the expectation. The uniformity of illumination in the day-

time is higher than that in the nighttime. Thus, the risk of a vehicle being blended into the

background at night is much higher than in the day. The smallest accuracy occurs for the

congested scenario, as expected. During traffic congestion, vehicles are too close to each

other, which may cause some counting errors. Interestingly, the counting accuracies of the

rainy (light rain) scenarios are slightly higher than those of the normal condition. This is par-

tially because the rain washes both the background and the vehicles, which has an image

sharpening effect. The sharpening enhances the edges of the vehicles, making it easier to find

the vehicle contours and improving the performance of the gradient operator used in lamp-

light suppression.

Table 2. Results of vehicle counting.

Date Period Environment Vehicle Counts Error Accuracy

Actual Estimated

2013/07/09 06:55~07:55 Morning, congesteda 2102 2082 0.78% 99.22%

14:51~15:51 Day, normalb 1669 1656 0.80% 99.20%

16:50~17:50 Day, normal 2122 2109 0.61% 99.39%

18:50~19:50 Day, dusk, night, congested 1565 1556 0.58% 99.42%

19:51~20:51 Night, normal 1144 1136 0.70% 99.30%

21:56~22:58 Night, normal 1781 1764 0.95% 99.05%

22:59~23:59 Night, normal 718 712 0.84% 99.16%

2013/09/10 08:19~19:19 Day, normal 2142 2126 0.75% 99.25%

13:21~14:18 Day, rainy 1624 1619 0.31% 99.69%

20:08~21:04 Night, rainy 1156 1150 0.52% 99.48%

21:56~22:58 Night, normal 1781 1764 0.95% 99.05%

a “congested” means that the traffic is congested in one or several time intervals in the corresponding testing period
b “normal” means no rain and no traffic congestion

https://doi.org/10.1371/journal.pone.0186098.t002

Table 3. Results of different scenarios.

Scenario Day Transition Night Rainy Congested Normal

Accuracy (%) 99.35 99.42 99.21 99.59 99.14 99.20

https://doi.org/10.1371/journal.pone.0186098.t003
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Time performance of the system

The algorithm running time performance of several comparable algorithms are listed in

Table 4. The results were obtained by running the program on a personal computer, which

revealed a satisfactory output.

Although the fps of the video source can reach 25, experiments have shown that only one-

third of the frames are needed to perform the calculations, which leaves the system 120 ms at

most to process one frame. As shown in Table 4, the average detection time is 58.78 ms. The

vehicle detection process includes background subtraction, threshold segmentation, contour

extraction, smoothing, shadow removal, lamplight suppression and other necessary calcula-

tions, so it takes the most time. Lamplight usually happens at night, and shadows are usually

produced during daylight, so the calculations for detection change significantly. Thus, the vari-

ance in the detection time is not small. In addition, the number of vehicles changes randomly

from time to time, which also contributes to the large variance. Background update and vehicle

counting use only typical pixel calculations, so they resolve with promising speed. The back-

ground update equation and ghost management are executed, although not in every frame, so

the max time (10 ms) is much longer than the min time (3 ms, only the indicator is calculated).

The time consumed during vehicle counting based on a detection line is much smaller than

that used in vehicle counting based on the virtual loop, which explains the large difference

between the max and min counting times.

The processing time is 67.33 ms on average and 98 ms in the worst-case condition, which

are both smaller than the critical processing time of 120 ms. The real-time performance of the

system when run on high-performance server computers will exceed the results above.

Conclusions

Traffic flow information is extremely important in crowded modern cities. Because they are

powerful, comprehensive, instantaneous, simple and cheap, video-based systems almost have

no rivals in vehicle detection, counting and monitoring tasks. Based on state-of-the-art

sequential image processing technologies, an adaptive real-time vehicle detection and counting

system is proposed. Armed with a powerful adaptive real-time block-wise background updat-

ing algorithm, the system produces highly accurate detection results. Adopting an intelligent

counting method, which cooperates with two different counting methods, helps improve the

counting accuracy of the system. Other modified algorithms such as lamplight suppression,

nighttime checking and shadow elimination also contribute to the resulting monolithic system

that can operate with excellent performance. Finally, the traffic congestion detection algorithm

serves as an effective indicator of the traffic status and could provide adequate congestion data

for various applications. The results show that the detection and counting accuracy are satis-

factorily high and that the system’s real-time performance meets or exceeds expectations. Nev-

ertheless, every detail is worth improving in further research. In this paper, we have not tested

the system in heavy weather conditions as real-time vehicle detection and counting in heavy

weather conditions such as heavy fog or haze, heavy rain or snow remains a difficult topic in

computer vision area which propose big challenges in our further research. A series of

Table 4. Time performance of major algorithms computed in 1000 frames.

Function/Measure Average/ms Variance Max/ms Min/ms

Detection 58.78 5.2440 76 56

Background Update 5.72 2.0016 10 3

Count 2.83 1.6981 12 2

https://doi.org/10.1371/journal.pone.0186098.t004
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methods that detect and deal with all kinds of heavy weathers should be integrated into the sys-

tem to help improve its robustness. Above all, the system we developed is validated as efficient

and robust.
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