@° PLOS | ONE

Check for
updates

G OPENACCESS

Citation: Liu F, Zeng Z, Jiang R (2017) A video-
based real-time adaptive vehicle-counting system
for urban roads. PLoS ONE 12(11): e0186098.
https://doi.org/10.1371/journal.pone.0186098

Editor: Xiaosong Hu, Chongging University, CHINA
Received: May 26, 2017

Accepted: September 25, 2017

Published: November 14, 2017

Copyright: © 2017 Liu et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in
any medium, provided the original author and
source are credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information
file.

Funding: The authors received no specific funding
for this work.

Competing interests: The third author, Rong
Jiang, was studying at Huazhong University of
Science and Technology before this paper was
finished. Rong Jiang worked for Huawei
Corporation after he graduated. This does not alter
our adherence to PLOS ONE policies on sharing
data and materials.

RESEARCH ARTICLE
A video-based real-time adaptive vehicle-
counting system for urban roads

Fei Liu', Zhiyuan Zeng'**, Rong Jiang®®

1 School of Hydropower and Information Engineering, Huazhong University of Science and Technology,
Wuhan, China, 2 Huawei Corporation, Shenzhen, China

© These authors contributed equally to this work.
* chengru2003 @ hust.edu.cn

Abstract

In developing nations, many expanding cities are facing challenges that result from the over-
whelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic
flow information is crucial for urban traffic management. The main purpose of this paper is to
develop an adaptive model that can assess the real-time vehicle counts on urban roads
using computer vision technologies. This paper proposes an automatic real-time back-
ground update algorithm for vehicle detection and an adaptive pattern for vehicle counting
based on the virtual loop and detection line methods. In addition, a new robust detection
method is introduced to monitor the real-time traffic congestion state of road section. A pro-
totype system has been developed and installed on an urban road for testing. The results
show that the system is robust, with a real-time counting accuracy exceeding 99% in most
field scenarios.

Introduction

Many large cities in China are suffering from severe traffic problems as their vehicle popula-
tions have become unprecedentedly large. In addition to updating road networks, local gov-
ernments are developing their own intelligent transportation systems (ITSs) to address the
new challenges of traffic crowding. One of the basic components of an ITS is the vehicle count-
ing system, which is designed to collect traffic flow information. In this paper, we focus on
developing a vehicle counting system to be installed in urban bridges and tunnels. The basic
requirements for the new system are as follows: (a) its counting accuracy must be higher than
98%; (b) it must be robust in various weather and light conditions, and it should work well at
night; (c) it must be able to work online continuously for 24 hours a day to count vehicles at
any time and at any site; and (d) the system maintenance should not consume substantial
resources.

There are many ways to detect and count the vehicles driving along a specific road during a
specific time period [1]. Some cities have implemented vehicle counting by deploying induc-
tive loops. These loops provide high precision but are very intrusive to the road and come with
a high maintenance cost [2-4]. Other devices, such as pyroelectric infrared sensors or ultra-
sonic detectors, make vehicle detection suitable for nighttime scenarios and can obtain more

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017

1/16

https://doi.org/10.1371/journal.pone.0186098
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186098&domain=pdf&date_stamp=2017-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186098&domain=pdf&date_stamp=2017-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186098&domain=pdf&date_stamp=2017-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186098&domain=pdf&date_stamp=2017-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186098&domain=pdf&date_stamp=2017-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186098&domain=pdf&date_stamp=2017-11-14
https://doi.org/10.1371/journal.pone.0186098
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

@° PLOS | ONE

Urban video-based vehicle-counting system

detailed information about the vehicles, such as width, length, and speed [5-6]. Some other
papers provide qualitative behavior of adaptive vehicle-counting systems [7-11]. However,
these methods are sensitive to noise and weather conditions, making them insufficiently
robust.

In recent years, with the development of advanced computer infrastructure and digital
image processing, the use of video-based technologies in vehicle detection has received
increasing attention. Video sources can provide overall information about the vehicles and are
easy and cheap to both obtain and maintain; thus, video-based technologies are mainstream
methods in vehicle detection tasks.

Saad M. AI-Garn and Adel A. Abdennour adopt an automatic background updating algo-
rithm and incorporate edge detection methods for background subtraction, obtaining a detec-
tion accuracy of nearly 91% [12]. However, the accuracy of conventional methods can also
reach that level. Robert divides vehicle detection into daytime and nighttime detection pro-
cesses to address the different background illumination conditions [13]. Improving the robust-
ness of the system is a good start, but it still fails to consider the specifics of traffic jams, which
would require new technologies, such as a feature-based detection method [14]. Watanabe
etal. [15] construct a system based on machine learning, which employs genetic algorithm and
edge detection methods [16]. The complicated methods show promising results but consume
considerable resources, and ensuring their real-time performance is difficult. Many other sys-
tems, most of which can be derived or expanded from existing systems, focus on vehicle detec-
tion [17-21].

The existing methods have the following deficiencies: (a) their accuracy levels are relatively
low; (b) their detecting and counting methods have not focused on traffic jams, leading to low
robustness, and their performance in bad weather conditions cannot meet the standards;

(c) many of these methods seek to improve the detection accuracy by sacrificing the real-time
performance to some degree; and (d) most of these methods are designed for a common
environment.

To overcome the challenges described above, we constructed an integrated real-time vehicle
counting system with the following concepts: a) a block-wise background update mechanism
to reduce the amount of calculation required and to improve the vehicle detection efficiency;
b) separate algorithms for day and night and for free and congested traffic flows to improve
the robustness of the system; and ¢) virtual loop, virtual line detection and adaptive vehicle
counting methods for distinct traffic occasions to achieve precise real-time counting. The out-
come system was run in a long-term test, and the test results were collected for validation. The
results indicate that the counting accuracy reaches 99% in most of the tested scenarios. In addi-
tion, the program runs all the time, takes less than 70 ms to process a frame and can handle
most practical scenarios robustly.

This paper is organized as follows. The overall structure of the system is described in Chap-
ter II. The main methods of vehicle detection are detailed in Chapter III. Chapter IV presents
the novel traffic congestion detection technique. In Chapter V, the adaptive vehicle counting
method is introduced. The results and discussions are presented in Chapter VI. We conclude
this paper in Chapter VII.

Overview of the model

The flow chart for the vehicle detection and counting algorithm is shown in Fig 1. The main
configuration parameters, such as virtual coil generation, line detection parameters, threshold
values and night detection area, are predefined manually. The program begins with back-
ground initialization, which paves the way for subsequent processes. When a new frame is

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 2/16

https://doi.org/10.1371/journal.pone.0186098

o @
@ : PLOS | ONE Urban video-based vehicle-counting system

Background update

¥
Background subtraction

)

Image segmentation
¥

Yes | No

Video stream
New frame
or records

[Background initialization }

suppression suppression

Lamplight][Shadow

Parameters

T
1
A\

t_l_f

Virtual loop

Detecting line

Thresholds

Night check
area

Count based on} {Count based on

virtual coil detecting line
¥ ¥
Output

Congestion state
Vehicle count

Fig 1. The flow chart of the system.
https://doi.org/10.1371/journal.pone.0186098.g001

pushed into the system, the congestion status (congested or free) is determined using the
method described in Chapter IV. Two different paths are then designed, one for congested
traffic and one for free traffic. In one path, virtual coils are generated to count the vehicles in
congested traffic, which are relatively slow. In the second path, a technique based on virtual
line detection records the number of vehicles in free traffic, which are relatively fast. Before the
vehicles are formally detected, some required operations are executed in order, such as funda-
mental image filtering, background subtraction, image segmentation, lamplight suppression
(for nighttime conditions), shadow suppression (for daytime conditions), contour extraction
and filling. When all the steps have been executed, the newly detected vehicles are counted and
stored along with the traffic congestion status.

Vehicle detection method
Background update

Background subtraction is the most common method for identifying moving objects and is
adopted in this paper. Background modelling methods are categorized into non-recursive and

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 3/16

https://doi.org/10.1371/journal.pone.0186098.g001
https://doi.org/10.1371/journal.pone.0186098

@° PLOS | ONE

Urban video-based vehicle-counting system

recursive method. Non-recursive methods, for example, frame difference, are highly adaptive
because they use history frames as references but are not sensitive to slowly changing light con-
ditions. Recursive methods, which continuously update the background to produce more ade-
quate results, add strict demands to the anterior background because any error in the initial
model will linger for a long period. Many mathematical models and techniques, such as the
mixture Gaussian model, Kalman filter, optical flow and code book, have been adopted to mit-
igate background subtraction problems. However, complicated models always come with a
trade-off. Most of the models require well-designed initial data or proper training processes.
The time performance of these models is not comparable to that of non-parametric models. In
this paper, we propose a block-wise background updating mechanism that recursively updates
the background using simple equations based on the statistics determined from history frames.
The basis of this method is described below.

An indicator of background update. The core idea of our background update mecha-
nism is that when a pixel p is pure background or is covered by targets for a certain period of
time, the recursive background update should be suspended. The first step is to find an indica-
tor to determine when to update the background.

For any pixel p in a series of consecutive frames I}, I, . . .Iy we assume that the correspond-
ing values are iy p, i p, . . - in,p- Assuming a uniform load surface and uniform target shells, the
gray level of the pixel can be simulated using the following equation:

bp = BB (1)

Here, B is the pixel value of the pure background, and 3 is the ratio between the pixel value
of the target and the background.

f,when p is covered by objects
Bup = { (2)

1, otheriwse

If there are N’ frames in the frame series where p is occupied by targets, we can obtain the
pixel expectation:

E:%ﬂB (3)

Let 7 = N /N. The standard deviation is

N/
Std(p) = \/E(B,,B — 1 B) = vn(1—n)fB (4)
Define f(n) as Eq (5):

f(n) = v/n(1 —n) (5)

f(n) is an inverted parabolic that achieves its extreme value 0.5 when 77 = 0.5 and B is the pixel
value of the targets. As can be concluded from Eq (4), when 1 approaches 0 or 1, Std(p)
approaches 0 with dramatic speed, which indicates that p and its neighborhood are always
pure background or pure targets in the specified frame series. Therefore, it is not necessary to
update the background model in p or its neighborhood. When 7 is near 0.5, Std(p) is a perfect
approximation of the target pixel value B, which indicates that the pixel and its neighborhood
are covered by moving targets. Thus, we choose Std(p) as the indicator of the block P that is
centered at p to determine whether to update the background model of P.

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 4/16

https://doi.org/10.1371/journal.pone.0186098

@° PLOS | ONE

Urban video-based vehicle-counting system

The management of ‘ghosts’. A common problem of most traditional background sub-
traction algorithms is the generation of ghost artifacts. The commonly used equation for back-
ground updating is

Ber = (]' - a)anl,p + OCIn,p = (]‘ - a)nBOAp + O(Z (]‘ - {x)niili,p (6)
i=0

When n is sufficiently large, (1-)"B,, approaches 0, which indicates that the initial back-
ground matters little in the background update process.

All of the frames when p is covered by target objects constitute a frame set T whose length
is t. Then, I; , is expressed by

(7)

i,p

{ﬁB,ieT

B, otherwise

Then, we calculate the logarithm of the second item of Eq (6):
log) | (1—a)""T,, =logB+1log(} _(1—-o) "B+ (1-o)") (8)
i=0

We assume that there are k uniform vehicles that pass pixel p at the same speed. The vehi-
cles can be represented by V = {vy, vy, . . ., vi}. Each vehicle passed p in [frames. Vehicle vy first
touched pixel p in frame #(vy) and left p in frame n(vy)+l. N contains all the frames in the com-
putation range L whose length is commonly set to be 200. Typically, when o = 0.1, (1-)** is

sufficiently small to be neglected. Calculate the two items of Eq (8):

pn)=>" (1= =03 071~ 0)/(1-0) 9)

L—i
Y 1= = (1= 0/(1 = 0) = p(w) (10)
Where 0 = 1-a. After deduction, B,,, can be obtained:

B,, ~ B+ [ap(n)(f —1)B] (11)

As shown in the above equations, the item in the bracket cause ghost artifacts. It is easy to
find that when no vehicles appear in the calculation range p(n) = 0 which makes B,, , equals to
the real background B. To restore B from B,, ,, the value of the formula in brackets should be
determined. Technically, p(n) can be calculated by recording the frames when target objects
first touch pixel p and the frame when the object leaves p (to calculate the length I).

To obtain the indicated time, we define a calculation window for block i:

({nw}: B) = CW, (a;. £, thl, th2) (12)

The length of CW is L. By shifting CW; | from n to 1, the standard deviation is 4; and the
average pixel f; are calculated. thl and th2 are the specified threshold values. When a; <th1,
CW is covering the time range of pure objects or pure background; otherwise the state of the
pixel is changing. If the current background model is b;, then the value of |f; — b;| can be used
to determine whether the pixel is covered by objects. We can obtain the ny, by recording the
frame that object v(k) first touch pixel p. For every frame, if |f; — b;| > th2, then we record its

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 5/16

https://doi.org/10.1371/journal.pone.0186098

®'PLOS | one

Urban video-based vehicle-counting system

value. We can thus calculate the average foreground pixel fy. Then f can be expressed by:
B=1/b (13)

Inevitable errors may occur in the process of removing ghost artifacts. Therefore, we apply
the adaptive local noise reduction filter based on the local statistics of the image.
The computational procedure.

1. First, partition the ROI (region of interest) of the target frame into many small, uniform
square blocks {Block;} and then determine the central pixel p; for each block Block;. For p;
each record its pixel value in all frames. Determine the computational interval n.

2. Compute the standard deviation a; and determine whether to update the background using
Eq (4).

3. Calculate parameters using Eq (12) and recover the background model using Eq (11).
4. Smooth the background using an adaptive local noise reduction filter.

In actual applications, the vehicle counting system focuses only on the road surface. We do not
need to consider trees or buildings. Block-wise methods dramatically reduce the amount of
calculations used in the background update process, and the standard deviation is the essential
indicator of whether to perform such an update.

The result of background update is shown in Fig 2.

Vehicle extraction

After the updated background image was obtained, the raw foreground image was subtracted
from the grayscale image and was segmented to extract the real vehicles, which engages

Fig 2. The background update resuit.

https://doi.org/10.1371/journal.pone.0186098.9002

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 6/16

https://doi.org/10.1371/journal.pone.0186098.g002
https://doi.org/10.1371/journal.pone.0186098

@° PLOS | ONE

Urban video-based vehicle-counting system

operations such as Otsu thresholding, shadow elimination, lamplight segmentation, and con-
tour extraction. The shadows of vehicles will cause large detection errors in bright daylight.
Shadow elimination is therefore an essential part of any vehicle detection algorithm. In this
paper, a method proposed by Cucchiara et al. to accomplish shadow suppression based on
hue, saturation, and value (HSV) color space information [17,18] is adopted. The method
adopted in this paper to extract the vehicle contour is proposed by Suzuki [19].

Traffic congestion detection

Existing vehicle detection and counting systems usually employ a simple algorithm for all traf-
fic conditions, which makes it difficult to ensure the stability and robustness of the system. In
this paper, the detection and counting proceed in different ways during congestion occasions
and during free flow occasions. Therefore, we developed a novel detection method to monitor
the real-time traffic state of the road section.

Principle

Traffic congestion occurs when the traffic volume generates demand for more space than the
available street capacity. Technically, a complicated complete model is needed for defining the
traffic congestion state of a road. In this paper, traffic congestion is specifically defined to pave
the way for counting slowly moving vehicles. For an urban road section, which is composed of
serval lanes, traffic congestion of each lane can be modelled by assuming that vehicles in that
lane move with sufficiently low speed within a certain period of time. As mentioned above, the
standard deviation of the frame series could be a good indicator of traffic congestion, but its
time response cannot meet the requirements of real-time traffic congestion detection. Thus,
the standard deviation is not applicable as an indicator. However, it stands to reason that traf-
fic congestion can be interpreted as a state in which little difference exists between adjacent
frames, making the frame difference a potential criterion for identifying traffic congestion. In
this paper, we propose a fast traffic congestion detection algorithm based on the frame differ-
ence function (FDF) and virtual loop. The experimental results perfectly support this idea, as
shown in Fig 3.

The results of Fig 3 are obtained by calculating the difference between the average intensi-
ties of every 2, 3, 4, 5, 6, and 7 frames with respect to frame time in the region of a virtual loop
(as shown in Fig 4). The source video is approximately 30 seconds long, starts with a normal
traffic state and then ends with a traffic jam. As the video shows, three vehicles intrude in the
area of the virtual loop; the first two leave immediately, but the first vehicle’s speed is much
greater than that of the second. The third vehicle leaves approximately 5 seconds later. Another
vehicle enters after one or two seconds, and then no vehicles move.

As shown in Fig 3, the vehicle’s movement produces an impulse-like change in the FDF in
all orders as the period of traffic congestion corresponds to the flat area of the function. The
response of a higher-order FDF to slow changes in the video is stronger than that of the first-
order FDF. Thus, a higher order results in higher detail resolution. As the sixth graph shows,
we can determine the exact time that a vehicle drives into or out of the virtual coil. The fourth-
and sixth-order FDFs are priorities, and they have excellent performance when used in traffic
congestion detection.

Procedures

Several FDFs can be assembled together to detect the traffic congestion or to adjust to compli-
cated scenarios. This study adopts the single sixth-order FDF for simplicity. The basic method
is to construct a calculation window CW, as defined in section II, to identify the peaks of the

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 7/16

https://doi.org/10.1371/journal.pone.0186098

®'PLOS | one

Urban video-based vehicle-counting system

30 30
25 | —— First order Second order 125
20 | 120
15 | 115
10 J 110
° _,\.J b | v l\h IJL 1
0 N PO L . SOV VL WYY || R Tvpert e vap e Y oL TAR W L) T 0
30} 130
g 25f —— Third order —— Fourth order {25 s
c
g 20 | 120 %
=
5 157 115 %
g 10} 110 3
T 5 5 3
L L 1 @
0 J\J N A MMM&A Lf\« 0
30 130
25| —— Fifth order ~ —— Sixth order {25
| 120
vl 15
4l 110
|1‘| J'l L 15
L ool 2 oo 0.1 0 0 L An.\f/\/k(}\\f\ﬂnmﬁ- " J‘w'ﬂuLM ,\ { / b‘f\ 0
15 20 25 15 10 5 0
Time (s)

Fig 3. Frame difference function (FDF) of different orders.

https://doi.org/10.1371/journal.pone.0186098.9g003

FDEF. The period should encompass at least the range of an impulse, which is approximately 15

frames long, as shown in Fig 5.

In this paper, every 20 consecutive frames form a calculation unit. Practical applications
may require more calculation units, such as 2 units with a range of 40 frames, to produce a

Fig 4. Virtual loops and the detection line.

https://doi.org/10.1371/journal.pone.0186098.9004

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017

8/16

https://doi.org/10.1371/journal.pone.0186098.g003
https://doi.org/10.1371/journal.pone.0186098.g004
https://doi.org/10.1371/journal.pone.0186098

@° PLOS | ONE

Urban video-based vehicle-counting system

25 - . - - - - - -

20F

T

15

FDF

10

T

0 95 100 105 110 115 120 125 130 135
Frame sequence

Fig 5. The sixth-order FDF with respect to frame sequence.

https://doi.org/10.1371/journal.pone.0186098.g005

more precise traffic state prediction. The calculation window is determined as follows:

CW, = (num, aver, th3, th4, th5) (14)

num is the count of FDFs whose values are larger than the threshold th5, and aver is the aver-
age FDF value of the calculation window. After completing the vehicle detection task, we can
obtain the list of vehicles for every calculation frame, which is denoted by V. Thus, the traffic
congestion status CW_ can be obtained as follows:

normal, aver > th4 and num > th3 and V # null
CW, = < clear,aver < th4 and V = null (15)
congested, aver < th4 and V # null

The threshold values th3 and th4 ensure that only valid vehicle signals are considered.

The FDF calculation for each lane proceeds asynchronously; thus, the traffic states of the
lanes may not be the same. However, the traffic state of the target road section must all be the
same. Only when all the lanes are congested is the traffic state of the road section considered
“congested”. The real-time traffic state of the road section is returned as reference data to the
database.

Vehicle counting

The existing video-based vehicle counting systems usually apply a single algorithm to count
vehicles, such as setting baselines [20] or using virtual loops [21]. Methods based on line detec-
tion are suitable for counting vehicles with high speed. In traffic congestion, the vehicles are
close to each other and move at a low speed; thus, there is a greater risk of counting two adja-
cent vehicles as one. Virtual loops are rectangles inside a single lane, they can be considered as
an extension of a parallel line detection pair or as a simulation of an inductance loop. Since the
whole area of the loop needs to be calculated, the computational time of this method is rela-
tively high. However, the methods based on virtual loops can effectively perform counting in
congested traffic. Based on the advantages of the two methods, we propose an adaptive

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 9/16

https://doi.org/10.1371/journal.pone.0186098.g005
https://doi.org/10.1371/journal.pone.0186098

®'PLOS | one

Urban video-based vehicle-counting system

counting algorithm that can automatically shift between the two patterns, using detection lines
for normal traffic and virtual loops for congestion.

Counting based on the detection line

Principles. The detection line is a custom virtual line that cuts through the road, as shown
in Fig 4. The detection line should not be too far from the camera to maintain a certain dis-
tance between the virtual loops. The detection line should reach the two sides of a single lane
road. A vehicle driving across the detection line will always intersect the line in the perspective
of the image plane.

If a segment of the line is cut by a vehicle (represented by the circumscribed rectangle of the
vehicle), we set the state of the segment as “occupied”. After the vehicle has deviated from the
line, the segment is released, and its status is set to “released.” The vehicle count for the corre-
sponding lane is then updated.

The procedure is listed below:

Step 1: Obtain the four corner coordinates of the vehicle’s circumscribed rectangle. Determine
whether the rectangle cuts the line based on a coordinate-wise comparison. If the line inter-
sects the rectangle (as shown in Fig 6(a)), go to step 2; otherwise, go to step 3;

Step 2: Find the coordinates of the two intersection points, which form a segment belonging
to the detection line. Set the status of the segment as occupied. Acquire the rectangle of the
vehicle in the next frame, and then go to Step 1.

Step 3: Determine whether the rectangle is above or below the detection line. If the result is
“above”, then do nothing; otherwise, obtain the projection of the rectangle on the detection
line, and find its status. If the status of the projection segment is “occupied”, add 1 to the
vehicle in the corresponding lane and release the segment; otherwise, acquire the next
frame and go to Step 1.

Improvements. Not every vehicle has its apex vertical to the detection line, and the rect-
angles of the same vehicle in two different frames may not be the same. Thus, the occupancy of
the vehicle rectangle on the detection line varies from time to time, which is shown in Fig 6(b).
The vehicle drives through the detection line, and the segment that it occupies is X1X2.In a
later frame, the segment it occupies changes to P1P2. In this state, the computer does not

= E#ﬁi;&ﬁlﬁiﬁ{ (==
s /

Fig 6. A special case in detection line.

https://doi.org/10.1371/journal.pone.0186098.g006

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 10/16

https://doi.org/10.1371/journal.pone.0186098.g006
https://doi.org/10.1371/journal.pone.0186098

o @
@ : PLOS | ONE Urban video-based vehicle-counting system

know if the vehicle is the previous one because its relevant segment in the detection line is not
the same as before. Thus, the segment needs to be updated for every new frame.

Let xy, x,, p; and p, denote the X-coordinates of the points X1, X2, P1, and P2, respectively.
Define the overlap ratio of the two segments ¢ as:

(xz _Pl)/(x‘z _xl)aif X Spl < Xy < b
(P, — x,)/(x, — x)),if p; <% <p, <x,

p=4q Lif p, <x, <x, <p, (16)
(P, = p1)/ (%, — x,),if %, < p, <p, < x,
0, otherwise

If ¢ exceeds 0.5, which means that the overlap ratio is greater than 50 percent, then the
same car is driving through the “two” segments. Then, update the segment that the vehicle
occupies to P1P2. If ¢<0.5 another vehicle in another lane likely occupies segment P1P2.

In practical applications, errors exist between the estimated vehicle and the real vehicle in
both location and size. The circumscribed rectangle does not intersect with the detection line
when a vehicle leaves. Thus, the detection segment with the occupied status will not be released.
To solve this problem, we consider more frames instead of using only the next frame, which
improves the robustness of the algorithm and avoids repeated counting or underestimation.

Counting based on virtual loops

The virtual loop method is a vehicle counting method similar to the inductance loop buried
beneath the road surface. As Fig 5 shows, there is a virtual loop at the bottom center of every
lane, and the length of the virtual loop is the same as that of the lane. This is an imaginary
region that can be specified by customers.

Similar to the detection segment, every virtual loop has a status flag, denoted by S, that is
defined as follows:

ve

{ 1,if the virtual loop is not empty (17)

0, otherwise

The concrete method for determining the value of S, is to calculate the ratio of the object
pixels to all pixels and the average width of the object in the loop.

First, we calculate the final binary image with the detected objects lying in the loop. We find
the number of pixels, denoted by M, that belong to the object. Next, we assume that the size of
the loop is [* w, where] and w are the length and the width of the loop and have units of pixels.
Then, the object pixel ratio & can be calculated using the equation below:

0=M/(wxl) (18)
The object inside a loop is a connected region. The average width of the object, denoted as

W, can be obtained via image processing tools. The ratio of the width of the object to the width
of the loop 4 is expressed as:

)= w/l (19)

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 11/16

https://doi.org/10.1371/journal.pone.0186098

@° PLOS | ONE

Urban video-based vehicle-counting system

The experimental results show that S, can be summarized as follows:

1,if 6 > 0.1 and 4 > 0.35

s —
" { 0, otherwise

(20)

Let C; denotes the current count of the ith lane, which is updated as follows:

C,S,:0—0

C+1S,:0—
C =

C,S,.:1—=0

C,S,.,:1—1

i) Sve

1
(21)

Automatic shifting between the two counting patterns

Based on the traffic congestion detection method proposed in the previous chapter, the count-
ing pattern of the system can automatically shift between the two methods with excellent speed
performance. Assuming that the current traffic status is uncongested, the system will count the
vehicles based on a single detection line. When a traffic jam happens in any of the three lanes,
the counting pattern immediately shifts to the virtual loop method. Once the traffic congestion
clears, all the patterns change to the normal state in a similar fashion.

Results and discussion
Vehicle counting

The accuracy of the vehicle counting in our system along with the results of some existing sys-

tems are listed in Table 1.

The results are obtained by calculating the average accuracy for different scenarios using
systems listed as follows: 1: Chen et al. for car detection [20]; 2: Chen et al. [21]; 3: Lei et al.
[22]; 4: Pornpanomchai et al. [23]; 5: Rodriguez and Garcia [24]; 6: Mohana et al. [25]; 7: Li
et al. [26]. The average accuracy of vehicle counting for our system reaches 99.29%, which sur-
passes that of all the other listed algorithms, which is not entirely unexpected. Table 1 also
shows that the max-min difference among different occasions of our system remains at a very
low level, which helps to determine the robustness of our system. On one hand, the proposed
background update method, which focuses on the road ROI, can construct a more accurate
background model in most vehicle detection scenarios than the other systems, which helps the
system to more precisely identify vehicles. On the other hand, the adaptive shifting mechanism
between the two counting methods makes the system more immune to counting errors. Some
of the other auxiliary methods, such as shadow elimination and lamplight suppression, are
employed to further improve the accuracy of vehicle counting.

To test the robustness of vehicle counting, 12 scenarios, including days and nights, rainy
and sunny occasions, and congested and uncongested situations, are selected from the video

records stored in DVR. The results are listed in Table 2.

Table 1. Comparison with existing models.

Model This paper 1 2 3 4 5
Accuracy (%) 99.29 90.17 89.8 87.78 94.17
Max-Min (%) 0.19 11.1 10.2 28.08 4.37

https://doi.org/10.1371/journal.pone.0186098.t001

96.4 94.04 97.4
7.2 4.5 2.8

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017

12/16

https://doi.org/10.1371/journal.pone.0186098.t001
https://doi.org/10.1371/journal.pone.0186098

o @
@ : PLOS | ONE Urban video-based vehicle-counting system

Table 2. Results of vehicle counting.

Date Period Environment Vehicle Counts Error Accuracy
Actual Estimated

2013/07/09 06:55~07:55 Morning, congested® 2102 2082 0.78% 99.22%
14:51~15:51 Day, normal® 1669 1656 0.80% 99.20%
16:50~17:50 Day, normal 2122 2109 0.61% 99.39%
18:50~19:50 Day, dusk, night, congested 1565 1556 0.58% 99.42%
19:51~20:51 Night, normal 1144 1136 0.70% 99.30%
21:56~22:58 Night, normal 1781 1764 0.95% 99.05%
22:59~23:59 Night, normal 718 712 0.84% 99.16%

2013/09/10 08:19~19:19 Day, normal 2142 2126 0.75% 99.25%
13:21~14:18 Day, rainy 1624 1619 0.31% 99.69%
20:08~21:04 Night, rainy 1156 1150 0.52% 99.48%
21:56~22:58 Night, normal 1781 1764 0.95% 99.05%

a«

congested” means that the traffic is congested in one or several time intervals in the corresponding testing period

P “normal” means no rain and no traffic congestion

https://doi.org/10.1371/journal.pone.0186098.t002

As can be inferred from Table 2, the estimated results are always superior to the actual ones
in this test. On one hand, some vehicles are extremely close to each other and will be recog-
nized as a single one when driving through the same virtual loop in congested traffic. On the
other hand, when the traffic flows with an unexpectedly high speed, the system may fail to
detect some rapidly moving vehicles. There are also occasions when the detection result is cor-
rect but the counting system fails to count the detected vehicles, which is the main reason that
the estimated numbers are smaller than the actual ones. Although not presented here, many
issues occur when the estimated number of vehicles exceeds the actual number.

The average accuracy values of different situations are listed in Table 3.

It is no surprise that the accuracy differences among various scenarios are quite small. As
explained above, the system adopts an adaptive background updating algorithm, an adaptive
counting pattern and a few auxiliary methods to ensure the accuracy of the estimated back-
ground model and of vehicle counting.

Opverall, the counting accuracy in the daytime scenario is higher than that in the nighttime
scenario, which coincides with the expectation. The uniformity of illumination in the day-
time is higher than that in the nighttime. Thus, the risk of a vehicle being blended into the
background at night is much higher than in the day. The smallest accuracy occurs for the
congested scenario, as expected. During traffic congestion, vehicles are too close to each
other, which may cause some counting errors. Interestingly, the counting accuracies of the
rainy (light rain) scenarios are slightly higher than those of the normal condition. This is par-
tially because the rain washes both the background and the vehicles, which has an image
sharpening effect. The sharpening enhances the edges of the vehicles, making it easier to find
the vehicle contours and improving the performance of the gradient operator used in lamp-
light suppression.

Table 3. Results of different scenarios.

Scenario Day Transition Night Rainy Congested Normal
Accuracy (%) 99.35 99.42 99.21 99.59 99.14 99.20

https://doi.org/10.1371/journal.pone.0186098.t003

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 13/16

https://doi.org/10.1371/journal.pone.0186098.t002
https://doi.org/10.1371/journal.pone.0186098.t003
https://doi.org/10.1371/journal.pone.0186098

@° PLOS | ONE

Urban video-based vehicle-counting system

Table 4. Time performance of major algorithms computed in 1000 frames.

Function/Measure Average/ms Variance Max/ms Min/ms
Detection 58.78 5.2440 76 56
Background Update 5.72 2.0016 10

Count 2.83 1.6981 12 2

https://doi.org/10.1371/journal.pone.0186098.t004

Time performance of the system

The algorithm running time performance of several comparable algorithms are listed in
Table 4. The results were obtained by running the program on a personal computer, which
revealed a satisfactory output.

Although the fps of the video source can reach 25, experiments have shown that only one-
third of the frames are needed to perform the calculations, which leaves the system 120 ms at
most to process one frame. As shown in Table 4, the average detection time is 58.78 ms. The
vehicle detection process includes background subtraction, threshold segmentation, contour
extraction, smoothing, shadow removal, lamplight suppression and other necessary calcula-
tions, so it takes the most time. Lamplight usually happens at night, and shadows are usually
produced during daylight, so the calculations for detection change significantly. Thus, the vari-
ance in the detection time is not small. In addition, the number of vehicles changes randomly
from time to time, which also contributes to the large variance. Background update and vehicle
counting use only typical pixel calculations, so they resolve with promising speed. The back-
ground update equation and ghost management are executed, although not in every frame, so
the max time (10 ms) is much longer than the min time (3 ms, only the indicator is calculated).
The time consumed during vehicle counting based on a detection line is much smaller than
that used in vehicle counting based on the virtual loop, which explains the large difference
between the max and min counting times.

The processing time is 67.33 ms on average and 98 ms in the worst-case condition, which
are both smaller than the critical processing time of 120 ms. The real-time performance of the
system when run on high-performance server computers will exceed the results above.

Conclusions

Traffic flow information is extremely important in crowded modern cities. Because they are
powerful, comprehensive, instantaneous, simple and cheap, video-based systems almost have
no rivals in vehicle detection, counting and monitoring tasks. Based on state-of-the-art
sequential image processing technologies, an adaptive real-time vehicle detection and counting
system is proposed. Armed with a powerful adaptive real-time block-wise background updat-
ing algorithm, the system produces highly accurate detection results. Adopting an intelligent
counting method, which cooperates with two different counting methods, helps improve the
counting accuracy of the system. Other modified algorithms such as lamplight suppression,
nighttime checking and shadow elimination also contribute to the resulting monolithic system
that can operate with excellent performance. Finally, the traffic congestion detection algorithm
serves as an effective indicator of the traffic status and could provide adequate congestion data
for various applications. The results show that the detection and counting accuracy are satis-
factorily high and that the system’s real-time performance meets or exceeds expectations. Nev-
ertheless, every detail is worth improving in further research. In this paper, we have not tested
the system in heavy weather conditions as real-time vehicle detection and counting in heavy
weather conditions such as heavy fog or haze, heavy rain or snow remains a difficult topic in
computer vision area which propose big challenges in our further research. A series of

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 14/16

https://doi.org/10.1371/journal.pone.0186098.t004
https://doi.org/10.1371/journal.pone.0186098

@° PLOS | ONE

Urban video-based vehicle-counting system

methods that detect and deal with all kinds of heavy weathers should be integrated into the sys-
tem to help improve its robustness. Above all, the system we developed is validated as efficient
and robust.

Supporting information

S1 File. The impacts of foggy weather on vehicle counting.
(DOCX)

Acknowledgments

The system described in this paper is a doctoral degree research program of the first author Fei
Liu which is meant to be designed as a sub-system of the urban intelligent transportation sys-
tem. The authors have not received any financial support from any individuals or institutes
during the program. Great thanks for the Toll and Management Center of Road and Bridge of
Wuhan City for supporting us with the access of large number of urban traffic videos for the
testing of the proposed system. The authors keep the complete ownership of the developed sys-
tem and its algorithms.

Author Contributions

Conceptualization: Fei Liu, Zhiyuan Zeng, Rong Jiang.
Data curation: Fei Liu, Zhiyuan Zeng.

Formal analysis: Fei Liu, Rong Jiang.
Investigation: Fei Liu, Rong Jiang.

Methodology: Fei Liu, Rong Jiang.

Project administration: Fei Liu, Zhiyuan Zeng.
Resources: Zhiyuan Zeng.

Software: Fei Liu, Rong Jiang.

Supervision: Fei Liu, Zhiyuan Zeng.

Validation: Fei Liu, Rong Jiang.

Visualization: Rong Jiang.

Writing - original draft: Fei Liu.

Writing - review & editing: Fei Liu, Zhiyuan Zeng.

References

1. QiL. Research on Intelligent Transportation System Technologies and Applications [C]. Power Elec-
tronics and Intelligent Transportation System, 2008. PEITS '08. Workshop on. IEEE, 2008:529-531.

2. Yan XP, Zhang H, Wu CZ. Research and Development of Intelligent Transportation Systems. Interna-
tional Symposium on Distributed Computing and Applications To Business, Engineering & Science.
IEEE, 2012:321-327

3. Mimbela LEY, Klein LA. Summary of vehicle detection and surveillance technologies used in intelligent
transportation systems. 2007. http://www.fhwa.dot.gov/policyinformation/pubs/vdstits2007

4. GajdaJ, Sroka R, Stencel M, Wajda A, Zeglen T. A vehicle classification based on inductive loop detec-
tors. In: Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference.
Budapest, Hungary: IEEE; 2001. pp. 460—464.

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 15/16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186098.s001
http://www.fhwa.dot.gov/policyinformation/pubs/vdstits2007
https://doi.org/10.1371/journal.pone.0186098

@° PLOS | ONE

Urban video-based vehicle-counting system

10.

1.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

Li ZX, Yang XM, Li Z. Application of cement-based piezoelectric sensors for monitoring traffic flows [J].
Journal of Transportation Engineering, 2006, 132 (7): 565-573.

Hussain TM, Baig AM, Saadawi TN, Ahmed SA. Infrared pyroelectric sensor for detection of vehicular
traffic using digital signal processing techniques. IEEE Transactions on Vehicular Technology. 1995,
44: 683-689.

Hu XS, Zou Y, Yang YL. Greener plug-in hybrid electric vehicles incorporating renewable energy and
rapid system optimization [J]. Energy, 2016, 111: 971-980.

Hu XS, Moura SJ, Murgovski N, Egardt B, Cao DP. Integrated Optimization of Battery Sizing, Charging,
and Power Management in Plug-In Hybrid Electric Vehicles. IEEE Transactions on Control Systems
Technology, 2016, 24(3), 1036-1043.

Hu XS, Jiang JC, Egardt B, Cao DP. Advanced Power-Source Integration in Hybrid Electric Vehicles: Mul-
ticriteria Optimization Approach. IEEE Transactions on Industrial Electronics, 2015, 62(12), 7847—7858.

Hu XS, Jiang JC, Cao DP, Egardt B. Battery health prognosis for electric vehicles using sample entropy
and sparse Bayesian predictive modeling. IEEE Transactions on Industrial Electronics 63, no. 4 (2016):
2645-2656.

Zhang L, Hu XS, Wang ZP, Sun FC, Dorrell David G.. Experimental impedance investigation of an ultra-
capacitor at different conditions for electric vehicle applications. Journal of Power Sources 287 (2015):
129-138.

Kim SE. Performance comparison of loop/piezo and ultrasonic sensor-based traffic detection systems
for collecting individual vehicle information. Towards the new horizon together. Proceedings of the 5th
world congress on intelligent transport systems, held 12—16 October 1998, Seoul, Korea. Paper No.
4083 1998.

Al-Garni, S. M., & Abdennour, A. A. (2006, December). Moving vehicles detection using automatic
background extraction. In Proceedings of World Academy of Science, Engineering and Technology
(Vol. 18, pp. 180-184).

Coifman B, Beymer D, McLauchlan P, Malik J. A real-time computer vision system for vehicle tracking
and traffic surveillance. Transp Res Part C Emerg Technol. 1998; 6: 271-288.

Watanabe A, Andoh M, Chujo N, Harata Y. Neocognitron capable of position detection and vehicle rec-
ognition. In: International Joint Conference on Neural Networks (IJCNN '99). Washington, DC, USA:
IEEE; 1999. pp. 3170-3173.

Robert K. Video-based traffic monitoring at day and night vehicle features detection tracking. In: 12th
International IEEE Conference on Intelligent Transportation Systems. St. Louis, MO, USA: |IEEE;
2009. pp. 1-6.

Cucchiara R, Grana C, Neri G, Piccardi M, Prati A. The sakbot system for moving object detection and
tracking. In: Remagnino P, Jones GA, Paragios N, Regazzoni CS, editors. Video-based surveillance
systems. Boston, MA: Springer US; 2002. pp. 145-157.

Cucchiara R, Grana C, Piccardi M, Prati A, Sirotti S. Improving shadow suppression in moving object
detection with HSV color information. In: Proceedings of the IEEE Intelligent Transportation Systems.
Oakland, CA: IEEE; 2001. pp. 334-339.

Suzuki S, Abe K. Topological structural analysis of digitized binary images by border following. Com-
puter Vision, Graphics, and Image Processing. 1985; 30: 32—46.

Chen TH, Lin YF, Chen TY. Intelligent vehicle counting method based on blob analysis in traffic surveil-
lance. In: Second International Conference on Innovative Computing, Informatio and Control (ICICIC
2007). Kumamoto, Japan: IEEE; 2007. pp. 238—238.

Chen TH, Chen JL, Chen CH. Vehicle detection and counting by using headlight information in the dark
environment. In: Third International Conference on Intelligent Information Hiding and Multimedia Signal
Processing (IIH-MSP 2007). Kaohsiung, Taiwan: IEEE; 2007. pp. 519-522.

Lei M, Lefloch D, Gouton P, Madani K. A video-based real-time vehicle counting system using adaptive
background method. In: IEEE International Conference on Signal Image Technology and Internet
Based Systems. Bali, Indonesia: IEEE; 2008. pp. 523-528.

Pornpanomchai C, Liamsanguan T, Vannakosit V. Vehicle detection and counting from a video frame. In:
International Conference on Wavelet Analysis and Pattern Recognition. Hong Kong; 2008. pp. 356—361.

Rodriguez T, Garcia N. An adaptive, real-time, traffic monitoring system. Mach Vis Appl. 2010; 21:
555-576.

Mohana HS, Ashwathakumar M, Shivakumar G. Vehicle detection and counting by using real time traf-
fic flux through differential technique and performance evaluation. In: ICACC *09 Proceedings of the
International Conference on Advanced Computer Control. Singapore: IEEE; 2009. pp. 791-795.

Li S, YuH, Zhang J, Yang K, Bin R. Video-based traffic data collection system for multiple vehicle types.
IET Intelligent Transport Systems. 2014; 8: 164—174.

PLOS ONE | https://doi.org/10.1371/journal.pone.0186098 November 14, 2017 16/16

https://doi.org/10.1371/journal.pone.0186098

