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Abstract

Background

Chickens are animals that are sensitive to thermal stress, which may decrease their produc-

tion level in terms that it affects feed intake and thus, decreasing body weight gain. The Heat

Shock Factors (HSF) and Heat Shock Proteins (HSP) genes are involved in the key cellular

defense mechanisms during exposure in hot environments. Aimed with this study to analyze

the expression of HSF1, HSF3, HSP70 and HSP90 genes in two local breeds (Peloco and

Caneluda) and a commercial broiler line (Cobb 500®) to verify differences in resistance of

these chicken to Heat stress treatment. Chicken were submitted to heat stress under an

average temperature of 39˚C ± 1.

Results

Under stress environment, the HSP70 and HSP90 genes were more expressed in backyard

chickens than in broiler. There was a difference in HSP70 and HSP90 expression between

Caneluda and Cobb and between Peloco and Cobb under stress and comfort environment

respectively. HSP70 expression is higher in local breeds during heat stress than in a com-

mercial broiler line. No significant differences were observed in the expression of HSF1 and

HSF3 genes between breeds or environments.

Conclusions

HSP70 and HSP90 genes are highly expressed, HSF1 and HSF3 genes did not have high

expression in all genetic groups. HSP70 and HSP90 are highly expressed in Peloco and

Caneluda within heat stress, these breeds proved to be very resistant to high temperature.
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Introduction

Poultry is one of the main sectors of the agribusiness producing thousands of tons of meat per

year. However, environments with high temperatures may cause negative impacts on broiler’

physiology and production, leading to economic losses [1,2]. Broilers reached high levels of

production due to genetic improvement, on the other hand, its metabolism become more

accelerate, presenting poor thermoregulation, and as consequence being not well adapted to

hot environments [3–5]. Differently, native backyard chickens are more adapted to environ-

ments in which they live, with rusticity that allow them to survive and reproduce constantly.

These chicken are more resistant to high temperatures [6,7], however, they have low produc-

tive levels since they did not undergone genetic improvement and have low investment in

breeding [8,9].

There are factors that act on defense mechanism against high temperatures. The ability of

homeostasis can minimize extracellular damage [10] by altering gene expression in the pres-

ence of stress and returning to basal conditions after returning to thermal comfort conditions

[11,12]. One of the defense mechanisms is the activation of more than 500 genes in the first

ten minutes of exposure [13–15]. Among these genes are the Heat Shock Factor (HSF) leading

the induction of gene expression [16,17] and the Heat Shock Proteins (HSP) that are some of

the main defenses against heat stress [11,12].

The HSF1 and HSF3 are considered the main genes of HSF family in response to heat

shock in chicken. Has been believed that induction of HSF1 and HSF3 in regulate HSP were

bird-specific, however, a recent study has demonstrated that HSF1 and HSF3 have also regu-

late HSP70 expression in lizards and frogs [18]. HSF1 is activated at low temperatures while

HSF3 continues to be activated at higher temperatures and longer exposure [19].The HSP70
and HSP90 genes are the most studied HSPs family and each has different functions [1]. The

HSP70 binds to newly synthesized proteins, preventing aggregation and assisting in folding

[20,21], whereas HSP90 interacts with proteins in older stages of folding, in addition to modi-

fying the configuration of these proteins [22].

Many studies have reported genes related to heat stress in mammals [23,24], plants [25],

fish [26] and broiler [27,28], but so far no studies have been identified the relation of chicken

resistance to thermal stress with the expression of HSF’s and HSP’s genes. Aimed with this

study to analyze the expression of HSF1,HSF3,HSP70 and HSP90 genes in two local breeds of

chickens and a commercial chicken line in order to verify the resistance of these birds to heat

stress.

Material and methods

Ethical approval

Experiment procedures were approved by the Ethics Committee on Animal Use—CEUA of

Universidade Estadual do Sudoeste da Bahia (UESB), protocol 109/2015.

Animals

In this study, we used 36 male and female chickens, being 12 chicks of each breed (Peloco and

Caneluda (backyard breeds), and Cobb 5001 (commercial line)). Commercial birds were

acquired a week after the birth of backyard chicken in the Universidade Estadual do Sudoeste

da Bahia (UESB), Itapetinga, and raised under the same environmental conditions from

November 2 to December 2 of 2015 with an average temperature of 26.5˚C. The predominant

climate of Itapetinga region is semi-arid, in which the temperature increases during the day

and decrease during the night. Nutritional diet followed the requirements of the Brazilian
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Tables for Poultry and Swine [29] and the feed was produced in the poultry sector of UESB

(Table 1). All chickens were raised in semi-open stalls and lined with wood shavings (wood

chips).

Heat stress and collect of tissue samples

At 30 days of age all chicks were transferred to the climatic chambers. Birds were housed in

groups of up to 12 chicks per cage. Heat stress was performed in two stages so that all chicken

had the same slaughter age (30 days). First, six chicks of Peloco breed and six chicks of Cane-

luda breed were subjected to heat stress under an average temperature of 39.5˚C and environ-

mental relative humidity of 60% for 30 minutes. In the second stage, six chicks of Cobb 5001

line were subjected to heat stress with the same conditions of temperature, humidity and time.

During the heat stress period, animals had ad libitum access to food and water.

During the heat stress, chickens were constantly observed for behavioral changes, in order

to avoid deaths caused by excessive temperature. The acute heat stress was determined at the

moment that most of the chicken (±90%) were prostrate (lying with the abdominal faced

down), and with increased respiratory rate. Control chickens (six chicks of each genetic

group) were slaughtered at the second stage of the experiment at 4 am (local time) to ensure

thermal comfort temperature (23˚C). All chicks (Heat stressed and comfort) were slaughtered

by cervical dislocation.

After slaughter, samples of Pectoralis major muscle were collected, placed in cryogenic

tubes, identified and stored in liquid nitrogen. Samples were transported to the Veterinary

Genetics Laboratory at the Universidade Estadual de Santa Cruz (UESC), separated and stored

in Ultrafreezer (-80˚C).

Extraction, quantification and quality of total RNA

For total RNA extraction, kit SV Total RNA Isolation System1 (Promega Corporation,

Madison, USA) was used according to manufacturer’s protocol. The concentration and quality

of RNA were verified by NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific Inc,

Carlsbad, CA, USA) using the absorbance at 230, 260, 280nm. Besides, RNA integrity was ana-

lyzed by the presence of bands corresponding to 28S and 18S ribosomal RNAs observed

through electrophoresis of 1 ug of RNA in 1% agarose gel stained with ethidium bromide.

Table 1. Initial feed used in the production of chicks up to 30 days of age (ROSTAGNO, GOMES,

2011).

Corn 61.1%

Soybean Meal 35.0%

Dicalcium Phosphate 2.00%

Limestone 1.10%

NaCl 0.30%

Vitamin And Mineral Supplement 0.40%

Nutritional Levels

Crude Protein 21.2%

Metabolizable Energy 2.89%

Calcium 1.01%

Phosphor Available 0.49%

Sodium 1.63%

Lysine 1.10%

Methionine + Cysteine 0.74%

https://doi.org/10.1371/journal.pone.0186083.t001
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Reverse transcription of mRNA

The commercial kit GoScript TM Reverse Transcription System (Promega Corporation,

Madison, USA) was used for reverse transcription of mRNA. Up to five micrograms of total

RNA from samples were mixed to 1μl of Oligo(dT) (500μg/ml) and heated in 70˚C for 5 min-

utes. After incubation, 4μl of 5X Reaction Buffer, 3.2μl MgCl2, 1μl dNTP (0,5mM), 1μl of

reverse transcriptase enzyme, 0.5μl of inhibitor of recombinant ribonuclease RNaseOUT

(20units) and ultrapure water completing 15μl. This mix were added to RNA+OligodT mix

completing a volume total of 20μl and incubated on a thermocycler. Anneal at 25˚C for 5 min-

utes; extend at 42˚C for one hour, and 70˚C for 15 minutes to inactivate the reverse transcrip-

tase. After reverse transcription, cDNA was stored at -20˚C. The concentration of cDNA was

measured by NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific Inc, Carlsbad, CA,

USA) using the absorbance at 230, 260, 280nm.

Target gene selection and optimization of RT-qPCR

Four target genes involved in regulation of heat stress in Gallus gallus were selected to be evalu-

ated in different genetic groups (Table 2). To obtain the standard curve, we used a cDNA pool

of all treatments aiming to optimize and calculate the PCR efficiency. We used three cDNA

concentrations (15, 45 and 135ng/μl) and three primer concentrations (200, 400, 800 mM).

RT-qPCR reaction conditions were set with initial denaturation temperature at 95˚C for

two minutes, and 40 cycles of denaturation at 95˚C for 15 seconds. The extension temperature

was individually standardized for each pair of primer for 60 seconds. At the end of amplifica-

tion reaction, we included an additional step with gradual temperature increasing from 60 to

95˚C for dissociation curve analysis. Amplification of all genes was performed in duplicate in a

7500 Fast Real Time PCR System (Applied Biosystems, Foster City, CA, USA). Results were

obtained by using the Sequence Detection Systems software (V. 2.0.6) (Applied Biosystems

Foster City, CA, USA) that generated the cycle threshold (Ct) parameter. The Ct values of

duplicates were obtained directly from the above program and used to calculate the average Ct

Table 2. Description of G. gallus genes related to heat stress, reference genes for chickens and their specific primers used in RT-qPCR analyzes.

The primers of HSF3, HSP70 and HSP90 genes were designed by ALMEIDA, (2007).

GENE DISCRIPTION SEQUENCE (5’-3’) FUNCTION

HSF1* Heat shock factor protein 1 F: TGTGGCTGATTCTTGGCTTT Heat shock response

R: GAGGGAGACAGAGGGGTTTC

HSF3 Heat shock factor protein 3 F: CGGAAGATGGAAATGGAGAG Heat shock response

R: TCAGGAAGCAGGAGAGGAGA

HSP70 Heat shock protein 70kDa F: ATTCTTGCGTGGGTGTCTTC Heat shock response

R: GATGGTGTTGGTGGGGTTC

HSP90 Heat shock protein 90kDa F: TGAAACACTGAGGCAGAAGG Heat shock response

R: AAAGCCAGAGGACAGGAGAG

MRPS27** Mitochondrial ribosomal protein S27 F: GCTCCCAGCTCTATGGTTATG Reference gene

R: ATCACCTGCAAGGCTCTATTT

RPL5** Ribosomal protein L5 F: AATATAACGCCTGATGGGATGG Reference gene

R: CTTGACTTCTCTCTTGGGTTTCT

MRPS30** Mitochondrial ribosomal protein S30 F: CCTGAATCCCGAGGTTAACTATT Reference gene

R: GAGGTGCGGCTTATCATCTATC

*Primer drawn by the authors of this work;

**Reference Genes obtained in previous studies [31].

https://doi.org/10.1371/journal.pone.0186083.t002
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and standard deviation. PCR amplification efficiency was calculated for each reference gene

using the following formula: E = (10(-1/slope)-1)x100 [30]. After efficiency analysis, the most

appropriate annealing temperature and primer concentration were used in PCR reactions.

Real time quantitative PCR

The reaction of RT-qPCR was performed using SYBR Green detection kit with GoTaq qPCR

Master Mix (Promega, Madison, WI, EUA), using specific primers. Gene amplification was

performed in duplicate using the Real Time PCR 7500 Fast system (Applied Biosystems, Foster

City, CA, EUA) and results were obtained with the Sequence Detection Systems program (V.

2.0.6) (Applied Biosystems, Foster City, CA, EUA) that generated the cycle threshold (Ct)

parameters.

The Ct values were exported to Microsoft Excel to calculate the Ct mean, standard deviation

and the standard curve for each gene. A negative control (ultra-pure water) also was added in

each assay. The qPCR reaction conditions were defined as follow: Initial denaturation at 95˚C

during ten minutes and 40 cycles of denaturation at 95˚C for 15 seconds. The extension tem-

perature between 60 and 64˚C during one minute was ideal for all primers. Ct values of control

wells were excluded from subsequent analyzes as well as the undetectable values.

Statistical analysis of target genes

To perform the statistical analysis, %QPCR_MIXED [32] was used in the statistical software

SAS1 9.0. This macro performs analyzes by mixed linear models of RT-qPCR data. The pro-

gram normalizes the data using the ΔΔCT method [33], thus generating Fold Change, which is

the value of the relative expression between the control and the treatment [34].

In order to determine if there was difference between treatments (genetic groups and envi-

ronment), contrasts were made between the factors comparing them to each other. Within

this statistical model, the effects of genetic groups (Caneluda, Cobb and Peloco) and environ-

ment (comfort and thermal stress) were considered fixed, and the Genes factor was considered

random. In this way it is possible to test the linear combinations between the levels of these fac-

tors (Comfort X Stress); (Cobb X Caneluda, Caneluda X Peloco and Cobb X Peloco) and also

the variability between the genes in each treatment/breed, besides the interaction effects. Were

considered different contrasts those that obtained p-value� 0.05.

Results

Efficiency and specificity of primers

Prior to performing expression analysis of the interest genes, we performed efficiency test. The

annealing temperature of 62˚C was determined as optimal for all primers. The amplification

efficiency varied between 93% and 105% corresponding to slope between -3.49 and -3.20. The

coefficient of determination (R2) values were higher than 0.99 (Table 3). The primers specific-

ity was evaluated through the dissociation curve, which showed only one peak indicating no

primer dimers were detected and presenting excellent performance (Fig 1).

Descriptive statistics of target genes

Descriptive statistics were performed using BestKeeper tool [27]. It is possible to notice an

expression variability through quantification cycles in four target genes, which was grouped

into two categories (strong and moderate). Three genes (HSP70,HSF1 and HSP90) had strong

mRNA expression, with Ct values varying between 16 and 27 cycles, and one gene (HSF3) with

moderate expression with 34 cycles [35] (Table 4).

HSF and HSP gene expression in chickens
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Relative expression of target genes

According to previous analysis [31], the MRPS27, RPL5 and MRPS30 genes were considered

stable under genetic groups and environment factors which was performed a normalization

factor by geometric mean. Therefore, these genes were used to normalize the relative expres-

sion of target genes.

Comparing environments (stress X comfort), HSF1 and HSF3 genes were not significantly

different among the three genetic groups. On the other hand, the HSP70 genes had high

expression and were statistically different within the three genetic groups (Table 5/Fig 2).

In thermal stress analysis, comparisons between genetic groups (Caneluda X Cobb, Cane-

luda X Peloco and Cobb X Peloco) were not significant for HSF1,HSF3 and HSP70 genes. In

contrast, HSP90 gene had a difference in relative expression in Cobb line compared to Cane-

luda and Peloco. In the comparison between Caneluda X Peloco, none of the analyzed genes

showed a significant difference in relative expression (Table 6/Fig 3).

Breeds were also compared within thermal comfort. Only the HSP70 and HSP90 genes had

statistically significant relative expression comparing Cobb X Caneluda and Cobb X Peloco.

Comparing Caneluda X Peloco, none of the four genes showed difference in relative expres-

sion (Table 7/Fig 4).

Comparing the genetic groups without considering environments, it was possible to notice

that the commercial line Cobb 5001 had different relative expression in relation to the native

breed Peloco (Peloco X Cobb) for all genes. While comparing Cobb 5001 to Caneluda (Cane-

luda X Cobb), there was only a significant difference for HSP70 gene. In the comparison

between Caneluda X Peloco, none of the four genes showed a significant difference in relative

expression (Table 8/Fig 5).

Discussion

High temperatures can cause several damages to livestock production, especially in poultry

farming causing financial losses. In addition to the technological mechanisms that try to allevi-

ate the thermal stress in chicken, there are physiological factors that decrease the effects of

heat. According to DE NADAL et al., (2011) [10] exposure to thermal stress can promote

expression of genes related to survival while not expressing less essential genes, resulting in the

rapid expression of Heat Shock Factors (HSF) and Heat Shock Protein (HSP) [36,37]

In this study, HSF1 and HSF3 genes showed low relative expression in all treatments (heat

stress and thermal comfort), and had a difference in expression for Cobb compared to Peloco.

These genes are not well expressed in acute thermal stress. HSF1 is activated in medium heat

Table 3. Parameters of the specific primers of genes related to thermal stress and reference genes for broilers obtained from the analysis of effi-

ciency curve in RT-qPCR.

GENE AT (˚C) [CDNA] [PRIMER] EFFICIENCY (%) R2 SLOPE

HSF1 62 45ng/μl 800mM 93 0.996 -3.494

HSF3 62 45ng/μl 800mM 101 0.999 -3.300

HSP70 62 45ng/μl 400mM 105 1 -3.199

HSP90 62 45ng/μl 400mM 102 0.999 -3.266

MRPS27 62 45ng/μl 800mM 105 0.998 -3.201

RPL5 62 45ng/μl 800mM 102 0.999 -3.284

MRPS30 62 45ng/μl 800mM 105 0.999 -3.207

AT = Annealing Temperature; SLOPE = Slope of the Line; R2 = Coefficient of Determination; [CDNA] = cDNA Concentration; [PRIMER] = Primer

Concentration

https://doi.org/10.1371/journal.pone.0186083.t003
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Fig 1. Regression curves, amplification and dissociation of the efficiency test for the 4 target genes (HSF1, HSF3,

HSP70 and HSP90) from broilers derived from RT-qPCR reactions. All dissociation curves show only one peak.

https://doi.org/10.1371/journal.pone.0186083.g001
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stress whereas HSF3 is activated in chronic thermal stress [19,37]. This suggests that HSF3may

play an important role in long periods of heat stress in chicken [36].

Some studies in humans [38] and plants [39–41] have shown that different types of stress

can promote the HSF family genes expression. The response of HSF genes during thermal

stress may be involved in expression of HSP’s genes [1,42], however, this mechanism is not yet

well known [43]. HSF1 induces only HSP70 [44] whereas HSF3 promotes the expression of all

HSPs in chicken [45]. In addition, PRAKASAM et al. (2013) [46] have demonstrated that

HSF3 is also involved in the expression of IL-6 pyrogenic cytokine during thermal stress.

Heat shock proteins produce responses to temperature rise and are driven by some factors

besides heat, such as microbial infection, tissue trauma and genetic injury [47]. In this study,

HSP70 and HSP90 genes had a significant difference in relative expression in all comparisons,

especially while comparing native chicken to commercial line Cobb, since the last one is more

sensitive to heat stress [48–52].

In comparison between thermal comfort and heat stress, Caneluda and Peloco had high

expression of HSP70while Cobb had medium relative expression in a thermal stress environ-

ment. Even with high expression of HSP70 gene, the local breeds remained comfortable during

the thermal stress, while commercial line chicken showed a great level of discomfort, suggest-

ing that the genes played a protective role. The HSP90 gene had medium expression in the

three genetic groups. In heat environments, HSP70 gene expression plays a better role in cellu-

lar functions than HSP90 [47].

Within the thermal comfort environment, Cobb chicken had higher expression of HSP70
and HSP90 than Caneluda and Peloco, even though the expression of these genes has been

Table 4. Descriptive statistics and expression levels of target genes related to heat stress in broilers

(n = 36).

n = 36 HSF1 HSF3 HSP70 HSP90

geo Mean [Ct] 29.15 26.12 20.97 20.26

ar Mean [Ct] 29.19 26.16 21.16 20.33

min [Ct] 26.49 23.39 16.47 17.86

max [Ct] 33.92 30.25 26.35 24.96

std dev [± Ct] 1.26 1.07 2.44 1.35

CV [% Ct] 4.33 4.08 11.54 6.66

coeff. of corr. [r] 0.746 0.319 0.251 0.177

Abbreviations: [Ct] Cycle threshold; geo Mean [Ct]: Geometric mean of Ct; ar Mean [Ct]: Arithmetic mean of

Ct; Min [Ct] and Max [Ct]: Ct threshold values; std dev [±Ct]: Standard deviation of Ct; CV [% Ct]: Coefficient

of variation of Ct levels expressed as a percentage; SD and CV are indicated in bold.

https://doi.org/10.1371/journal.pone.0186083.t004

Table 5. Relative expression analysis of HSF1, HSF3, HSP70 and HSP90 genes in the different genetic groups of chicken comparing the comfort

and thermal stress environments.

Gene Comparison between treatment within genetic groups

Caneluda Cobb Peloco

Comfort X Stress Comfort X Stress Comfort X Stress

FC p-value FC p-value FC p-value

HSF1 1.42 0.23 -1.17 0.58 -1.04 0.88

HSF3 1.03 0.90 -1.29 0.26 -1.35 0.19

HSP70 15.71 <.0001 7.54 <.0001 22.67 <.0001

HSP90 5.92 <.0001 4.92 <.0001 5.01 <.0001

https://doi.org/10.1371/journal.pone.0186083.t005
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low. As commercial chicken are genetically improved for production traits [3], the mainte-

nance characteristics are decreased and these chickens are not adapted to warm environment

conditions [8]. In this way, breeding environment could influence the expression of these

genes in terms that in production environment the temperature was high and not controlled.

Besides that, natural selection has been acting in Peloco and Caneluda chickens making them

resistance to high temperatures from tropical weather, which seems have a negative correlation

between production traits and heat resistance.

In relation to heat stress environment, only HSP90 gene had significant expression in Cane-

luda animals compared to Cobb (p-value = 0.0004) and in Peloco chicken also compared to

Cobb line (p-value = 0.0003). Comparing Caneluda and Peloco, there was no significant differ-

ence in HSP90 expression. Caneluda and Peloco are extensively reared animals, being more

adapted to the warm environment and able to stay under thermal stress easily than Cobb,

therefore, these wild chicken are more resistant to heat, even at temperatures higher than they

are used to.

In gene expression analysis without considering heat stress and thermal comfort, there was

difference in expression only in the comparison between Cobb and Peloco for all evaluated

genes. The HSF1,HSF3 and HSP70 genes were more expressed in Peloco, while HSP90was

more expressed in Cobb. In comparison between Caneluda X Cobb there was no significant

Fig 2. Relative expression analysis of HSF1, HSF3, HSP70 and HSP90 genes in different chicken

genetic groups comparing comfort and thermal stress environments. *p-Value <0.05.

https://doi.org/10.1371/journal.pone.0186083.g002

Table 6. Relative expression analysis of HSF1, HSF3, HSP70 and HSP90 genes comparing the different chicken genetic groups within the thermal

stress environment.

Gene Comparison between genetic groups under heat stress

Stress Stress Stress

Cobb X Caneluda Caneluda X Peloco Cobb X Peloco

FC p-value FC p-value FC p-value

HSF1 -1.00 1.00 1.51 0.16 1.51 0.16

HSF3 1.02 0.92 1.44 0.11 1.47 0.09

HSP70 1.51 0.26 -1.24 0.56 1.22 0.58

HSP90 -2.14 <.0001 -1.03 0.89 -2.20 <.0001

https://doi.org/10.1371/journal.pone.0186083.t006
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difference in expression of HSF’s genes, however, the HSP70 gene was more expressed in

Caneluda and the HSP90more expressed in Cobb.

Some studies have shown changes in HSP expression from heart, liver, kidney, blood and

muscle of broilers [1,53,54]. The results of HSP70 and HSP90 genes presented in this study are

in agreement with those reported by LEI et al. (2009) [54], XIE et al., (2014)[1] and YU et al.,

Fig 3. Relative expression analysis of HSF1, HSF3, HSP70 and HSP90 genes comparing the different

chicken genetic groups within the thermal stress environment. *p-Value <0.05.

https://doi.org/10.1371/journal.pone.0186083.g003

Table 7. Relative expression analysis of HSF1, HSF3, HSP70 and HSP90 genes comparing the different chicken genetic groups within the thermal

comfort environment.

Gene Comparison between genetic groups under heat comfort

Comfort Comfort Comfort

Cobb X Caneluda Caneluda X Peloco Cobb X Peloco

FC p-value FC p-value FC p-value

HSF1 1.65 0.08 1.02 0.94 1.69 0.07

HSF3 1.36 0.18 1.04 0.88 1.41 0.13

HSP70 3.15 <.0001 1.16 0.68 3.67 <.0001

HSP90 -1.78 0.01 -1.22 0.34 -2.16 <.0001

https://doi.org/10.1371/journal.pone.0186083.t007

Fig 4. Relative expression analysis of HSF1, HSF3, HSP70 and HSP90 genes comparing the different

genetic groups of chicken within the thermal comfort environment. *p-Value <0.05.

https://doi.org/10.1371/journal.pone.0186083.g004
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(2008)[53]. HSF1 and HSF3 genes showed different results than those observed by XIE et al.,

(2014) [1], which reported high expression of these genes in chickens submitted to thermal

stress. This inconsistency of results may have been due to the induction method at high tem-

peratures and the time of exposure of the animals.

It is important to have more studies using these genetic groups to construct a molecular

profile in relation to thermal stress, using these and other genes of the HSF’s and HSP’s family,

besides genes that are directly and indirectly related to thermal stress in chickens.

Conclusion

Given the above, it can be stated that HSP70 and HSP90 genes are highly expressed in all evalu-

ated genetic groups. The HSF1 and HSF3 genes did not have high expression in the studied

genetic groups neither in comfort and stress environments, whereas HSP70 and HSP90 are

highly expressed in Peloco and Caneluda within thermal stress, these breeds proved to be very

resistant to high temperature.

Supporting information

S1 Table. Data of target gene expression. The file contains raw data of Target Genes expres-

sion as Ct. 32 samples, two factors and four target genes.

(XLSX)

Table 8. Relative expression analysis of HSF1, HSF3, HSP70 and HSP90 genes comparing the different genetic groups of chicken without consid-

ering the environments (comfort and thermal stress).

Gene Comparison between genetic groups without considering the environments

Cobb X Caneluda Caneluda X Peloco Cobb X Peloco

FC p-value FC p-value FC p-value

HSF1 1.29 0.22 1.24 0.29 1.59 0.02

HSF3 1.18 0.31 1.22 0.21 1.44 0.02

HSP70 2.18 <.0001 -1.03 0.90 2.12 <.0001

HSP90 -1.95 <.0001 -1.12 0.44 -2.18 <.0001

https://doi.org/10.1371/journal.pone.0186083.t008

Fig 5. Relative expression analysis of HSF1, HSF3, HSP70 and HSP90 genes comparing the different

genetic groups of chicken without considering the environments (comfort and thermal stress). *p-

Value <0.05.

https://doi.org/10.1371/journal.pone.0186083.g005
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